2.3.20 problem 20

Solved as higher order Euler type ode
Maple step by step solution
Maple trace
Maple dsolve solution
Mathematica DSolve solution

Internal problem ID [8554]
Book : Own collection of miscellaneous problems
Section : section 3.0
Problem number : 20
Date solved : Thursday, December 12, 2024 at 09:30:06 AM
CAS classification : [[_high_order, _with_linear_symmetries]]

Solve

\begin{align*} 5 x^{5} y^{\prime \prime \prime \prime }+4 x^{4} y^{\prime \prime \prime }+x^{2} y^{\prime }+x y&=0 \end{align*}

Solved as higher order Euler type ode

Time used: 0.271 (sec)

The ode can be normalized and rewritten as Euler ode.

This is Euler ODE of higher order. Let \(y = x^{\lambda }\). Hence

\begin{align*} y^{\prime } &= \lambda \,x^{\lambda -1}\\ y^{\prime \prime } &= \lambda \left (\lambda -1\right ) x^{\lambda -2}\\ y^{\prime \prime \prime } &= \lambda \left (\lambda -1\right ) \left (\lambda -2\right ) x^{\lambda -3}\\ y^{\prime \prime \prime \prime } &= \lambda \left (\lambda -1\right ) \left (\lambda -2\right ) \left (\lambda -3\right ) x^{\lambda -4} \end{align*}

Substituting these back into

\[ 5 x^{5} y^{\prime \prime \prime \prime }+4 x^{4} y^{\prime \prime \prime }+x^{2} y^{\prime }+x y = 0 \]

gives

\[ x \lambda \,x^{\lambda -1}+4 x^{3} \lambda \left (\lambda -1\right ) \left (\lambda -2\right ) x^{\lambda -3}+5 x^{4} \lambda \left (\lambda -1\right ) \left (\lambda -2\right ) \left (\lambda -3\right ) x^{\lambda -4}+x^{\lambda } = 0 \]

Which simplifies to

\[ \lambda \,x^{\lambda }+4 \lambda \left (\lambda -1\right ) \left (\lambda -2\right ) x^{\lambda }+5 \lambda \left (\lambda -1\right ) \left (\lambda -2\right ) \left (\lambda -3\right ) x^{\lambda }+x^{\lambda } = 0 \]

And since \(x^{\lambda }\neq 0\) then dividing through by \(x^{\lambda }\), the above becomes

\[ \lambda +4 \lambda \left (\lambda -1\right ) \left (\lambda -2\right )+5 \lambda \left (\lambda -1\right ) \left (\lambda -2\right ) \left (\lambda -3\right )+1 = 0 \]

Simplifying gives the characteristic equation as

\[ 5 \lambda ^{4}-26 \lambda ^{3}+43 \lambda ^{2}-21 \lambda +1 = 0 \]

Solving the above gives the following roots

\begin{align*} \lambda _1 &= \frac {13}{10}+\frac {\sqrt {6}\, \sqrt {\frac {5 \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+154 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+5420}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}}}}{60}+\frac {i \sqrt {6}\, \sqrt {\frac {5 \sqrt {\frac {5 \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+154 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+5420}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}}}\, \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+876 \sqrt {6}\, \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}-308 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}} \sqrt {\frac {5 \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+154 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+5420}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}}}+5420 \sqrt {\frac {5 \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+154 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+5420}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}}}}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}} \sqrt {\frac {5 \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+154 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+5420}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}}}}}}{60}\\ \lambda _2 &= \frac {13}{10}+\frac {\sqrt {6}\, \sqrt {\frac {5 \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+154 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+5420}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}}}}{60}-\frac {i \sqrt {6}\, \sqrt {\frac {5 \sqrt {\frac {5 \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+154 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+5420}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}}}\, \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+876 \sqrt {6}\, \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}-308 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}} \sqrt {\frac {5 \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+154 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+5420}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}}}+5420 \sqrt {\frac {5 \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+154 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+5420}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}}}}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}} \sqrt {\frac {5 \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+154 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+5420}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}}}}}}{60}\\ \lambda _3 &= \frac {13}{10}-\frac {\sqrt {6}\, \sqrt {\frac {5 \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+154 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+5420}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}}}}{60}+\frac {\sqrt {6}\, \sqrt {\frac {-5 \sqrt {\frac {5 \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+154 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+5420}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}}}\, \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+876 \sqrt {6}\, \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+308 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}} \sqrt {\frac {5 \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+154 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+5420}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}}}-5420 \sqrt {\frac {5 \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+154 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+5420}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}}}}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}} \sqrt {\frac {5 \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+154 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+5420}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}}}}}}{60}\\ \lambda _4 &= \frac {13}{10}-\frac {\sqrt {6}\, \sqrt {\frac {5 \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+154 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+5420}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}}}}{60}-\frac {\sqrt {6}\, \sqrt {\frac {-5 \sqrt {\frac {5 \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+154 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+5420}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}}}\, \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+876 \sqrt {6}\, \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+308 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}} \sqrt {\frac {5 \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+154 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+5420}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}}}-5420 \sqrt {\frac {5 \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+154 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+5420}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}}}}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}} \sqrt {\frac {5 \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+154 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+5420}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}}}}}}{60} \end{align*}

This table summarises the result

root multiplicity type of root
\(\frac {13}{10}-\frac {\sqrt {6}\, \sqrt {\frac {5 \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+154 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+5420}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}}}}{60}+\frac {\sqrt {6}\, \sqrt {\frac {-5 \sqrt {\frac {5 \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+154 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+5420}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}}}\, \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+876 \sqrt {6}\, \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+308 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}} \sqrt {\frac {5 \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+154 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+5420}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}}}-5420 \sqrt {\frac {5 \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+154 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+5420}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}}}}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}} \sqrt {\frac {5 \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+154 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+5420}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}}}}}}{60}\) \(1\) real root
\(\frac {13}{10}+\frac {\sqrt {6}\, \sqrt {\frac {5 \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+154 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+5420}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}}}}{60} \pm \frac {\sqrt {6}\, \sqrt {\frac {5 \sqrt {\frac {5 \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+154 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+5420}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}}}\, \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+876 \sqrt {6}\, \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}-308 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}} \sqrt {\frac {5 \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+154 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+5420}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}}}+5420 \sqrt {\frac {5 \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+154 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+5420}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}}}}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}} \sqrt {\frac {5 \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+154 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+5420}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}}}}}}{60} i\) \(1\) complex conjugate root
\(\frac {13}{10}-\frac {\sqrt {6}\, \sqrt {\frac {5 \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+154 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+5420}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}}}}{60}-\frac {\sqrt {6}\, \sqrt {\frac {-5 \sqrt {\frac {5 \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+154 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+5420}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}}}\, \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+876 \sqrt {6}\, \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+308 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}} \sqrt {\frac {5 \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+154 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+5420}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}}}-5420 \sqrt {\frac {5 \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+154 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+5420}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}}}}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}} \sqrt {\frac {5 \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+154 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+5420}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}}}}}}{60}\) \(1\) real root

The solution is generated by going over the above table. For each real root \(\lambda \) of multiplicity one generates a \(c_1x^{\lambda }\) basis solution. Each real root of multiplicty two, generates \(c_1x^{\lambda }\) and \(c_2x^{\lambda } \ln \left (x \right )\) basis solutions. Each real root of multiplicty three, generates \(c_1x^{\lambda }\) and \(c_2x^{\lambda } \ln \left (x \right )\) and \(c_3x^{\lambda } \ln \left (x \right )^{2}\) basis solutions, and so on. Each complex root \(\alpha \pm i \beta \) of multiplicity one generates \(x^{\alpha } \left (c_1\cos (\beta \ln \left (x \right ))+c_2\sin (\beta \ln \left (x \right ))\right )\) basis solutions. And each complex root \(\alpha \pm i \beta \) of multiplicity two generates \(\ln \left (x \right ) x^{\alpha }\left (c_1\cos (\beta \ln \left (x \right ))+c_2\sin (\beta \ln \left (x \right ))\right )\) basis solutions. And each complex root \(\alpha \pm i \beta \) of multiplicity three generates \(\ln \left (x \right )^{2} x^{\alpha }\left (c_1\cos (\beta \ln \left (x \right ))+c_2\sin (\beta \ln \left (x \right ))\right )\) basis solutions. And so on. Using the above show that the solution is

\[ \text {Expression too large to display} \]

The fundamental set of solutions for the homogeneous solution are the following

\begin{align*} y_1 &= x^{\frac {13}{10}-\frac {\sqrt {6}\, \sqrt {\frac {5 \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+154 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+5420}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}}}}{60}+\frac {\sqrt {6}\, \sqrt {\frac {-5 \sqrt {\frac {5 \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+154 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+5420}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}}}\, \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+876 \sqrt {6}\, \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+308 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}} \sqrt {\frac {5 \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+154 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+5420}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}}}-5420 \sqrt {\frac {5 \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+154 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+5420}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}}}}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}} \sqrt {\frac {5 \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+154 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+5420}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}}}}}}{60}} \\ y_2 &= x^{\frac {13}{10}+\frac {\sqrt {6}\, \sqrt {\frac {5 \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+154 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+5420}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}}}}{60}} \cos \left (\frac {\sqrt {6}\, \sqrt {\frac {5 \sqrt {\frac {5 \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+154 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+5420}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}}}\, \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+876 \sqrt {6}\, \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}-308 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}} \sqrt {\frac {5 \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+154 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+5420}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}}}+5420 \sqrt {\frac {5 \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+154 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+5420}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}}}}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}} \sqrt {\frac {5 \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+154 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+5420}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}}}}}\, \ln \left (x \right )}{60}\right ) \\ y_3 &= x^{\frac {13}{10}+\frac {\sqrt {6}\, \sqrt {\frac {5 \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+154 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+5420}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}}}}{60}} \sin \left (\frac {\sqrt {6}\, \sqrt {\frac {5 \sqrt {\frac {5 \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+154 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+5420}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}}}\, \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+876 \sqrt {6}\, \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}-308 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}} \sqrt {\frac {5 \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+154 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+5420}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}}}+5420 \sqrt {\frac {5 \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+154 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+5420}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}}}}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}} \sqrt {\frac {5 \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+154 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+5420}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}}}}}\, \ln \left (x \right )}{60}\right ) \\ y_4 &= x^{\frac {13}{10}-\frac {\sqrt {6}\, \sqrt {\frac {5 \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+154 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+5420}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}}}}{60}-\frac {\sqrt {6}\, \sqrt {\frac {-5 \sqrt {\frac {5 \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+154 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+5420}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}}}\, \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+876 \sqrt {6}\, \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+308 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}} \sqrt {\frac {5 \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+154 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+5420}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}}}-5420 \sqrt {\frac {5 \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+154 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+5420}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}}}}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}} \sqrt {\frac {5 \left (40076+12 \sqrt {2307813}\right )^{{2}/{3}}+154 \left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}+5420}{\left (40076+12 \sqrt {2307813}\right )^{{1}/{3}}}}}}}{60}} \\ \end{align*}

Maple step by step solution

Maple trace
`Methods for high order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
checking if the LODE is of Euler type 
<- LODE of Euler type successful`
 
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 38

dsolve(5*x^5*diff(diff(diff(diff(y(x),x),x),x),x)+4*x^4*diff(diff(diff(y(x),x),x),x)+diff(y(x),x)*x^2+x*y(x) = 0, 
       y(x),singsol=all)
 
\[ y = \moverset {4}{\munderset {\textit {\_a} =1}{\sum }}x^{\operatorname {RootOf}\left (5 \textit {\_Z}^{4}-26 \textit {\_Z}^{3}+43 \textit {\_Z}^{2}-21 \textit {\_Z} +1, \operatorname {index} =\textit {\_a} \right )} \textit {\_C}_{\textit {\_a}} \]
Mathematica DSolve solution

Solving time : 1.419 (sec)
Leaf size : 1931

DSolve[{5*x^5*D[y[x],{x,4}]+4*x^4*D[y[x],{x,3}]+x^2*D[y[x],x]+x*y[x]== Sin[x],{}}, 
       y[x],x,IncludeSingularSolutions->True]
 

Too large to display