up

My MAE 185 Applied Numerical Analysis UC Irvine, Spring quarter, April 2003

by Nasser M. Abbasi

Contents

1 Introduction
 1.1 course description from catlaog
2 my lecture notes
3 HWs
4 projects
5 Exams
6 notes

This page in PDF

1 Introduction

I took this course in the department of mechanical engineering. It is an upper division undergraduate course.

1.1 course description from catlaog

MAE185 Numerical Analysis in Mechanical Engineering (Credit Units: 4) S. Solution of mechanical-engineering equations by means of numerical methods. Errors in numerical analysis. Nonlinear equations and sets of equations. Numerical differentiation and integration. Ordinary differential equations. Boundary-value problems. Partial differential equations.

Prerequisites: MAE10, Mathematics 3D; Mathematics 2E or equivalent. Only one course from MAE185, CEE185, and Mathematics 105A may be taken for credit. (Design units: 2)

textbook: Applied Numerical Analysis, C.F. Gerald and P.O. Wheatley, 5th Edition, Addison Wesley, 1994.

Coordinator: Dr Chaudhry chaudhry@fullerton.edu

Course Objectives: An introductory course dealing with the solution of mechanical engineering equations by means of numerical methods. Students are trained in the development and application of standard numerical schemes to solve fundamental and practical engineering problems.

Prerequisites by Topic:

  1. Understanding of Computer Algorithms (E10) 2. Mathematics (3D and 2E)
  Lecture Topics: 1. Solving nonlinear equations
  2. Direct methods for solving linear systems
  3. Theory of linear systems
  4. Iterative methods for linear systems
  5. Curve-fitting and interpolation
  6. Numerical differentiation
  7. Numerical integration
  8. Single step methods for ordinary differential equations
  9. Multistep methods for ordinary differential equations
  10. Systems of ordinary differential equations; convergence
  11. Boundary-value problems
  12. Numerical determination of eigenvalues
  13. Laplace and Poisson equations
  14. The alternating-direction-implicit method; theory
  15. Parabolic partial differential equations
  16. Hyperbolic partial differential equations

Class Schedule: Each class meets 3 hours per week and students are assigned to a 1 hour discussion session per week.

Computer Usage: Heavy computer usage. Students are required to develop computer programs for the solution of a design project.

Units 4 (Quarter system)

2 my lecture notes

PDF

3 HWs




HW

link

note







1

HTML




2

HTML

followup HTML




3

problem 1

problem 2




4

HTML

PDF




5

problem 25.1

problem 25.2

problem 25.3

suplement

problem 25.4

suplement

problem 25.5

plots




6

problem 29.2

problem 29.3

problem 29.4




7

problem 30.1

problem 30.2

problem 30.3

problem 30.4




4 projects




project link note






1 HTML factor a polynomial of order up to 12
problem description



2 HTML Cubic spline determination using the improved method



3 HTML Solution of Lotka-Volterra 2 species model
problem description



4 problem description in PDF Microstrip line solution by finite difference method
my solution in PDF
nma_MAE185_proj_4.m.txt Matlab source code



5 Exams

Midterm PDF

6 notes

1.
trapezoidal table HTML
2.
romberg table HTML