Chapter 1
Lookup tables for all problems in current book

1.1 section 1.0
1.2 section 2.0
1.3 section 3.0
1.4 section 4.0
1.5 section 5.0

1.1 section 1.0

Table 1.1: Lookup table

ID

problem

ODE

8389

1

\(y^{\prime } = \frac {\cos \left (y\right ) \sec \left (x \right )}{x}\)

8390

2

\(y^{\prime } = x \left (\cos \left (y\right )+y\right )\)

8391

3

\(y^{\prime } = \frac {\sec \left (x \right ) \left (\sin \left (y\right )+y\right )}{x}\)

8392

4

\(y^{\prime } = \left (5+\frac {\sec \left (x \right )}{x}\right ) \left (\sin \left (y\right )+y\right )\)

8393

5

\(y^{\prime } = y+1\)

8394

6

\(y^{\prime } = 1+x\)

8395

7

\(y^{\prime } = x\)

8396

8

\(y^{\prime } = y\)

8397

9

\(y^{\prime } = 0\)

8398

10

\(y^{\prime } = 1+\frac {\sec \left (x \right )}{x}\)

8399

11

\(y^{\prime } = x +\frac {\sec \left (x \right ) y}{x}\)

8400

12

\(y^{\prime } = \frac {2 y}{x}\)

8401

13

\(y^{\prime } = \frac {2 y}{x}\)

8402

14

\(y^{\prime } = \frac {\ln \left (1+y^{2}\right )}{\ln \left (x^{2}+1\right )}\)

8403

15

\(y^{\prime } = \frac {1}{x}\)

8404

16

\(y^{\prime } = \frac {-y x -1}{4 x^{3} y-2 x^{2}}\)

8405

17

\(\frac {{y^{\prime }}^{2}}{4}-x y^{\prime }+y = 0\)

8406

18

\(y^{\prime } = \sqrt {\frac {y+1}{y^{2}}}\)

8407

19

\(y^{\prime } = \sqrt {1-x^{2}-y^{2}}\)

8408

20

\(y^{\prime }+\frac {y}{3} = \frac {\left (1-2 x \right ) y^{4}}{3}\)

8409

21

\(y^{\prime } = \sqrt {y}+x\)

8410

23

\(x^{2} y^{\prime }+y^{2} = x y y^{\prime }\)

8411

24

\(y = x y^{\prime }+x^{2} {y^{\prime }}^{2}\)

8412

25

\(\left (x +y\right ) y^{\prime } = 0\)

8413

26

\(x y^{\prime } = 0\)

8414

27

\(\frac {y^{\prime }}{x +y} = 0\)

8415

28

\(\frac {y^{\prime }}{x} = 0\)

8416

29

\(y^{\prime } = 0\)

8417

30

\(y = x {y^{\prime }}^{2}+{y^{\prime }}^{2}\)

8418

31

\(y^{\prime } = \frac {5 x^{2}-y x +y^{2}}{x^{2}}\)

8419

32

\(2 t +3 x+\left (x+2\right ) x^{\prime } = 0\)

8420

33

\(y^{\prime } = \frac {1}{1-y}\)

8421

34

\(p^{\prime } = a p-b p^{2}\)

8422

35

\(y^{2}+\frac {2}{x}+2 x y y^{\prime } = 0\)

8423

36

\(x f^{\prime }-f = \frac {{f^{\prime }}^{2} \left (1-{f^{\prime }}^{\lambda }\right )^{2}}{\lambda ^{2}}\)

8424

37

\(x y^{\prime }-2 y+b y^{2} = c \,x^{4}\)

8425

38

\(x y^{\prime }-y+y^{2} = x^{{2}/{3}}\)

8426

39

\(u^{\prime }+u^{2} = \frac {1}{x^{{4}/{5}}}\)

8427

40

\(y y^{\prime }-y = x\)

8428

41

\(y^{\prime \prime }+2 y^{\prime }+y = 0\)

8429

41

\(5 y^{\prime \prime }+2 y^{\prime }+4 y = 0\)

8430

42

\(y^{\prime \prime }+y^{\prime }+4 y = 1\)

8431

43

\(y^{\prime \prime }+y^{\prime }+4 y = \sin \left (x \right )\)

8432

44

\(y = x {y^{\prime }}^{2}\)

8433

45

\(y y^{\prime } = 1-x {y^{\prime }}^{3}\)

8434

46

\(f^{\prime } = \frac {1}{f}\)

8435

47

\(t y^{\prime \prime }+4 y^{\prime } = t^{2}\)

8436

48

\(\left (t^{2}+9\right ) y^{\prime \prime }+2 y^{\prime } t = 0\)

8437

49

\(t^{2} y^{\prime \prime }-3 y^{\prime } t +5 y = 0\)

8438

50

\(t y^{\prime \prime }+y^{\prime } = 0\)

8439

51

\(t^{2} y^{\prime \prime }-2 y^{\prime } = 0\)

8440

52

\(y^{\prime \prime }+\frac {\left (t^{2}-1\right ) y^{\prime }}{t}+\frac {t^{2} y}{\left (1+{\mathrm e}^{\frac {t^{2}}{2}}\right )^{2}} = 0\)

8441

53

\(t y^{\prime \prime }-y^{\prime }+4 t^{3} y = 0\)

8442

54

\(y^{\prime \prime } = 0\)

8443

55

\(y^{\prime \prime } = 1\)

8444

56

\(y^{\prime \prime } = f \left (t \right )\)

8445

57

\(y^{\prime \prime } = k\)

8446

58

\(y^{\prime } = -4 \sin \left (x -y\right )-4\)

8447

59

\(y^{\prime }+\sin \left (x -y\right ) = 0\)

8448

60

\(y^{\prime \prime } = 4 \sin \left (x \right )-4\)

8449

61

\(y y^{\prime \prime } = 0\)

8450

62

\(y y^{\prime \prime } = 1\)

8451

63

\(y y^{\prime \prime } = x\)

8452

64

\(y^{2} y^{\prime \prime } = x\)

8453

65

\(y^{2} y^{\prime \prime } = 0\)

8454

66

\(3 y y^{\prime \prime } = \sin \left (x \right )\)

8455

67

\(3 y y^{\prime \prime }+y = 5\)

8456

68

\(a y y^{\prime \prime }+b y = c\)

8457

69

\(a y^{2} y^{\prime \prime }+b y^{2} = c\)

8458

70

\(a y y^{\prime \prime }+b y = 0\)

8459

71

\([x^{\prime }\left (t \right ) = 9 x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = -6 x \left (t \right )-y \left (t \right ), z^{\prime }\left (t \right ) = 6 x \left (t \right )+4 y \left (t \right )+3 z \left (t \right )]\)

8460

72

\([x^{\prime }\left (t \right ) = x \left (t \right )-3 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )+7 y \left (t \right )]\)

8461

73

\([x^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )+5 y \left (t \right )]\)

8462

74

\([x^{\prime }\left (t \right ) = 7 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -4 x \left (t \right )+3 y \left (t \right )]\)

8463

75

\([x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right ), z^{\prime }\left (t \right ) = z \left (t \right )]\)

8464

76

\([x^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right )-z \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+2 z \left (t \right ), z^{\prime }\left (t \right ) = -x \left (t \right )-2 y \left (t \right )+4 z \left (t \right )]\)

8465

77

\(x^{\prime } = 4 A k \left (\frac {x}{A}\right )^{{3}/{4}}-3 k x\)

8466

78

\(\frac {y^{\prime } y}{1+\frac {\sqrt {1+{y^{\prime }}^{2}}}{2}} = -x\)

8467

78

\(\frac {y^{\prime } y}{1+\frac {\sqrt {1+{y^{\prime }}^{2}}}{2}} = -x\)

8468

79

\(y^{\prime } = \frac {y \left (1+\frac {a^{2} x}{\sqrt {a^{2} \left (x^{2}+1\right )}}\right )}{\sqrt {a^{2} \left (x^{2}+1\right )}}\)

8469

80

\(y^{\prime } = x^{2}+y^{2}\)

8470

81

\(y^{\prime } = 2 \sqrt {y}\)

8471

82

\(z^{\prime \prime }+3 z^{\prime }+2 z = 24 \,{\mathrm e}^{-3 t}-24 \,{\mathrm e}^{-4 t}\)

8472

83

\(y^{\prime } = \sqrt {1-y^{2}}\)

8473

84

\(y^{\prime } = -1+x^{2}+y^{2}\)

8474

85

\(y^{\prime } = 2 y \left (x \sqrt {y}-1\right )\)

8475

86

\(y^{\prime \prime } = \frac {1}{y}-\frac {x y^{\prime }}{y^{2}}\)

8476

87

\(y^{\prime \prime }+y^{\prime }+y = 0\)

8477

88

\(y^{\prime \prime }+y^{\prime }+y = 0\)

8478

88

\(y^{\prime \prime }+y^{\prime }+y = 0\)

8479

89

\(y^{\prime \prime }-y y^{\prime } = 2 x\)

8480

90

\(y^{\prime }-y^{2}-x -x^{2} = 0\)

1.2 section 2.0

Table 1.3: Lookup table

ID

problem

ODE

8481

1

\(y^{\prime \prime }-x y^{\prime }-y x -x = 0\)

8482

2

\(y^{\prime \prime }-x y^{\prime }-y x -2 x = 0\)

8483

3

\(y^{\prime \prime }-x y^{\prime }-y x -3 x = 0\)

8484

4

\(y^{\prime \prime }-x y^{\prime }-y x -x^{2}-x = 0\)

8485

5

\(y^{\prime \prime }-x y^{\prime }-y x -x^{3}+2 = 0\)

8486

6

\(y^{\prime \prime }-x y^{\prime }-y x -x^{4}-6 = 0\)

8487

7

\(y^{\prime \prime }-x y^{\prime }-y x -x^{5}+24 = 0\)

8488

8

\(y^{\prime \prime }-x y^{\prime }-y x -x = 0\)

8489

9

\(y^{\prime \prime }-x y^{\prime }-y x -x^{2} = 0\)

8490

10

\(y^{\prime \prime }-x y^{\prime }-y x -x^{3} = 0\)

8491

11

\(y^{\prime \prime }-a x y^{\prime }-b x y-c x = 0\)

8492

12

\(y^{\prime \prime }-a x y^{\prime }-b x y-c \,x^{2} = 0\)

8493

13

\(y^{\prime \prime }-a x y^{\prime }-b x y-c \,x^{3} = 0\)

8494

14

\(y^{\prime \prime }-y^{\prime }-y x -x = 0\)

8495

15

\(y^{\prime \prime }-y^{\prime }-y x -x^{2} = 0\)

8496

16

\(y^{\prime \prime }-y^{\prime }-y x -x^{2}-1 = 0\)

8497

16

\(y^{\prime \prime }-y^{\prime }-y x -x^{2}-1 = 0\)

8498

17

\(y^{\prime \prime }-2 y^{\prime }-y x -x^{2}-2 = 0\)

8499

18

\(y^{\prime \prime }-4 y^{\prime }-y x -x^{2}-4 = 0\)

8500

19

\(y^{\prime \prime }-y^{\prime }-y x -x^{3}+1 = 0\)

8501

20

\(y^{\prime \prime }-2 y^{\prime }-y x -x^{3}-x^{2} = 0\)

8502

21

\(y^{\prime \prime }-y^{\prime }-y x -x^{3}+2 = 0\)

8503

22

\(y^{\prime \prime }-2 y^{\prime }-y x -x^{3}+2 = 0\)

8504

23

\(y^{\prime \prime }-4 y^{\prime }-y x -x^{3}+2 = 0\)

8505

24

\(y^{\prime \prime }-6 y^{\prime }-y x -x^{3}+2 = 0\)

8506

25

\(y^{\prime \prime }-8 y^{\prime }-y x -x^{3}+2 = 0\)

8507

26

\(y^{\prime \prime }-y^{\prime }-y x -x^{4}+3 = 0\)

8508

27

\(y^{\prime \prime }-y^{\prime }-y x -x^{3} = 0\)

8509

28

\(y^{\prime \prime }-y x -x^{3}+2 = 0\)

8510

29

\(y^{\prime \prime }-y x -x^{6}+64 = 0\)

8511

30

\(y^{\prime \prime }-y x -x = 0\)

8512

31

\(y^{\prime \prime }-y x -x^{2} = 0\)

8513

32

\(y^{\prime \prime }-y x -x^{3} = 0\)

8514

33

\(y^{\prime \prime }-y x -x^{6}-x^{3}+42 = 0\)

8515

34

\(y^{\prime \prime }-x^{2} y-x^{2} = 0\)

8516

35

\(y^{\prime \prime }-x^{2} y-x^{3} = 0\)

8517

36

\(y^{\prime \prime }-x^{2} y-x^{4} = 0\)

8518

37

\(y^{\prime \prime }-x^{2} y-x^{4}+2 = 0\)

8519

38

\(y^{\prime \prime }-2 x^{2} y-x^{4}+1 = 0\)

8520

39

\(y^{\prime \prime }-x^{3} y-x^{3} = 0\)

8521

40

\(y^{\prime \prime }-x^{3} y-x^{4} = 0\)

8522

41

\(y^{\prime \prime }-x^{2} y^{\prime }-x^{2} y-x^{2} = 0\)

8523

42

\(y^{\prime \prime }-x^{3} y^{\prime }-x^{3} y-x^{3} = 0\)

8524

43

\(y^{\prime \prime }-x y^{\prime }-y x -x = 0\)

8525

44

\(y^{\prime \prime }-x^{2} y^{\prime }-y x -x^{2} = 0\)

8526

45

\(y^{\prime \prime }-x^{2} y^{\prime }-x^{2} y-x^{3}-x^{2} = 0\)

8527

46

\(y^{\prime \prime }-x^{2} y^{\prime }-x^{3} y-x^{4}-x^{2} = 0\)

8528

47

\(y^{\prime \prime }-\frac {y^{\prime }}{x}-y x -x^{2}-\frac {1}{x} = 0\)

8529

48

\(y^{\prime \prime }-\frac {y^{\prime }}{x}-x^{2} y-x^{3}-\frac {1}{x} = 0\)

8530

49

\(y^{\prime \prime }-\frac {y^{\prime }}{x}-x^{3} y-x^{4}-\frac {1}{x} = 0\)

8531

50

\(y^{\prime \prime }-x^{3} y^{\prime }-y x -x^{3}-x^{2} = 0\)

8532

51

\(y^{\prime \prime }-x^{3} y^{\prime }-x^{2} y-x^{3} = 0\)

8533

52

\(y^{\prime \prime }-x^{3} y^{\prime }-x^{3} y-x^{4}-x^{3} = 0\)

8534

50

\(y^{\prime \prime \prime }-x^{3} y^{\prime }-x^{2} y-x^{3} = 0\)

1.3 section 3.0

Table 1.5: Lookup table

ID

problem

ODE

8535

1

\(y^{\prime \prime }+c y^{\prime }+k y = 0\)

8536

2

\(w^{\prime } = -\frac {1}{2}-\frac {\sqrt {1-12 w}}{2}\)

8537

3

\(y^{\prime \prime }+y = \sin \left (x \right )\)

8538

4

\(y^{\prime \prime }+y = \sin \left (x \right )\)

8539

5

\(y^{\prime \prime }+y = \sin \left (x \right )\)

8540

6

\(y^{\prime \prime }+y = \sin \left (x \right )\)

8541

7

\(y^{\prime \prime }+y = \sin \left (x \right )\)

8542

8

\(y^{\prime \prime }+y = \sin \left (x \right )\)

8543

9

\(y^{\prime \prime }+y = \sin \left (x \right )\)

8544

10

\(y^{\prime \prime }+y = \sin \left (x \right )\)

8545

11

\(y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right )\)

8546

12

\(y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right )\)

8547

13

\(y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right )\)

8548

14

\(y^{\prime \prime \prime }+y^{\prime }+y = x\)

8549

15

\(x^{4} y^{\prime \prime }+x^{3} y^{\prime }-4 x^{2} y = 1\)

8550

16

\(x^{4} y^{\prime \prime }+x^{3} y^{\prime }-4 x^{2} y = x\)

8551

17

\(x^{2} y^{\prime \prime }+x y^{\prime }-4 y = x\)

8552

18

\(x^{4} y^{\prime \prime \prime }+x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y x = 0\)

8553

19

\(x^{4} y^{\prime \prime \prime }+x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y x = x\)

8554

20

\(5 x^{5} y^{\prime \prime \prime \prime }+4 x^{4} y^{\prime \prime \prime }+x^{2} y^{\prime }+y x = 0\)

8555

21

\(\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0\)

8556

22

\(\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = x\)

8557

23

\(\left (x^{2}+1\right ) y^{\prime \prime }+1+x {y^{\prime }}^{2} = 1\)

8558

24

\(\left (x^{2}+1\right ) y^{\prime \prime }+y {y^{\prime }}^{2} = 0\)

8559

25

\(\left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{2} = 0\)

8560

26

\(y^{\prime \prime }+\sin \left (y\right ) {y^{\prime }}^{2} = 0\)

8561

27

\(\left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{3} = 0\)

8562

28

\(y^{\prime } = {\mathrm e}^{-\frac {y}{x}}\)

8563

29

\(y^{\prime } = 2 x^{2} \sin \left (\frac {y}{x}\right )^{2}+\frac {y}{x}\)

8564

30

\(4 x^{2} y^{\prime \prime }+y = 8 \sqrt {x}\, \left (\ln \left (x \right )+1\right )\)

8565

31

\(v v^{\prime } = \frac {2 v^{2}}{r^{3}}+\frac {\lambda r}{3}\)

1.4 section 4.0

Table 1.7: Lookup table

ID

problem

ODE

8566

1

\(2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = 0\)

8567

2

\(2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = 1\)

8568

3

\(2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = 1+x\)

8569

4

\(2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x\)

8570

5

\(2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{2}+x +1\)

8571

6

\(2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{2}\)

8572

7

\(2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{2}+1\)

8573

8

\(2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{4}\)

8574

9

\(2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = \sin \left (x \right )\)

8575

10

\(2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = 1+\sin \left (x \right )\)

8576

11

\(2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x \sin \left (x \right )\)

8577

12

\(2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = \cos \left (x \right )+\sin \left (x \right )\)

8578

13

\(x^{2} y^{\prime \prime }+\left (\cos \left (x \right )-1\right ) y^{\prime }+y \,{\mathrm e}^{x} = 0\)

8579

14

\(\left (x -2\right ) y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1+x \right ) y = 0\)

8580

15

\(\left (x -2\right ) y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1+x \right ) y = 0\)

8581

16

\(\left (1+x \right ) \left (3 x -1\right ) y^{\prime \prime }+\cos \left (x \right ) y^{\prime }-3 y x = 0\)

8582

17

\(x y^{\prime \prime }+2 y^{\prime }+y x = 0\)

8583

18

\(2 x^{2} y^{\prime \prime }+3 x y^{\prime }-y x = x^{2}+2 x\)

8584

19

\(2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = 1\)

8585

20

\(2 x^{2} y^{\prime \prime }+2 x y^{\prime }-y x = 1\)

8586

21

\(y^{\prime \prime }+\left (x -6\right ) y = 0\)

8587

22

\(x^{2} y^{\prime \prime }+\left (3 x^{2}+2 x \right ) y^{\prime }-2 y = 0\)

8588

23

\(2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{2}+\cos \left (x \right )\)

8589

24

\(2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = \cos \left (x \right )\)

8590

24

\(2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{3}+\cos \left (x \right )\)

8591

24

\(2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{3} \cos \left (x \right )\)

8592

24

\(2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{3} \cos \left (x \right )+\sin \left (x \right )^{2}\)

8593

24

\(2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = \ln \left (x \right )\)

8594

25

\(2 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+x \left (11 x^{2}+11 x +9\right ) y^{\prime }+\left (7 x^{2}+10 x +6\right ) y = 0\)

8595

26

\(x^{2} \left (x +3\right ) y^{\prime \prime }+5 x \left (1+x \right ) y^{\prime }-\left (1-4 x \right ) y = 0\)

8596

27

\(x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }-x \left (4 x^{2}+3\right ) y^{\prime }+\left (-2 x^{2}+2\right ) y = 0\)

8597

28

\({y^{\prime }}^{2}+y^{2} = \sec \left (x \right )^{4}\)

8598

29

\(\left (y-2 x y^{\prime }\right )^{2} = {y^{\prime }}^{3}\)

8599

31

\(x^{2} y^{\prime \prime }+y = 0\)

8600

32

\(x y^{\prime \prime }+y^{\prime }-y = 0\)

8601

33

\(4 x y^{\prime \prime }+2 y^{\prime }+y = 0\)

8602

34

\(x y^{\prime \prime }+y^{\prime }-y = 0\)

8603

35

\(x y^{\prime \prime }+\left (1+x \right ) y^{\prime }+2 y = 0\)

8604

36

\(x \left (x -1\right ) y^{\prime \prime }+3 x y^{\prime }+y = 0\)

8605

37

\(x^{2} \left (x^{2}-2 x +1\right ) y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (4+x \right ) y = 0\)

8606

38

\(2 x^{2} \left (x +2\right ) y^{\prime \prime }+5 x^{2} y^{\prime }+\left (1+x \right ) y = 0\)

8607

39

\(2 x^{2} y^{\prime \prime }+x y^{\prime }+\left (x -5\right ) y = 0\)

8608

40

\(2 x^{2} y^{\prime \prime }+2 x y^{\prime }-y x = \sin \left (x \right )\)

8609

41

\(2 x^{2} y^{\prime \prime }+2 x y^{\prime }-y x = x \sin \left (x \right )\)

8610

42

\(2 x^{2} y^{\prime \prime }+2 x y^{\prime }-y x = \sin \left (x \right ) \cos \left (x \right )\)

8611

43

\(2 x^{2} y^{\prime \prime }+2 x y^{\prime }-y x = x^{3}+x \sin \left (x \right )\)

8612

44

\(\cos \left (x \right ) y^{\prime \prime }+2 x y^{\prime }-y x = 0\)

8613

45

\(x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (x^{2}+2\right ) y = 0\)

8614

46

\(x^{2} y^{\prime \prime }+x y^{\prime }-y x = 0\)

8615

47

\(x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0\)

8616

48

\(\left (x^{2}-x \right ) y^{\prime \prime }-x y^{\prime }+y = 0\)

8617

49

\(x^{2} y^{\prime \prime }+\left (x^{2}+6 x \right ) y^{\prime }+y x = 0\)

8618

50

\(x^{2} y^{\prime \prime }-x y^{\prime }+\left (x^{2}-8\right ) y = 0\)

8619

51

\(x^{2} y^{\prime \prime }-9 x y^{\prime }+25 y = 0\)

8620

52

\(x^{2} y^{\prime \prime }-x y^{\prime }-\left (x^{2}+\frac {5}{4}\right ) y = 0\)

8621

53

\(x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0\)

8622

54

\(x y^{\prime \prime }+\left (2-x \right ) y^{\prime }-y = 0\)

8623

55

\(2 x^{2} y^{\prime \prime }+3 x y^{\prime }-y = 0\)

8624

56

\(2 x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = 0\)

8625

57

\(x^{2} y^{\prime \prime }+3 x y^{\prime }+4 x^{4} y = 0\)

8626

58

\(x^{2} y^{\prime \prime }-y x = 0\)

8627

59

\(\left (-x^{2}+1\right ) y^{\prime \prime }+y^{\prime }+y = x \,{\mathrm e}^{x}\)

8628

60

\(y^{\prime } = y \left (1-y^{2}\right )\)

8629

61

\(\frac {x y^{\prime \prime }}{1-x}+y = \frac {1}{1-x}\)

8630

62

\(\frac {x y^{\prime \prime }}{1-x}+y x = 0\)

8631

63

\(\frac {x y^{\prime \prime }}{1-x}+y = \cos \left (x \right )\)

8632

64

\(\frac {x y^{\prime \prime }}{-x^{2}+1}+y = 0\)

8633

65

\(y^{\prime \prime } = \left (x^{2}+3\right ) y\)

8634

66

\(y^{\prime \prime }+\left (x -1\right ) y = 0\)

8635

67

\([x^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right )+2 t +1, y^{\prime }\left (t \right ) = 5 x \left (t \right )+y \left (t \right )+3 t -1]\)

8636

68

\(y^{\prime \prime }+20 y^{\prime }+500 y = 100000 \cos \left (100 x \right )\)

8637

69

\(y^{\prime \prime } \sin \left (2 x \right )^{2}+y^{\prime } \sin \left (4 x \right )-4 y = 0\)

1.5 section 5.0

Table 1.9: Lookup table

ID

problem

ODE

8638

1

\(y^{\prime \prime } = A y^{{2}/{3}}\)

8639

2

\(y^{\prime \prime }+2 x y^{\prime }+\left (x^{2}+1\right ) y = 0\)

8640

3

\(y^{\prime \prime }+2 \cot \left (x \right ) y^{\prime }-y = 0\)

8641

4

\(x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0\)

8642

5

\(4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 4 \sqrt {x}\, {\mathrm e}^{x}\)

8643

6

\(x y^{\prime \prime }-\left (2 x +2\right ) y^{\prime }+\left (x +2\right ) y = 6 x^{3} {\mathrm e}^{x}\)

8644

7

\(y^{\prime }+y = \frac {1}{x}\)

8645

8

\(y^{\prime }+y = \frac {1}{x^{2}}\)

8646

9

\(x y^{\prime }+y = 0\)

8647

10

\(y^{\prime } = \frac {1}{x}\)

8648

11

\(y^{\prime \prime } = \frac {1}{x}\)

8649

12

\(y^{\prime \prime }+y^{\prime } = \frac {1}{x}\)

8650

13

\(y^{\prime \prime }+y = \frac {1}{x}\)

8651

14

\(y^{\prime \prime }+y^{\prime }+y = \frac {1}{x}\)

8652

15

\(h^{2}+\frac {2 a h}{\sqrt {1+{h^{\prime }}^{2}}} = b^{2}\)

8653

16

\(y^{\prime \prime }+2 y^{\prime }-24 y = 16-\left (x +2\right ) {\mathrm e}^{4 x}\)

8654

17

\(y^{\prime \prime }+3 y^{\prime }-4 y = 6 \,{\mathrm e}^{2 t -2}\)

8655

18

\(y^{\prime \prime }+y = {\mathrm e}^{a \cos \left (x \right )}\)

8656

19

\(y^{\prime } = \frac {y}{2 y \ln \left (y\right )+y-x}\)

8657

20

\(x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (1+x \right ) y = 0\)

8658

21

\(x^{2} y^{\prime }+{\mathrm e}^{-y} = 0\)

8659

22

\(y^{\prime \prime }+{\mathrm e}^{y} = 0\)

8660

23

\(y^{\prime } = \frac {y x +3 x -2 y+6}{y x -3 x -2 y+6}\)