2.5.21 Problem 21
Internal
problem
ID
[8982]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
5.0
Problem
number
:
21
Date
solved
:
Friday, February 21, 2025 at 09:02:21 PM
CAS
classification
:
[_separable]
Solve
\begin{align*} x^{2} y^{\prime }+{\mathrm e}^{-y}&=0 \end{align*}
Solved as first order separable ode
Time used: 0.070 (sec)
The ode
\begin{equation}
y^{\prime } = -\frac {{\mathrm e}^{-y}}{x^{2}}
\end{equation}
is separable as it can be written as
\begin{align*} y^{\prime }&= -\frac {{\mathrm e}^{-y}}{x^{2}}\\ &= f(x) g(y) \end{align*}
Where
\begin{align*} f(x) &= -\frac {1}{x^{2}}\\ g(y) &= {\mathrm e}^{-y} \end{align*}
Integrating gives
\begin{align*}
\int { \frac {1}{g(y)} \,dy} &= \int { f(x) \,dx} \\
\int { {\mathrm e}^{y}\,dy} &= \int { -\frac {1}{x^{2}} \,dx} \\
\end{align*}
\[
{\mathrm e}^{y}=\frac {1}{x}+c_1
\]
Solving for \(y\) gives
\begin{align*}
y &= \ln \left (\frac {c_1 x +1}{x}\right ) \\
\end{align*}
Figure 2.231: Slope field \(x^{2} y^{\prime }+{\mathrm e}^{-y} = 0\)
Summary of solutions found
\begin{align*}
y &= \ln \left (\frac {c_1 x +1}{x}\right ) \\
\end{align*}
Solved as first order ode of type ID 1
Time used: 0.051 (sec)
Writing the ode as
\begin{align*} y^{\prime } &= -\frac {{\mathrm e}^{-y}}{x^{2}}\tag {1} \end{align*}
And using the substitution \(u={\mathrm e}^{y}\) then
\begin{align*} u' &= y^{\prime } {\mathrm e}^{y} \end{align*}
The above shows that
\begin{align*} y^{\prime } &= u^{\prime }\left (x \right ) {\mathrm e}^{-y}\\ &= \frac {u^{\prime }\left (x \right )}{u} \end{align*}
Substituting this in (1) gives
\begin{align*} \frac {u^{\prime }\left (x \right )}{u}&=-\frac {1}{x^{2} u} \end{align*}
The above simplifies to
\begin{align*} u^{\prime }\left (x \right )&=-\frac {1}{x^{2}}\tag {2} \end{align*}
Now ode (2) is solved for \(u \left (x \right )\) .
Since the ode has the form \(u^{\prime }\left (x \right )=f(x)\) , then we only need to integrate \(f(x)\) .
\begin{align*} \int {du} &= \int {-\frac {1}{x^{2}}\, dx}\\ u \left (x \right ) &= \frac {1}{x} + c_2 \end{align*}
Substituting the solution found for \(u \left (x \right )\) in \(u={\mathrm e}^{y}\) gives
\begin{align*} y&= \ln \left (u \left (x \right )\right )\\ &= \ln \left (\ln \left (\frac {1}{x}+c_2 \right )\right )\\ &= \ln \left (\frac {1}{x}+c_2 \right ) \end{align*}
Figure 2.232: Slope field \(x^{2} y^{\prime }+{\mathrm e}^{-y} = 0\)
Summary of solutions found
\begin{align*}
y &= \ln \left (\frac {1}{x}+c_2 \right ) \\
\end{align*}
Maple step by step solution
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & x^{2} \left (\frac {d}{d x}y \left (x \right )\right )+{\mathrm e}^{-y \left (x \right )}=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & \frac {d}{d x}y \left (x \right ) \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y \left (x \right )=-\frac {{\mathrm e}^{-y \left (x \right )}}{x^{2}} \\ \bullet & {} & \textrm {Separate variables}\hspace {3pt} \\ {} & {} & \frac {\frac {d}{d x}y \left (x \right )}{{\mathrm e}^{-y \left (x \right )}}=-\frac {1}{x^{2}} \\ \bullet & {} & \textrm {Integrate both sides with respect to}\hspace {3pt} x \\ {} & {} & \int \frac {\frac {d}{d x}y \left (x \right )}{{\mathrm e}^{-y \left (x \right )}}d x =\int -\frac {1}{x^{2}}d x +\mathit {C1} \\ \bullet & {} & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & \frac {1}{{\mathrm e}^{-y \left (x \right )}}=\frac {1}{x}+\mathit {C1} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} y \left (x \right ) \\ {} & {} & y \left (x \right )=-\ln \left (\frac {x}{\mathit {C1} x +1}\right ) \end {array} \]
Maple trace
` Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful `
Maple dsolve solution
Solving time : 0.003
(sec)
Leaf size : 15
dsolve ( diff ( y ( x ), x )* x ^2+ exp (- y ( x )) = 0,y(x),singsol=all)
\[
y = \ln \left (\frac {-c_{1} x +1}{x}\right )
\]
✓ Mathematica DSolve solution
Solving time : 0.433
(sec)
Leaf size : 12
DSolve [{ x ^2* D [ y [ x ], x ]+ Exp [- y [ x ]]==0,{}}, y [ x ], x , IncludeSingularSolutions -> True ]
\[
y(x)\to \log \left (\frac {1}{x}+c_1\right )
\]
✓ Sympy solution
Solving time : 0.167
(sec)
Leaf size : 8
Python version: 3.13.1 (main, Dec 4 2024, 18:05:56) [GCC 14.2.1 20240910]
Sympy version 1.13.3
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq(x**2*Derivative(y(x), x) + exp(-y(x)),0)
ics = {}
dsolve ( ode , func = y ( x ), ics = ics )
Eq ( y ( x ), log(C1 + 1/x))
\[
y{\left (x \right )} = \log {\left (C_{1} + \frac {1}{x} \right )}
\]