Internal
problem
ID
[8778]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
1.0
Problem
number
:
66
Date
solved
:
Friday, February 21, 2025 at 08:30:26 PM
CAS
classification
:
[NONE]
Solve
`Methods for second order ODEs: --- Trying classification methods --- trying 2nd order Liouville trying 2nd order WeierstrassP trying 2nd order JacobiSN differential order: 2; trying a linearization to 3rd order trying 2nd order ODE linearizable_by_differentiation trying 2nd order, 2 integrating factors of the form mu(x,y) trying differential order: 2; missing variables -> trying 2nd order, dynamical_symmetries, fully reducible to Abel through one integrating factor of the form G(x,y)/(1+H(x,y)*y)^2 trying 2nd order, integrating factors of the form mu(x,y)/(y)^n, only the singular cases trying symmetries linear in x and y(x) trying differential order: 2; exact nonlinear trying 2nd order, integrating factor of the form mu(y) trying 2nd order, integrating factor of the form mu(x,y) trying 2nd order, integrating factor of the form mu(x,y)/(y)^n, only the general case trying 2nd order, integrating factor of the form mu(y,y) trying differential order: 2; mu polynomial in y trying 2nd order, integrating factor of the form mu(x,y) differential order: 2; looking for linear symmetries -> trying 2nd order, the S-function method -> trying a change of variables {x -> y(x), y(x) -> x} and re-entering methods for the S-function -> trying 2nd order, the S-function method -> trying 2nd order, No Point Symmetries Class V -> trying 2nd order, No Point Symmetries Class V -> trying 2nd order, No Point Symmetries Class V trying 2nd order, integrating factor of the form mu(x,y)/(y)^n, only the general case -> trying 2nd order, dynamical_symmetries, only a reduction of order through one integrating factor of the form G(x,y)/(1+H(x,y)*y)^ --- Trying Lie symmetry methods, 2nd order --- `, `-> Computing symmetries using: way = 3 `, `-> Computing symmetries using: way = 5 `, `-> Computing symmetries using: way = formal`
Solving time : 0.031
(sec)
Leaf size : maple_leaf_size
dsolve(3*y(x)*diff(diff(y(x),x),x) = sin(x),y(x),singsol=all)
Solving time : 0.0
(sec)
Leaf size : 0
DSolve[{3*y[x]*D[y[x],{x,2}]==Sin[x],{}},y[x],x,IncludeSingularSolutions->True]
Not solved
Solving time : 0.000
(sec)
Leaf size : 0
Python version: 3.13.1 (main, Dec 4 2024, 18:05:56) [GCC 14.2.1 20240910] Sympy version 1.13.3
from sympy import * x = symbols("x") y = Function("y") ode = Eq(3*y(x)*Derivative(y(x), (x, 2)) - sin(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : solve: Cannot solve 3*y(x)*Derivative(y(x), (x, 2)) - sin(x)