2.1.87 problem 86
Internal
problem
ID
[8475]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
1.0
Problem
number
:
86
Date
solved
:
Thursday, December 12, 2024 at 09:21:15 AM
CAS
classification
:
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]
Solve
\begin{align*} y^{\prime \prime }&=\frac {1}{y}-\frac {x y^{\prime }}{y^{2}} \end{align*}
Solved as second order nonlinear exact ode
Time used: 34.198 (sec)
An exact non-linear second order ode has the form
\begin{align*} a_{2} \left (x , y, y^{\prime }\right ) y^{\prime \prime }+a_{1} \left (x , y, y^{\prime }\right ) y^{\prime }+a_{0} \left (x , y, y^{\prime }\right )&=0 \end{align*}
Where the following conditions are satisfied
\begin{align*} \frac {\partial a_2}{\partial y} &= \frac {\partial a_1}{\partial y'}\\ \frac {\partial a_2}{\partial x} &= \frac {\partial a_0}{\partial y'}\\ \frac {\partial a_1}{\partial x} &= \frac {\partial a_0}{\partial y} \end{align*}
Looking at the the ode given we see that
\begin{align*} a_2 &= 1\\ a_1 &= \frac {x}{y^{2}}\\ a_0 &= -\frac {1}{y} \end{align*}
Applying the conditions to the above shows this is a nonlinear exact second order ode.
Therefore it can be reduced to first order ode given by
\begin{align*}
\int {a_2\,d y'} + \int {a_1\,d y} + \int {a_0\,d x} &= c_1 \\
\int {1\,d y'} + \int {\frac {x}{y^{2}}\,d y} + \int {-\frac {1}{y}\,d x} &= c_1 \\
\end{align*}
Which results in
\[
y^{\prime }-\frac {x}{y} = c_1
\]
Which is now
solved.
In canonical form, the ODE is
\begin{align*} y' &= F(x,y)\\ &= \frac {c_1 y +x}{y}\tag {1} \end{align*}
An ode of the form \(y' = \frac {M(x,y)}{N(x,y)}\) is called homogeneous if the functions \(M(x,y)\) and \(N(x,y)\) are both homogeneous
functions and of the same order. Recall that a function \(f(x,y)\) is homogeneous of order \(n\) if
\[ f(t^n x, t^n y)= t^n f(x,y) \]
In this
case, it can be seen that both \(M=c_1 y +x\) and \(N=y\) are both homogeneous and of the same order \(n=1\). Therefore
this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE
using the substitution \(u=\frac {y}{x}\), or \(y=ux\). Hence
\[ \frac { \mathop {\mathrm {d}y}}{\mathop {\mathrm {d}x}}= \frac { \mathop {\mathrm {d}u}}{\mathop {\mathrm {d}x}}x + u \]
Applying the transformation \(y=ux\) to the above ODE in (1)
gives
\begin{align*} \frac { \mathop {\mathrm {d}u}}{\mathop {\mathrm {d}x}}x + u &= c_1 +\frac {1}{u}\\ \frac { \mathop {\mathrm {d}u}}{\mathop {\mathrm {d}x}} &= \frac {c_1 +\frac {1}{u \left (x \right )}-u \left (x \right )}{x} \end{align*}
Or
\[ u^{\prime }\left (x \right )-\frac {c_1 +\frac {1}{u \left (x \right )}-u \left (x \right )}{x} = 0 \]
Or
\[ u^{\prime }\left (x \right ) u \left (x \right ) x +u \left (x \right )^{2}-c_1 u \left (x \right )-1 = 0 \]
Which is now solved as separable in \(u \left (x \right )\).
The ode \(u^{\prime }\left (x \right ) = -\frac {u \left (x \right )^{2}-c_1 u \left (x \right )-1}{u \left (x \right ) x}\) is separable as it can be written as
\begin{align*} u^{\prime }\left (x \right )&= -\frac {u \left (x \right )^{2}-c_1 u \left (x \right )-1}{u \left (x \right ) x}\\ &= f(x) g(u) \end{align*}
Where
\begin{align*} f(x) &= -\frac {1}{x}\\ g(u) &= \frac {-c_1 u +u^{2}-1}{u} \end{align*}
Integrating gives
\begin{align*} \int { \frac {1}{g(u)} \,du} &= \int { f(x) \,dx}\\ \int { \frac {u}{-c_1 u +u^{2}-1}\,du} &= \int { -\frac {1}{x} \,dx}\\ \frac {\ln \left (u \left (x \right )^{2}-c_1 u \left (x \right )-1\right )}{2}+\frac {c_1 \,\operatorname {arctanh}\left (\frac {-2 u \left (x \right )+c_1}{\sqrt {c_1^{2}+4}}\right )}{\sqrt {c_1^{2}+4}}&=\ln \left (\frac {1}{x}\right )+c_2 \end{align*}
We now need to find the singular solutions, these are found by finding for what values \(g(u)\) is
zero, since we had to divide by this above. Solving \(g(u)=0\) or \(\frac {-c_1 u +u^{2}-1}{u}=0\) for \(u \left (x \right )\) gives
\begin{align*} u \left (x \right )&=\frac {c_1}{2}-\frac {\sqrt {c_1^{2}+4}}{2}\\ u \left (x \right )&=\frac {c_1}{2}+\frac {\sqrt {c_1^{2}+4}}{2} \end{align*}
Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be
used.
Therefore the solutions found are
\begin{align*} \frac {\ln \left (u \left (x \right )^{2}-c_1 u \left (x \right )-1\right )}{2}+\frac {c_1 \,\operatorname {arctanh}\left (\frac {-2 u \left (x \right )+c_1}{\sqrt {c_1^{2}+4}}\right )}{\sqrt {c_1^{2}+4}} = \ln \left (\frac {1}{x}\right )+c_2\\ u \left (x \right ) = \frac {c_1}{2}-\frac {\sqrt {c_1^{2}+4}}{2}\\ u \left (x \right ) = \frac {c_1}{2}+\frac {\sqrt {c_1^{2}+4}}{2} \end{align*}
Converting \(\frac {\ln \left (u \left (x \right )^{2}-c_1 u \left (x \right )-1\right )}{2}+\frac {c_1 \,\operatorname {arctanh}\left (\frac {-2 u \left (x \right )+c_1}{\sqrt {c_1^{2}+4}}\right )}{\sqrt {c_1^{2}+4}} = \ln \left (\frac {1}{x}\right )+c_2\) back to \(y\) gives
\begin{align*} \frac {\ln \left (\frac {-c_1 y x +y^{2}-x^{2}}{x^{2}}\right )}{2}+\frac {c_1 \,\operatorname {arctanh}\left (\frac {c_1 x -2 y}{x \sqrt {c_1^{2}+4}}\right )}{\sqrt {c_1^{2}+4}} = \ln \left (\frac {1}{x}\right )+c_2 \end{align*}
Converting \(u \left (x \right ) = \frac {c_1}{2}-\frac {\sqrt {c_1^{2}+4}}{2}\) back to \(y\) gives
\begin{align*} y = x \left (\frac {c_1}{2}-\frac {\sqrt {c_1^{2}+4}}{2}\right ) \end{align*}
Converting \(u \left (x \right ) = \frac {c_1}{2}+\frac {\sqrt {c_1^{2}+4}}{2}\) back to \(y\) gives
\begin{align*} y = x \left (\frac {c_1}{2}+\frac {\sqrt {c_1^{2}+4}}{2}\right ) \end{align*}
Will add steps showing solving for IC soon.
Summary of solutions found
\begin{align*}
\frac {\ln \left (\frac {-c_1 y x +y^{2}-x^{2}}{x^{2}}\right )}{2}+\frac {c_1 \,\operatorname {arctanh}\left (\frac {c_1 x -2 y}{x \sqrt {c_1^{2}+4}}\right )}{\sqrt {c_1^{2}+4}} &= \ln \left (\frac {1}{x}\right )+c_2 \\
y &= x \left (\frac {c_1}{2}-\frac {\sqrt {c_1^{2}+4}}{2}\right ) \\
y &= x \left (\frac {c_1}{2}+\frac {\sqrt {c_1^{2}+4}}{2}\right ) \\
\end{align*}
Solved as second order integrable as is ode (ABC method)
Time used: 34.203 (sec)
Writing the ode as
\[
y^{\prime \prime }-\frac {1}{y}+\frac {x y^{\prime }}{y^{2}} = 0
\]
Integrating both sides of the ODE w.r.t \(x\) gives
\begin{align*} \int \left (y^{\prime \prime }-\frac {1}{y}+\frac {x y^{\prime }}{y^{2}}\right )d x &= 0 \\ y^{\prime }-\frac {x}{y} = c_1 \end{align*}
Which is now solved for \(y\). In canonical form, the ODE is
\begin{align*} y' &= F(x,y)\\ &= \frac {c_1 y +x}{y}\tag {1} \end{align*}
An ode of the form \(y' = \frac {M(x,y)}{N(x,y)}\) is called homogeneous if the functions \(M(x,y)\) and \(N(x,y)\) are both homogeneous
functions and of the same order. Recall that a function \(f(x,y)\) is homogeneous of order \(n\) if
\[ f(t^n x, t^n y)= t^n f(x,y) \]
In this
case, it can be seen that both \(M=c_1 y +x\) and \(N=y\) are both homogeneous and of the same order \(n=1\). Therefore
this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE
using the substitution \(u=\frac {y}{x}\), or \(y=ux\). Hence
\[ \frac { \mathop {\mathrm {d}y}}{\mathop {\mathrm {d}x}}= \frac { \mathop {\mathrm {d}u}}{\mathop {\mathrm {d}x}}x + u \]
Applying the transformation \(y=ux\) to the above ODE in (1)
gives
\begin{align*} \frac { \mathop {\mathrm {d}u}}{\mathop {\mathrm {d}x}}x + u &= c_1 +\frac {1}{u}\\ \frac { \mathop {\mathrm {d}u}}{\mathop {\mathrm {d}x}} &= \frac {c_1 +\frac {1}{u \left (x \right )}-u \left (x \right )}{x} \end{align*}
Or
\[ u^{\prime }\left (x \right )-\frac {c_1 +\frac {1}{u \left (x \right )}-u \left (x \right )}{x} = 0 \]
Or
\[ u^{\prime }\left (x \right ) u \left (x \right ) x +u \left (x \right )^{2}-c_1 u \left (x \right )-1 = 0 \]
Which is now solved as separable in \(u \left (x \right )\).
The ode \(u^{\prime }\left (x \right ) = -\frac {u \left (x \right )^{2}-c_1 u \left (x \right )-1}{u \left (x \right ) x}\) is separable as it can be written as
\begin{align*} u^{\prime }\left (x \right )&= -\frac {u \left (x \right )^{2}-c_1 u \left (x \right )-1}{u \left (x \right ) x}\\ &= f(x) g(u) \end{align*}
Where
\begin{align*} f(x) &= -\frac {1}{x}\\ g(u) &= \frac {-c_1 u +u^{2}-1}{u} \end{align*}
Integrating gives
\begin{align*} \int { \frac {1}{g(u)} \,du} &= \int { f(x) \,dx}\\ \int { \frac {u}{-c_1 u +u^{2}-1}\,du} &= \int { -\frac {1}{x} \,dx}\\ \frac {\ln \left (u \left (x \right )^{2}-c_1 u \left (x \right )-1\right )}{2}+\frac {c_1 \,\operatorname {arctanh}\left (\frac {-2 u \left (x \right )+c_1}{\sqrt {c_1^{2}+4}}\right )}{\sqrt {c_1^{2}+4}}&=\ln \left (\frac {1}{x}\right )+c_2 \end{align*}
We now need to find the singular solutions, these are found by finding for what values \(g(u)\) is
zero, since we had to divide by this above. Solving \(g(u)=0\) or \(\frac {-c_1 u +u^{2}-1}{u}=0\) for \(u \left (x \right )\) gives
\begin{align*} u \left (x \right )&=\frac {c_1}{2}-\frac {\sqrt {c_1^{2}+4}}{2}\\ u \left (x \right )&=\frac {c_1}{2}+\frac {\sqrt {c_1^{2}+4}}{2} \end{align*}
Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be
used.
Therefore the solutions found are
\begin{align*} \frac {\ln \left (u \left (x \right )^{2}-c_1 u \left (x \right )-1\right )}{2}+\frac {c_1 \,\operatorname {arctanh}\left (\frac {-2 u \left (x \right )+c_1}{\sqrt {c_1^{2}+4}}\right )}{\sqrt {c_1^{2}+4}} = \ln \left (\frac {1}{x}\right )+c_2\\ u \left (x \right ) = \frac {c_1}{2}-\frac {\sqrt {c_1^{2}+4}}{2}\\ u \left (x \right ) = \frac {c_1}{2}+\frac {\sqrt {c_1^{2}+4}}{2} \end{align*}
Converting \(\frac {\ln \left (u \left (x \right )^{2}-c_1 u \left (x \right )-1\right )}{2}+\frac {c_1 \,\operatorname {arctanh}\left (\frac {-2 u \left (x \right )+c_1}{\sqrt {c_1^{2}+4}}\right )}{\sqrt {c_1^{2}+4}} = \ln \left (\frac {1}{x}\right )+c_2\) back to \(y\) gives
\begin{align*} \frac {\ln \left (\frac {-c_1 y x +y^{2}-x^{2}}{x^{2}}\right )}{2}+\frac {c_1 \,\operatorname {arctanh}\left (\frac {c_1 x -2 y}{x \sqrt {c_1^{2}+4}}\right )}{\sqrt {c_1^{2}+4}} = \ln \left (\frac {1}{x}\right )+c_2 \end{align*}
Converting \(u \left (x \right ) = \frac {c_1}{2}-\frac {\sqrt {c_1^{2}+4}}{2}\) back to \(y\) gives
\begin{align*} y = x \left (\frac {c_1}{2}-\frac {\sqrt {c_1^{2}+4}}{2}\right ) \end{align*}
Converting \(u \left (x \right ) = \frac {c_1}{2}+\frac {\sqrt {c_1^{2}+4}}{2}\) back to \(y\) gives
\begin{align*} y = x \left (\frac {c_1}{2}+\frac {\sqrt {c_1^{2}+4}}{2}\right ) \end{align*}
Will add steps showing solving for IC soon.
Maple step by step solution
Maple trace
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
-> trying 2nd order, dynamical_symmetries, fully reducible to Abel through one integrating factor of the form G(x,y)/(1+H(x,y)*y)^2
--- trying a change of variables {x -> y(x), y(x) -> x} and re-entering methods for dynamical symmetries ---
-> trying 2nd order, dynamical_symmetries, fully reducible to Abel through one integrating factor of the form G(x,y)/(1+H(x,y)*y)
trying 2nd order, integrating factors of the form mu(x,y)/(y)^n, only the singular cases
trying symmetries linear in x and y(x)
trying differential order: 2; exact nonlinear
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = -(_b(_a)*c__1-_a)/_b(_a), _b(_a)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- differential order: 2; exact nonlinear successful`
Maple dsolve solution
Solving time : 0.049
(sec)
Leaf size : 56
dsolve(diff(diff(y(x),x),x) = 1/y(x)-x/y(x)^2*diff(y(x),x),
y(x),singsol=all)
\[
y = \operatorname {RootOf}\left (\textit {\_Z}^{2}-{\mathrm e}^{\operatorname {RootOf}\left (\left (4 \,{\mathrm e}^{\textit {\_Z}} {\cosh \left (\frac {\sqrt {c_{1}^{2}+4}\, \left (2 c_{2} +\textit {\_Z} +2 \ln \left (x \right )\right )}{2 c_{1}}\right )}^{2}+c_{1}^{2}+4\right ) x^{2}\right )}-1+\textit {\_Z} c_{1} \right ) x
\]
Mathematica DSolve solution
Solving time : 0.212
(sec)
Leaf size : 77
DSolve[{D[y[x],{x,2}]==1/y[x]-x/y[x]^2*D[y[x],x],{}},
y[x],x,IncludeSingularSolutions->True]
\[
\text {Solve}\left [\frac {1}{2} \log \left (-\frac {y(x)^2}{x^2}-\frac {c_1 y(x)}{x}+1\right )-\frac {c_1 \arctan \left (\frac {\frac {2 y(x)}{x}+c_1}{\sqrt {-4-c_1{}^2}}\right )}{\sqrt {-4-c_1{}^2}}=-\log (x)+c_2,y(x)\right ]
\]