2.4.41 problem 38

Maple step by step solution
Maple trace
Maple dsolve solution
Mathematica DSolve solution

Internal problem ID [8606]
Book : Own collection of miscellaneous problems
Section : section 4.0
Problem number : 38
Date solved : Thursday, December 12, 2024 at 09:32:05 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

\begin{align*} 2 x^{2} \left (2+x \right ) y^{\prime \prime }+5 x^{2} y^{\prime }+\left (1+x \right ) y&=0 \end{align*}

Using series expansion around \(x=0\)

The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

\[ \left (2 x^{3}+4 x^{2}\right ) y^{\prime \prime }+5 x^{2} y^{\prime }+\left (1+x \right ) y = 0 \]

The following is summary of singularities for the above ode. Writing the ode as

\begin{align*} y^{\prime \prime }+p(x) y^{\prime } + q(x) y &=0 \end{align*}

Where

\begin{align*} p(x) &= \frac {5}{2 \left (2+x \right )}\\ q(x) &= \frac {1+x}{2 x^{2} \left (2+x \right )}\\ \end{align*}
Table 2.90: Table \(p(x),q(x)\) singularites.
\(p(x)=\frac {5}{2 \left (2+x \right )}\)
singularity type
\(x = -2\) \(\text {``regular''}\)
\(q(x)=\frac {1+x}{2 x^{2} \left (2+x \right )}\)
singularity type
\(x = -2\) \(\text {``regular''}\)
\(x = 0\) \(\text {``regular''}\)

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : \([-2, 0, \infty ]\)

Irregular singular points : \([]\)

Since \(x = 0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be

\[ 2 x^{2} \left (2+x \right ) y^{\prime \prime }+5 x^{2} y^{\prime }+\left (1+x \right ) y = 0 \]

Let the solution be represented as Frobenius power series of the form

\[ y = \moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r} \]

Then

\begin{align*} y^{\prime } &= \moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) a_{n} x^{n +r -1} \\ y^{\prime \prime } &= \moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) \left (n +r -1\right ) a_{n} x^{n +r -2} \\ \end{align*}

Substituting the above back into the ode gives

\begin{equation} \tag{1} 2 x^{2} \left (2+x \right ) \left (\moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) \left (n +r -1\right ) a_{n} x^{n +r -2}\right )+5 x^{2} \left (\moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) a_{n} x^{n +r -1}\right )+\left (1+x \right ) \left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r}\right ) = 0 \end{equation}

Which simplifies to

\begin{equation} \tag{2A} \left (\moverset {\infty }{\munderset {n =0}{\sum }}2 x^{1+n +r} a_{n} \left (n +r \right ) \left (n +r -1\right )\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}4 x^{n +r} a_{n} \left (n +r \right ) \left (n +r -1\right )\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}5 x^{1+n +r} a_{n} \left (n +r \right )\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r}\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}x^{1+n +r} a_{n}\right ) = 0 \end{equation}

The next step is to make all powers of \(x\) be \(n +r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n +r}\) and adjusting the power and the corresponding index gives

\begin{align*} \moverset {\infty }{\munderset {n =0}{\sum }}2 x^{1+n +r} a_{n} \left (n +r \right ) \left (n +r -1\right ) &= \moverset {\infty }{\munderset {n =1}{\sum }}2 a_{n -1} \left (n +r -1\right ) \left (n +r -2\right ) x^{n +r} \\ \moverset {\infty }{\munderset {n =0}{\sum }}5 x^{1+n +r} a_{n} \left (n +r \right ) &= \moverset {\infty }{\munderset {n =1}{\sum }}5 a_{n -1} \left (n +r -1\right ) x^{n +r} \\ \moverset {\infty }{\munderset {n =0}{\sum }}x^{1+n +r} a_{n} &= \moverset {\infty }{\munderset {n =1}{\sum }}a_{n -1} x^{n +r} \\ \end{align*}

Substituting all the above in Eq (2A) gives the following equation where now all powers of \(x\) are the same and equal to \(n +r\).

\begin{equation} \tag{2B} \left (\moverset {\infty }{\munderset {n =1}{\sum }}2 a_{n -1} \left (n +r -1\right ) \left (n +r -2\right ) x^{n +r}\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}4 x^{n +r} a_{n} \left (n +r \right ) \left (n +r -1\right )\right )+\left (\moverset {\infty }{\munderset {n =1}{\sum }}5 a_{n -1} \left (n +r -1\right ) x^{n +r}\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r}\right )+\left (\moverset {\infty }{\munderset {n =1}{\sum }}a_{n -1} x^{n +r}\right ) = 0 \end{equation}

The indicial equation is obtained from \(n = 0\). From Eq (2B) this gives

\[ 4 x^{n +r} a_{n} \left (n +r \right ) \left (n +r -1\right )+a_{n} x^{n +r} = 0 \]

When \(n = 0\) the above becomes

\[ 4 x^{r} a_{0} r \left (-1+r \right )+a_{0} x^{r} = 0 \]

Or

\[ \left (4 x^{r} r \left (-1+r \right )+x^{r}\right ) a_{0} = 0 \]

Since \(a_{0}\neq 0\) then the above simplifies to

\[ \left (2 r -1\right )^{2} x^{r} = 0 \]

Since the above is true for all \(x\) then the indicial equation becomes

\[ \left (2 r -1\right )^{2} = 0 \]

Solving for \(r\) gives the roots of the indicial equation as

\begin{align*} r_1 &= {\frac {1}{2}}\\ r_2 &= {\frac {1}{2}} \end{align*}

Since \(a_{0}\neq 0\) then the indicial equation becomes

\[ \left (2 r -1\right )^{2} x^{r} = 0 \]

Solving for \(r\) gives the roots of the indicial equation as \(\left [{\frac {1}{2}}, {\frac {1}{2}}\right ]\).

Since the root of the indicial equation is repeated, then we can construct two linearly independent solutions. The first solution has the form

\begin{align*} y_{1}\left (x \right ) &= \moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r}\tag {1A} \end{align*}

Now the second solution \(y_{2}\) is found using

\begin{align*} y_{2}\left (x \right ) &= y_{1}\left (x \right ) \ln \left (x \right )+\left (\moverset {\infty }{\munderset {n =1}{\sum }}b_{n} x^{n +r}\right )\tag {1B} \end{align*}

Then the general solution will be

\[ y = c_1 y_{1}\left (x \right )+c_2 y_{2}\left (x \right ) \]

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), \(a_{0}\) is never zero, and is arbitrary and is typically taken as \(a_{0} = 1\), and \(\{c_1, c_2\}\) are two arbitray constants of integration which can be found from initial conditions. Using the value of the indicial root found earlier, \(r = {\frac {1}{2}}\), Eqs (1A,1B) become

\begin{align*} y_{1}\left (x \right ) &= \moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +\frac {1}{2}}\\ y_{2}\left (x \right ) &= y_{1}\left (x \right ) \ln \left (x \right )+\left (\moverset {\infty }{\munderset {n =1}{\sum }}b_{n} x^{n +\frac {1}{2}}\right ) \end{align*}

We start by finding the first solution \(y_{1}\left (x \right )\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n = 0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0} = 1\). For \(1\le n\) the recursive equation is

\begin{equation} \tag{3} 2 a_{n -1} \left (n +r -1\right ) \left (n +r -2\right )+4 a_{n} \left (n +r \right ) \left (n +r -1\right )+5 a_{n -1} \left (n +r -1\right )+a_{n}+a_{n -1} = 0 \end{equation}

Solving for \(a_{n}\) from recursive equation (4) gives

\[ a_{n} = -\frac {\left (n +r \right ) a_{n -1}}{-1+2 n +2 r}\tag {4} \]

Which for the root \(r = {\frac {1}{2}}\) becomes

\[ a_{n} = -\frac {\left (2 n +1\right ) a_{n -1}}{4 n}\tag {5} \]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r = {\frac {1}{2}}\) and after as more terms are found using the above recursive equation.

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)

For \(n = 1\), using the above recursive equation gives

\[ a_{1}=\frac {-1-r}{1+2 r} \]

Which for the root \(r = {\frac {1}{2}}\) becomes

\[ a_{1}=-{\frac {3}{4}} \]

And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(\frac {-1-r}{1+2 r}\) \(-{\frac {3}{4}}\)

For \(n = 2\), using the above recursive equation gives

\[ a_{2}=\frac {r^{2}+3 r +2}{4 r^{2}+8 r +3} \]

Which for the root \(r = {\frac {1}{2}}\) becomes

\[ a_{2}={\frac {15}{32}} \]

And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(\frac {-1-r}{1+2 r}\) \(-{\frac {3}{4}}\)
\(a_{2}\) \(\frac {r^{2}+3 r +2}{4 r^{2}+8 r +3}\) \(\frac {15}{32}\)

For \(n = 3\), using the above recursive equation gives

\[ a_{3}=\frac {-r^{3}-6 r^{2}-11 r -6}{8 r^{3}+36 r^{2}+46 r +15} \]

Which for the root \(r = {\frac {1}{2}}\) becomes

\[ a_{3}=-{\frac {35}{128}} \]

And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(\frac {-1-r}{1+2 r}\) \(-{\frac {3}{4}}\)
\(a_{2}\) \(\frac {r^{2}+3 r +2}{4 r^{2}+8 r +3}\) \(\frac {15}{32}\)
\(a_{3}\) \(\frac {-r^{3}-6 r^{2}-11 r -6}{8 r^{3}+36 r^{2}+46 r +15}\) \(-{\frac {35}{128}}\)

For \(n = 4\), using the above recursive equation gives

\[ a_{4}=\frac {r^{4}+10 r^{3}+35 r^{2}+50 r +24}{16 r^{4}+128 r^{3}+344 r^{2}+352 r +105} \]

Which for the root \(r = {\frac {1}{2}}\) becomes

\[ a_{4}={\frac {315}{2048}} \]

And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(\frac {-1-r}{1+2 r}\) \(-{\frac {3}{4}}\)
\(a_{2}\) \(\frac {r^{2}+3 r +2}{4 r^{2}+8 r +3}\) \(\frac {15}{32}\)
\(a_{3}\) \(\frac {-r^{3}-6 r^{2}-11 r -6}{8 r^{3}+36 r^{2}+46 r +15}\) \(-{\frac {35}{128}}\)
\(a_{4}\) \(\frac {r^{4}+10 r^{3}+35 r^{2}+50 r +24}{16 r^{4}+128 r^{3}+344 r^{2}+352 r +105}\) \(\frac {315}{2048}\)

For \(n = 5\), using the above recursive equation gives

\[ a_{5}=\frac {-r^{5}-15 r^{4}-85 r^{3}-225 r^{2}-274 r -120}{32 r^{5}+400 r^{4}+1840 r^{3}+3800 r^{2}+3378 r +945} \]

Which for the root \(r = {\frac {1}{2}}\) becomes

\[ a_{5}=-{\frac {693}{8192}} \]

And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(\frac {-1-r}{1+2 r}\) \(-{\frac {3}{4}}\)
\(a_{2}\) \(\frac {r^{2}+3 r +2}{4 r^{2}+8 r +3}\) \(\frac {15}{32}\)
\(a_{3}\) \(\frac {-r^{3}-6 r^{2}-11 r -6}{8 r^{3}+36 r^{2}+46 r +15}\) \(-{\frac {35}{128}}\)
\(a_{4}\) \(\frac {r^{4}+10 r^{3}+35 r^{2}+50 r +24}{16 r^{4}+128 r^{3}+344 r^{2}+352 r +105}\) \(\frac {315}{2048}\)
\(a_{5}\) \(\frac {-r^{5}-15 r^{4}-85 r^{3}-225 r^{2}-274 r -120}{32 r^{5}+400 r^{4}+1840 r^{3}+3800 r^{2}+3378 r +945}\) \(-{\frac {693}{8192}}\)

Using the above table, then the first solution \(y_{1}\left (x \right )\) is

\begin{align*} y_{1}\left (x \right )&= \sqrt {x} \left (a_{0}+a_{1} x +a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}\dots \right ) \\ &= \sqrt {x}\, \left (1-\frac {3 x}{4}+\frac {15 x^{2}}{32}-\frac {35 x^{3}}{128}+\frac {315 x^{4}}{2048}-\frac {693 x^{5}}{8192}+O\left (x^{6}\right )\right ) \\ \end{align*}

Now the second solution is found. The second solution is given by

\[ y_{2}\left (x \right ) = y_{1}\left (x \right ) \ln \left (x \right )+\left (\moverset {\infty }{\munderset {n =1}{\sum }}b_{n} x^{n +r}\right ) \]

Where \(b_{n}\) is found using

\[ b_{n} = \frac {d}{d r}a_{n ,r} \]

And the above is then evaluated at \(r = {\frac {1}{2}}\). The above table for \(a_{n ,r}\) is used for this purpose. Computing the derivatives gives the following table

\(n\) \(b_{n ,r}\) \(a_{n}\) \(b_{n ,r} = \frac {d}{d r}a_{n ,r}\) \(b_{n}\left (r =\frac {1}{2}\right )\)
\(b_{0}\) \(1\) \(1\) N/A since \(b_{n}\) starts from 1 N/A
\(b_{1}\) \(\frac {-1-r}{1+2 r}\) \(-{\frac {3}{4}}\) \(\frac {1}{\left (1+2 r \right )^{2}}\) \(\frac {1}{4}\)
\(b_{2}\) \(\frac {r^{2}+3 r +2}{4 r^{2}+8 r +3}\) \(\frac {15}{32}\) \(\frac {-4 r^{2}-10 r -7}{\left (4 r^{2}+8 r +3\right )^{2}}\) \(-{\frac {13}{64}}\)
\(b_{3}\) \(\frac {-r^{3}-6 r^{2}-11 r -6}{8 r^{3}+36 r^{2}+46 r +15}\) \(-{\frac {35}{128}}\) \(\frac {12 r^{4}+84 r^{3}+219 r^{2}+252 r +111}{\left (8 r^{3}+36 r^{2}+46 r +15\right )^{2}}\) \(\frac {101}{768}\)
\(b_{4}\) \(\frac {r^{4}+10 r^{3}+35 r^{2}+50 r +24}{16 r^{4}+128 r^{3}+344 r^{2}+352 r +105}\) \(\frac {315}{2048}\) \(\frac {-32 r^{6}-432 r^{5}-2384 r^{4}-6876 r^{3}-10946 r^{2}-9162 r -3198}{\left (16 r^{4}+128 r^{3}+344 r^{2}+352 r +105\right )^{2}}\) \(-{\frac {641}{8192}}\)
\(b_{5}\) \(\frac {-r^{5}-15 r^{4}-85 r^{3}-225 r^{2}-274 r -120}{32 r^{5}+400 r^{4}+1840 r^{3}+3800 r^{2}+3378 r +945}\) \(-{\frac {693}{8192}}\) \(\frac {80 r^{8}+1760 r^{7}+16600 r^{6}+87560 r^{5}+282265 r^{4}+569360 r^{3}+702575 r^{2}+486750 r +146430}{\left (32 r^{5}+400 r^{4}+1840 r^{3}+3800 r^{2}+3378 r +945\right )^{2}}\) \(\frac {7303}{163840}\)

The above table gives all values of \(b_{n}\) needed. Hence the second solution is

\begin{align*} y_{2}\left (x \right )&=y_{1}\left (x \right ) \ln \left (x \right )+b_{0}+b_{1} x +b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6}\dots \\ &= \sqrt {x}\, \left (1-\frac {3 x}{4}+\frac {15 x^{2}}{32}-\frac {35 x^{3}}{128}+\frac {315 x^{4}}{2048}-\frac {693 x^{5}}{8192}+O\left (x^{6}\right )\right ) \ln \left (x \right )+\sqrt {x}\, \left (\frac {x}{4}-\frac {13 x^{2}}{64}+\frac {101 x^{3}}{768}-\frac {641 x^{4}}{8192}+\frac {7303 x^{5}}{163840}+O\left (x^{6}\right )\right ) \\ \end{align*}

Therefore the homogeneous solution is

\begin{align*} y_h(x) &= c_1 y_{1}\left (x \right )+c_2 y_{2}\left (x \right ) \\ &= c_1 \sqrt {x}\, \left (1-\frac {3 x}{4}+\frac {15 x^{2}}{32}-\frac {35 x^{3}}{128}+\frac {315 x^{4}}{2048}-\frac {693 x^{5}}{8192}+O\left (x^{6}\right )\right ) + c_2 \left (\sqrt {x}\, \left (1-\frac {3 x}{4}+\frac {15 x^{2}}{32}-\frac {35 x^{3}}{128}+\frac {315 x^{4}}{2048}-\frac {693 x^{5}}{8192}+O\left (x^{6}\right )\right ) \ln \left (x \right )+\sqrt {x}\, \left (\frac {x}{4}-\frac {13 x^{2}}{64}+\frac {101 x^{3}}{768}-\frac {641 x^{4}}{8192}+\frac {7303 x^{5}}{163840}+O\left (x^{6}\right )\right )\right ) \\ \end{align*}

Hence the final solution is

\begin{align*} y &= y_h \\ &= c_1 \sqrt {x}\, \left (1-\frac {3 x}{4}+\frac {15 x^{2}}{32}-\frac {35 x^{3}}{128}+\frac {315 x^{4}}{2048}-\frac {693 x^{5}}{8192}+O\left (x^{6}\right )\right )+c_2 \left (\sqrt {x}\, \left (1-\frac {3 x}{4}+\frac {15 x^{2}}{32}-\frac {35 x^{3}}{128}+\frac {315 x^{4}}{2048}-\frac {693 x^{5}}{8192}+O\left (x^{6}\right )\right ) \ln \left (x \right )+\sqrt {x}\, \left (\frac {x}{4}-\frac {13 x^{2}}{64}+\frac {101 x^{3}}{768}-\frac {641 x^{4}}{8192}+\frac {7303 x^{5}}{163840}+O\left (x^{6}\right )\right )\right ) \\ \end{align*}
Maple step by step solution
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & 2 x^{2} \left (x +2\right ) \left (\frac {d^{2}}{d x^{2}}y \left (x \right )\right )+5 x^{2} \left (\frac {d}{d x}y \left (x \right )\right )+\left (x +1\right ) y \left (x \right )=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & \frac {d^{2}}{d x^{2}}y \left (x \right ) \\ \bullet & {} & \textrm {Isolate 2nd derivative}\hspace {3pt} \\ {} & {} & \frac {d^{2}}{d x^{2}}y \left (x \right )=-\frac {\left (x +1\right ) y \left (x \right )}{2 \left (x +2\right ) x^{2}}-\frac {5 \left (\frac {d}{d x}y \left (x \right )\right )}{2 \left (x +2\right )} \\ \bullet & {} & \textrm {Group terms with}\hspace {3pt} y \left (x \right )\hspace {3pt}\textrm {on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear}\hspace {3pt} \\ {} & {} & \frac {d^{2}}{d x^{2}}y \left (x \right )+\frac {5 \left (\frac {d}{d x}y \left (x \right )\right )}{2 \left (x +2\right )}+\frac {\left (x +1\right ) y \left (x \right )}{2 \left (x +2\right ) x^{2}}=0 \\ \square & {} & \textrm {Check to see if}\hspace {3pt} x_{0}\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & \circ & \textrm {Define functions}\hspace {3pt} \\ {} & {} & \left [P_{2}\left (x \right )=\frac {5}{2 \left (x +2\right )}, P_{3}\left (x \right )=\frac {x +1}{2 \left (x +2\right ) x^{2}}\right ] \\ {} & \circ & \left (x +2\right )\cdot P_{2}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =-2 \\ {} & {} & \left (\left (x +2\right )\cdot P_{2}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}-2}}}=\frac {5}{2} \\ {} & \circ & \left (x +2\right )^{2}\cdot P_{3}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =-2 \\ {} & {} & \left (\left (x +2\right )^{2}\cdot P_{3}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}-2}}}=0 \\ {} & \circ & x =-2\textrm {is a regular singular point}\hspace {3pt} \\ & {} & \textrm {Check to see if}\hspace {3pt} x_{0}\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & {} & x_{0}=-2 \\ \bullet & {} & \textrm {Multiply by denominators}\hspace {3pt} \\ {} & {} & 2 x^{2} \left (x +2\right ) \left (\frac {d^{2}}{d x^{2}}y \left (x \right )\right )+5 x^{2} \left (\frac {d}{d x}y \left (x \right )\right )+\left (x +1\right ) y \left (x \right )=0 \\ \bullet & {} & \textrm {Change variables using}\hspace {3pt} x =u -2\hspace {3pt}\textrm {so that the regular singular point is at}\hspace {3pt} u =0 \\ {} & {} & \left (2 u^{3}-8 u^{2}+8 u \right ) \left (\frac {d^{2}}{d u^{2}}y \left (u \right )\right )+\left (5 u^{2}-20 u +20\right ) \left (\frac {d}{d u}y \left (u \right )\right )+\left (u -1\right ) y \left (u \right )=0 \\ \bullet & {} & \textrm {Assume series solution for}\hspace {3pt} y \left (u \right ) \\ {} & {} & y \left (u \right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} u^{k +r} \\ \square & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & \circ & \textrm {Convert}\hspace {3pt} u^{m}\cdot y \left (u \right )\hspace {3pt}\textrm {to series expansion for}\hspace {3pt} m =0..1 \\ {} & {} & u^{m}\cdot y \left (u \right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} u^{k +r +m} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k -m \\ {} & {} & u^{m}\cdot y \left (u \right )=\moverset {\infty }{\munderset {k =m}{\sum }}a_{k -m} u^{k +r} \\ {} & \circ & \textrm {Convert}\hspace {3pt} u^{m}\cdot \left (\frac {d}{d u}y \left (u \right )\right )\hspace {3pt}\textrm {to series expansion for}\hspace {3pt} m =0..2 \\ {} & {} & u^{m}\cdot \left (\frac {d}{d u}y \left (u \right )\right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) u^{k +r -1+m} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +1-m \\ {} & {} & u^{m}\cdot \left (\frac {d}{d u}y \left (u \right )\right )=\moverset {\infty }{\munderset {k =-1+m}{\sum }}a_{k +1-m} \left (k +1-m +r \right ) u^{k +r} \\ {} & \circ & \textrm {Convert}\hspace {3pt} u^{m}\cdot \left (\frac {d^{2}}{d u^{2}}y \left (u \right )\right )\hspace {3pt}\textrm {to series expansion for}\hspace {3pt} m =1..3 \\ {} & {} & u^{m}\cdot \left (\frac {d^{2}}{d u^{2}}y \left (u \right )\right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) \left (k +r -1\right ) u^{k +r -2+m} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +2-m \\ {} & {} & u^{m}\cdot \left (\frac {d^{2}}{d u^{2}}y \left (u \right )\right )=\moverset {\infty }{\munderset {k =-2+m}{\sum }}a_{k +2-m} \left (k +2-m +r \right ) \left (k +1-m +r \right ) u^{k +r} \\ & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & {} & 4 a_{0} r \left (3+2 r \right ) u^{-1+r}+\left (4 a_{1} \left (1+r \right ) \left (5+2 r \right )-a_{0} \left (8 r^{2}+12 r +1\right )\right ) u^{r}+\left (\moverset {\infty }{\munderset {k =1}{\sum }}\left (4 a_{k +1} \left (k +r +1\right ) \left (2 k +5+2 r \right )-a_{k} \left (8 k^{2}+16 k r +8 r^{2}+12 k +12 r +1\right )+a_{k -1} \left (k +r \right ) \left (2 k -1+2 r \right )\right ) u^{k +r}\right )=0 \\ \bullet & {} & a_{0}\textrm {cannot be 0 by assumption, giving the indicial equation}\hspace {3pt} \\ {} & {} & 4 r \left (3+2 r \right )=0 \\ \bullet & {} & \textrm {Values of r that satisfy the indicial equation}\hspace {3pt} \\ {} & {} & r \in \left \{0, -\frac {3}{2}\right \} \\ \bullet & {} & \textrm {Each term must be 0}\hspace {3pt} \\ {} & {} & 4 a_{1} \left (1+r \right ) \left (5+2 r \right )-a_{0} \left (8 r^{2}+12 r +1\right )=0 \\ \bullet & {} & \textrm {Each term in the series must be 0, giving the recursion relation}\hspace {3pt} \\ {} & {} & 2 \left (-4 a_{k}+a_{k -1}+4 a_{k +1}\right ) k^{2}+\left (4 \left (-4 a_{k}+a_{k -1}+4 a_{k +1}\right ) r -12 a_{k}-a_{k -1}+28 a_{k +1}\right ) k +2 \left (-4 a_{k}+a_{k -1}+4 a_{k +1}\right ) r^{2}+\left (-12 a_{k}-a_{k -1}+28 a_{k +1}\right ) r -a_{k}+20 a_{k +1}=0 \\ \bullet & {} & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +1 \\ {} & {} & 2 \left (-4 a_{k +1}+a_{k}+4 a_{k +2}\right ) \left (k +1\right )^{2}+\left (4 \left (-4 a_{k +1}+a_{k}+4 a_{k +2}\right ) r -12 a_{k +1}-a_{k}+28 a_{k +2}\right ) \left (k +1\right )+2 \left (-4 a_{k +1}+a_{k}+4 a_{k +2}\right ) r^{2}+\left (-12 a_{k +1}-a_{k}+28 a_{k +2}\right ) r -a_{k +1}+20 a_{k +2}=0 \\ \bullet & {} & \textrm {Recursion relation that defines series solution to ODE}\hspace {3pt} \\ {} & {} & a_{k +2}=-\frac {2 k^{2} a_{k}-8 k^{2} a_{k +1}+4 k r a_{k}-16 k r a_{k +1}+2 r^{2} a_{k}-8 r^{2} a_{k +1}+3 k a_{k}-28 k a_{k +1}+3 r a_{k}-28 r a_{k +1}+a_{k}-21 a_{k +1}}{4 \left (2 k^{2}+4 k r +2 r^{2}+11 k +11 r +14\right )} \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =0 \\ {} & {} & a_{k +2}=-\frac {2 k^{2} a_{k}-8 k^{2} a_{k +1}+3 k a_{k}-28 k a_{k +1}+a_{k}-21 a_{k +1}}{4 \left (2 k^{2}+11 k +14\right )} \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =0 \\ {} & {} & \left [y \left (u \right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} u^{k}, a_{k +2}=-\frac {2 k^{2} a_{k}-8 k^{2} a_{k +1}+3 k a_{k}-28 k a_{k +1}+a_{k}-21 a_{k +1}}{4 \left (2 k^{2}+11 k +14\right )}, 20 a_{1}-a_{0}=0\right ] \\ \bullet & {} & \textrm {Revert the change of variables}\hspace {3pt} u =x +2 \\ {} & {} & \left [y \left (x \right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (x +2\right )^{k}, a_{k +2}=-\frac {2 k^{2} a_{k}-8 k^{2} a_{k +1}+3 k a_{k}-28 k a_{k +1}+a_{k}-21 a_{k +1}}{4 \left (2 k^{2}+11 k +14\right )}, 20 a_{1}-a_{0}=0\right ] \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =-\frac {3}{2} \\ {} & {} & a_{k +2}=-\frac {2 k^{2} a_{k}-8 k^{2} a_{k +1}-3 k a_{k}-4 k a_{k +1}+a_{k}+3 a_{k +1}}{4 \left (2 k^{2}+5 k +2\right )} \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =-\frac {3}{2} \\ {} & {} & \left [y \left (u \right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} u^{k -\frac {3}{2}}, a_{k +2}=-\frac {2 k^{2} a_{k}-8 k^{2} a_{k +1}-3 k a_{k}-4 k a_{k +1}+a_{k}+3 a_{k +1}}{4 \left (2 k^{2}+5 k +2\right )}, -4 a_{1}-a_{0}=0\right ] \\ \bullet & {} & \textrm {Revert the change of variables}\hspace {3pt} u =x +2 \\ {} & {} & \left [y \left (x \right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (x +2\right )^{k -\frac {3}{2}}, a_{k +2}=-\frac {2 k^{2} a_{k}-8 k^{2} a_{k +1}-3 k a_{k}-4 k a_{k +1}+a_{k}+3 a_{k +1}}{4 \left (2 k^{2}+5 k +2\right )}, -4 a_{1}-a_{0}=0\right ] \\ \bullet & {} & \textrm {Combine solutions and rename parameters}\hspace {3pt} \\ {} & {} & \left [y \left (x \right )=\left (\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (x +2\right )^{k}\right )+\left (\moverset {\infty }{\munderset {k =0}{\sum }}b_{k} \left (x +2\right )^{k -\frac {3}{2}}\right ), a_{k +2}=-\frac {2 k^{2} a_{k}-8 k^{2} a_{k +1}+3 k a_{k}-28 k a_{k +1}+a_{k}-21 a_{k +1}}{4 \left (2 k^{2}+11 k +14\right )}, 20 a_{1}-a_{0}=0, b_{k +2}=-\frac {2 k^{2} b_{k}-8 k^{2} b_{k +1}-3 k b_{k}-4 k b_{k +1}+b_{k}+3 b_{k +1}}{4 \left (2 k^{2}+5 k +2\right )}, -4 b_{1}-b_{0}=0\right ] \end {array} \]

Maple trace
`Methods for second order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
checking if the LODE is of Euler type 
trying a symmetry of the form [xi=0, eta=F(x)] 
checking if the LODE is missing y 
-> Trying a Liouvillian solution using Kovacics algorithm 
   A Liouvillian solution exists 
   Reducible group (found an exponential solution) 
   Group is reducible, not completely reducible 
<- Kovacics algorithm successful`
 
Maple dsolve solution

Solving time : 0.021 (sec)
Leaf size : 48

dsolve(2*x^2*(x+2)*diff(diff(y(x),x),x)+5*diff(y(x),x)*x^2+y(x)*(x+1) = 0,y(x), 
       series,x=0)
 
\[ y = \sqrt {x}\, \left (\left (c_{2} \ln \left (x \right )+c_{1} \right ) \left (1-\frac {3}{4} x +\frac {15}{32} x^{2}-\frac {35}{128} x^{3}+\frac {315}{2048} x^{4}-\frac {693}{8192} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+\left (\frac {1}{4} x -\frac {13}{64} x^{2}+\frac {101}{768} x^{3}-\frac {641}{8192} x^{4}+\frac {7303}{163840} x^{5}+\operatorname {O}\left (x^{6}\right )\right ) c_{2} \right ) \]
Mathematica DSolve solution

Solving time : 0.022 (sec)
Leaf size : 134

AsymptoticDSolveValue[{2*x^2*(2+x)*D[y[x],{x,2}] +5*x^2*D[y[x],x]+(1+x)*y[x] == 0,{}}, 
       y[x],{x,0,5}]
 
\[ y(x)\to c_1 \sqrt {x} \left (-\frac {693 x^5}{8192}+\frac {315 x^4}{2048}-\frac {35 x^3}{128}+\frac {15 x^2}{32}-\frac {3 x}{4}+1\right )+c_2 \left (\sqrt {x} \left (\frac {7303 x^5}{163840}-\frac {641 x^4}{8192}+\frac {101 x^3}{768}-\frac {13 x^2}{64}+\frac {x}{4}\right )+\sqrt {x} \left (-\frac {693 x^5}{8192}+\frac {315 x^4}{2048}-\frac {35 x^3}{128}+\frac {15 x^2}{32}-\frac {3 x}{4}+1\right ) \log (x)\right ) \]