2.4.34 problem 31
Internal
problem
ID
[8599]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
4.0
Problem
number
:
31
Date
solved
:
Thursday, December 12, 2024 at 09:31:57 AM
CAS
classification
:
[[_Emden, _Fowler]]
Solve
\begin{align*} x^{2} y^{\prime \prime }+y&=0 \end{align*}
Using series expansion around \(x=0\)
The type of the expansion point is first determined. This is done on the homogeneous part of
the ODE.
\[ x^{2} y^{\prime \prime }+y = 0 \]
The following is summary of singularities for the above ode. Writing the ode as
\begin{align*} y^{\prime \prime }+p(x) y^{\prime } + q(x) y &=0 \end{align*}
Where
\begin{align*} p(x) &= 0\\ q(x) &= \frac {1}{x^{2}}\\ \end{align*}
Table 2.83: Table \(p(x),q(x)\) singularites.
| |
\(p(x)=0\) |
| |
singularity | type |
| |
| |
\(q(x)=\frac {1}{x^{2}}\) |
| |
singularity | type |
| |
\(x = 0\) | \(\text {``regular''}\) |
| |
Combining everything together gives the following summary of singularities for the ode
as
Regular singular points : \([0, \infty ]\)
Irregular singular points : \([]\)
Since \(x = 0\) is regular singular point, then Frobenius power series is used. The ode is normalized to
be
\[ x^{2} y^{\prime \prime }+y = 0 \]
Let the solution be represented as Frobenius power series of the form
\[
y = \moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r}
\]
Then
\begin{align*}
y^{\prime } &= \moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) a_{n} x^{n +r -1} \\
y^{\prime \prime } &= \moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) \left (n +r -1\right ) a_{n} x^{n +r -2} \\
\end{align*}
Substituting the above back into the ode gives
\begin{equation}
\tag{1} x^{2} \left (\moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) \left (n +r -1\right ) a_{n} x^{n +r -2}\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r}\right ) = 0
\end{equation}
Which simplifies to
\begin{equation}
\tag{2A} \left (\moverset {\infty }{\munderset {n =0}{\sum }}x^{n +r} a_{n} \left (n +r \right ) \left (n +r -1\right )\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r}\right ) = 0
\end{equation}
The next step is to
make all powers of \(x\) be \(n +r\) in each summation term. Going over each summation
term above with power of \(x\) in it which is not already \(x^{n +r}\) and adjusting the power
and the corresponding index gives Substituting all the above in Eq (2A) gives the
following equation where now all powers of \(x\) are the same and equal to \(n +r\).
\begin{equation}
\tag{2B} \left (\moverset {\infty }{\munderset {n =0}{\sum }}x^{n +r} a_{n} \left (n +r \right ) \left (n +r -1\right )\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r}\right ) = 0
\end{equation}
The indicial
equation is obtained from \(n = 0\). From Eq (2B) this gives
\[ x^{n +r} a_{n} \left (n +r \right ) \left (n +r -1\right )+a_{n} x^{n +r} = 0 \]
When \(n = 0\) the above becomes
\[ x^{r} a_{0} r \left (-1+r \right )+a_{0} x^{r} = 0 \]
Or
\[ \left (x^{r} r \left (-1+r \right )+x^{r}\right ) a_{0} = 0 \]
Since \(a_{0}\neq 0\) then the above simplifies to
\[ \left (r^{2}-r +1\right ) x^{r} = 0 \]
Since the above is true for all \(x\) then the
indicial equation becomes
\[ r^{2}-r +1 = 0 \]
Solving for \(r\) gives the roots of the indicial equation as
\begin{align*} r_1 &= \frac {1}{2}+\frac {i \sqrt {3}}{2}\\ r_2 &= \frac {1}{2}-\frac {i \sqrt {3}}{2} \end{align*}
Since \(a_{0}\neq 0\) then the indicial equation becomes
\[ \left (r^{2}-r +1\right ) x^{r} = 0 \]
Solving for \(r\) gives the roots of the indicial equation
as \(\left [\frac {1}{2}+\frac {i \sqrt {3}}{2}, \frac {1}{2}-\frac {i \sqrt {3}}{2}\right ]\).
Since the roots are complex conjugates, then two linearly independent solutions can be
constructed using
\begin{align*} y_{1}\left (x \right ) &= x^{r_{1}} \left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n}\right )\\ y_{2}\left (x \right ) &= x^{r_{2}} \left (\moverset {\infty }{\munderset {n =0}{\sum }}b_{n} x^{n}\right ) \end{align*}
Or
\begin{align*} y_{1}\left (x \right ) &= \moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +\frac {1}{2}+\frac {i \sqrt {3}}{2}}\\ y_{2}\left (x \right ) &= \moverset {\infty }{\munderset {n =0}{\sum }}b_{n} x^{n +\frac {1}{2}-\frac {i \sqrt {3}}{2}} \end{align*}
\(y_{1}\left (x \right )\) is found first. Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n = 0\) is
skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as
\(a_{0} = 1\). For \(0\le n\) the recursive equation is
\begin{equation}
\tag{3} a_{n} \left (n +r \right ) \left (n +r -1\right )+a_{n} = 0
\end{equation}
Solving for \(a_{n}\) from recursive equation (4) gives
\[ a_{n} = 0\tag {4} \]
Which for the
root \(r = \frac {1}{2}+\frac {i \sqrt {3}}{2}\) becomes
\[ a_{n} = 0\tag {5} \]
At this point, it is a good idea to keep track of \(a_{n}\) in a table both before
substituting \(r = \frac {1}{2}+\frac {i \sqrt {3}}{2}\) and after as more terms are found using the above recursive equation.
| | |
\(n\) | \(a_{n ,r}\) | \(a_{n}\) |
| | |
\(a_{0}\) | \(1\) | \(1\) |
| | |
For \(n = 1\), using the above recursive equation gives
\[ a_{1}=0 \]
And the table now becomes
| | |
\(n\) |
\(a_{n ,r}\) |
\(a_{n}\) |
| | |
\(a_{0}\) |
\(1\) | \(1\) |
| | |
\(a_{1}\) | \(0\) | \(0\) |
| | |
For \(n = 2\), using the above recursive equation gives
\[ a_{2}=0 \]
And the table now becomes
| | |
\(n\) |
\(a_{n ,r}\) |
\(a_{n}\) |
| | |
\(a_{0}\) |
\(1\) | \(1\) |
| | |
\(a_{1}\) | \(0\) | \(0\) |
| | |
\(a_{2}\) | \(0\) | \(0\) |
| | |
For \(n = 3\), using the above recursive equation gives
\[ a_{3}=0 \]
And the table now becomes
| | |
\(n\) |
\(a_{n ,r}\) |
\(a_{n}\) |
| | |
\(a_{0}\) |
\(1\) |
\(1\) |
| | |
\(a_{1}\) |
\(0\) | \(0\) |
| | |
\(a_{2}\) | \(0\) | \(0\) |
| | |
\(a_{3}\) |
\(0\) |
\(0\) |
| | |
For \(n = 4\), using the above recursive equation gives
\[ a_{4}=0 \]
And the table now becomes
| | |
\(n\) |
\(a_{n ,r}\) |
\(a_{n}\) |
| | |
\(a_{0}\) |
\(1\) |
\(1\) |
| | |
\(a_{1}\) |
\(0\) | \(0\) |
| | |
\(a_{2}\) | \(0\) | \(0\) |
| | |
\(a_{3}\) | \(0\) | \(0\) |
| | |
\(a_{4}\) |
\(0\) |
\(0\) |
| | |
For \(n = 5\), using the above recursive equation gives
\[ a_{5}=0 \]
And the table now becomes
| | |
\(n\) |
\(a_{n ,r}\) |
\(a_{n}\) |
| | |
\(a_{0}\) |
\(1\) |
\(1\) |
| | |
\(a_{1}\) |
\(0\) |
\(0\) |
| | |
\(a_{2}\) |
\(0\) | \(0\) |
| | |
\(a_{3}\) | \(0\) | \(0\) |
| | |
\(a_{4}\) |
\(0\) |
\(0\) |
| | |
\(a_{5}\) |
\(0\) |
\(0\) |
| | |
Using the above table, then the solution \(y_{1}\left (x \right )\) is
\begin{align*}
y_{1}\left (x \right )&= x^{\frac {1}{2}+\frac {i \sqrt {3}}{2}} \left (a_{0}+a_{1} x +a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}\dots \right ) \\
&= x^{\frac {1}{2}+\frac {i \sqrt {3}}{2}} \left (1+O\left (x^{6}\right )\right ) \\
\end{align*}
The second solution \(y_{2}\left (x \right )\) is found by taking the
complex conjugate of \(y_{1}\left (x \right )\) which gives
\[
y_{2}\left (x \right )= x^{\frac {1}{2}-\frac {i \sqrt {3}}{2}} \left (1+O\left (x^{6}\right )\right )
\]
Therefore the homogeneous solution is
\begin{align*}
y_h(x) &= c_1 y_{1}\left (x \right )+c_2 y_{2}\left (x \right ) \\
&= c_1 \,x^{\frac {1}{2}+\frac {i \sqrt {3}}{2}} \left (1+O\left (x^{6}\right )\right ) + c_2 \,x^{\frac {1}{2}-\frac {i \sqrt {3}}{2}} \left (1+O\left (x^{6}\right )\right ) \\
\end{align*}
Hence the final
solution is
\begin{align*}
y &= y_h \\
&= c_1 \,x^{\frac {1}{2}+\frac {i \sqrt {3}}{2}} \left (1+O\left (x^{6}\right )\right )+c_2 \,x^{\frac {1}{2}-\frac {i \sqrt {3}}{2}} \left (1+O\left (x^{6}\right )\right ) \\
\end{align*}
Maple step by step solution
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & x^{2} \left (\frac {d^{2}}{d x^{2}}y \left (x \right )\right )+y \left (x \right )=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & \frac {d^{2}}{d x^{2}}y \left (x \right ) \\ \bullet & {} & \textrm {Isolate 2nd derivative}\hspace {3pt} \\ {} & {} & \frac {d^{2}}{d x^{2}}y \left (x \right )=-\frac {y \left (x \right )}{x^{2}} \\ \bullet & {} & \textrm {Group terms with}\hspace {3pt} y \left (x \right )\hspace {3pt}\textrm {on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear}\hspace {3pt} \\ {} & {} & \frac {d^{2}}{d x^{2}}y \left (x \right )+\frac {y \left (x \right )}{x^{2}}=0 \\ \bullet & {} & \textrm {Multiply by denominators of the ODE}\hspace {3pt} \\ {} & {} & x^{2} \left (\frac {d^{2}}{d x^{2}}y \left (x \right )\right )+y \left (x \right )=0 \\ \bullet & {} & \textrm {Make a change of variables}\hspace {3pt} \\ {} & {} & t =\ln \left (x \right ) \\ \square & {} & \textrm {Substitute the change of variables back into the ODE}\hspace {3pt} \\ {} & \circ & \textrm {Calculate the}\hspace {3pt} \hspace {3pt}\textrm {1st}\hspace {3pt} \hspace {3pt}\textrm {derivative of}\hspace {3pt} \hspace {3pt}\textrm {y}\hspace {3pt} \hspace {3pt}\textrm {with respect to}\hspace {3pt} \hspace {3pt}\textrm {x}\hspace {3pt} \hspace {3pt}\textrm {, using the chain rule}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y \left (x \right )=\left (\frac {d}{d t}y \left (t \right )\right ) \left (\frac {d}{d x}t \left (x \right )\right ) \\ {} & \circ & \textrm {Compute derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y \left (x \right )=\frac {\frac {d}{d t}y \left (t \right )}{x} \\ {} & \circ & \textrm {Calculate the}\hspace {3pt} \hspace {3pt}\textrm {2nd}\hspace {3pt} \hspace {3pt}\textrm {derivative of}\hspace {3pt} \hspace {3pt}\textrm {y}\hspace {3pt} \hspace {3pt}\textrm {with respect to}\hspace {3pt} \hspace {3pt}\textrm {x}\hspace {3pt} \hspace {3pt}\textrm {, using the chain rule}\hspace {3pt} \\ {} & {} & \frac {d^{2}}{d x^{2}}y \left (x \right )=\left (\frac {d^{2}}{d t^{2}}y \left (t \right )\right ) \left (\frac {d}{d x}t \left (x \right )\right )^{2}+\left (\frac {d^{2}}{d x^{2}}t \left (x \right )\right ) \left (\frac {d}{d t}y \left (t \right )\right ) \\ {} & \circ & \textrm {Compute derivative}\hspace {3pt} \\ {} & {} & \frac {d^{2}}{d x^{2}}y \left (x \right )=\frac {\frac {d^{2}}{d t^{2}}y \left (t \right )}{x^{2}}-\frac {\frac {d}{d t}y \left (t \right )}{x^{2}} \\ & {} & \textrm {Substitute the change of variables back into the ODE}\hspace {3pt} \\ {} & {} & x^{2} \left (\frac {\frac {d^{2}}{d t^{2}}y \left (t \right )}{x^{2}}-\frac {\frac {d}{d t}y \left (t \right )}{x^{2}}\right )+y \left (t \right )=0 \\ \bullet & {} & \textrm {Simplify}\hspace {3pt} \\ {} & {} & \frac {d^{2}}{d t^{2}}y \left (t \right )-\frac {d}{d t}y \left (t \right )+y \left (t \right )=0 \\ \bullet & {} & \textrm {Characteristic polynomial of ODE}\hspace {3pt} \\ {} & {} & r^{2}-r +1=0 \\ \bullet & {} & \textrm {Use quadratic formula to solve for}\hspace {3pt} r \\ {} & {} & r =\frac {1\pm \left (\sqrt {-3}\right )}{2} \\ \bullet & {} & \textrm {Roots of the characteristic polynomial}\hspace {3pt} \\ {} & {} & r =\left (\frac {1}{2}-\frac {\mathrm {I} \sqrt {3}}{2}, \frac {1}{2}+\frac {\mathrm {I} \sqrt {3}}{2}\right ) \\ \bullet & {} & \textrm {1st solution of the ODE}\hspace {3pt} \\ {} & {} & y_{1}\left (t \right )={\mathrm e}^{\frac {t}{2}} \cos \left (\frac {\sqrt {3}\, t}{2}\right ) \\ \bullet & {} & \textrm {2nd solution of the ODE}\hspace {3pt} \\ {} & {} & y_{2}\left (t \right )={\mathrm e}^{\frac {t}{2}} \sin \left (\frac {\sqrt {3}\, t}{2}\right ) \\ \bullet & {} & \textrm {General solution of the ODE}\hspace {3pt} \\ {} & {} & y \left (t \right )=\mathit {C1} y_{1}\left (t \right )+\mathit {C2} y_{2}\left (t \right ) \\ \bullet & {} & \textrm {Substitute in solutions}\hspace {3pt} \\ {} & {} & y \left (t \right )=\mathit {C1} \,{\mathrm e}^{\frac {t}{2}} \cos \left (\frac {\sqrt {3}\, t}{2}\right )+\mathit {C2} \,{\mathrm e}^{\frac {t}{2}} \sin \left (\frac {\sqrt {3}\, t}{2}\right ) \\ \bullet & {} & \textrm {Change variables back using}\hspace {3pt} t =\ln \left (x \right ) \\ {} & {} & y \left (x \right )=\mathit {C1} \sqrt {x}\, \cos \left (\frac {\sqrt {3}\, \ln \left (x \right )}{2}\right )+\mathit {C2} \sqrt {x}\, \sin \left (\frac {\sqrt {3}\, \ln \left (x \right )}{2}\right ) \\ \bullet & {} & \textrm {Simplify}\hspace {3pt} \\ {} & {} & y \left (x \right )=\sqrt {x}\, \left (\mathit {C1} \cos \left (\frac {\sqrt {3}\, \ln \left (x \right )}{2}\right )+\mathit {C2} \sin \left (\frac {\sqrt {3}\, \ln \left (x \right )}{2}\right )\right ) \end {array} \]
Maple trace
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
Maple dsolve solution
Solving time : 0.018
(sec)
Leaf size : 32
dsolve(x^2*diff(diff(y(x),x),x)+y(x) = 0,y(x),
series,x=0)
\[
y = \sqrt {x}\, \left (c_{1} x^{-\frac {i \sqrt {3}}{2}}+c_{2} x^{\frac {i \sqrt {3}}{2}}\right )+O\left (x^{6}\right )
\]
Mathematica DSolve solution
Solving time : 0.004
(sec)
Leaf size : 26
AsymptoticDSolveValue[{x^2*D[y[x],{x,2}] +y[x] == 0,{}},
y[x],{x,0,5}]
\[
y(x)\to c_1 x^{-(-1)^{2/3}}+c_2 x^{\sqrt [3]{-1}}
\]