ID |
problem |
ODE |
1 |
\(y^{\prime } = 0\) |
|
2 |
\(y^{\prime } = a\) |
|
3 |
\(y^{\prime } = x\) |
|
4 |
\(y^{\prime } = 1\) |
|
5 |
\(y^{\prime } = a x\) |
|
6 |
\(y^{\prime } = a x y\) |
|
7 |
\(y^{\prime } = a x +y\) |
|
8 |
\(y^{\prime } = a x +b y\) |
|
9 |
\(y^{\prime } = y\) |
|
10 |
\(y^{\prime } = b y\) |
|
11 |
\(y^{\prime } = a x +b y^{2}\) |
|
12 |
\(c y^{\prime } = 0\) |
|
13 |
\(c y^{\prime } = a\) |
|
14 |
\(c y^{\prime } = a x\) |
|
15 |
\(c y^{\prime } = a x +y\) |
|
16 |
\(c y^{\prime } = a x +b y\) |
|
17 |
\(c y^{\prime } = y\) |
|
18 |
\(c y^{\prime } = b y\) |
|
19 |
\(c y^{\prime } = a x +b y^{2}\) |
|
20 |
\(c y^{\prime } = \frac {a x +b y^{2}}{r}\) |
|
21 |
\(c y^{\prime } = \frac {a x +b y^{2}}{r x}\) |
|
22 |
\(c y^{\prime } = \frac {a x +b y^{2}}{r \,x^{2}}\) |
|
23 |
\(c y^{\prime } = \frac {a x +b y^{2}}{y}\) |
|
24 |
\(a \sin \left (x \right ) y x y^{\prime } = 0\) |
|
25 |
\(f \left (x \right ) \sin \left (x \right ) y x y^{\prime } \pi = 0\) |
|
26 |
\(y^{\prime } = \sin \left (x \right )+y\) |
|
27 |
\(y^{\prime } = \sin \left (x \right )+y^{2}\) |
|
28 |
\(y^{\prime } = \cos \left (x \right )+\frac {y}{x}\) |
|
29 |
\(y^{\prime } = \cos \left (x \right )+\frac {y^{2}}{x}\) |
|
30 |
\(y^{\prime } = x +y+b y^{2}\) |
|
31 |
\(x y^{\prime } = 0\) |
|
32 |
\(5 y^{\prime } = 0\) |
|
33 |
\({\mathrm e} y^{\prime } = 0\) |
|
34 |
\(\pi y^{\prime } = 0\) |
|
35 |
\(\sin \left (x \right ) y^{\prime } = 0\) |
|
36 |
\(f \left (x \right ) y^{\prime } = 0\) |
|
37 |
\(x y^{\prime } = 1\) |
|
38 |
\(x y^{\prime } = \sin \left (x \right )\) |
|
39 |
\(\left (x -1\right ) y^{\prime } = 0\) |
|
40 |
\(y y^{\prime } = 0\) |
|
41 |
\(x y y^{\prime } = 0\) |
|
42 |
\(x y \sin \left (x \right ) y^{\prime } = 0\) |
|
43 |
\(\pi y \sin \left (x \right ) y^{\prime } = 0\) |
|
44 |
\(x \sin \left (x \right ) y^{\prime } = 0\) |
|
45 |
\(x \sin \left (x \right ) {y^{\prime }}^{2} = 0\) |
|
46 |
\(y {y^{\prime }}^{2} = 0\) |
|
47 |
\({y^{\prime }}^{n} = 0\) |
|
48 |
\(x {y^{\prime }}^{n} = 0\) |
|
49 |
\({y^{\prime }}^{2} = x\) |
|
50 |
\({y^{\prime }}^{2} = x +y\) |
|
51 |
\({y^{\prime }}^{2} = \frac {y}{x}\) |
|
52 |
\({y^{\prime }}^{2} = \frac {y^{2}}{x}\) |
|
53 |
\({y^{\prime }}^{2} = \frac {y^{3}}{x}\) |
|
54 |
\({y^{\prime }}^{3} = \frac {y^{2}}{x}\) |
|
55 |
\({y^{\prime }}^{2} = \frac {1}{y x}\) |
|
56 |
\({y^{\prime }}^{2} = \frac {1}{x y^{3}}\) |
|
57 |
\({y^{\prime }}^{2} = \frac {1}{x^{2} y^{3}}\) |
|
58 |
\({y^{\prime }}^{4} = \frac {1}{x y^{3}}\) |
|
59 |
\({y^{\prime }}^{2} = \frac {1}{x^{3} y^{4}}\) |
|
60 |
\(y^{\prime } = \sqrt {1+6 x +y}\) |
|
61 |
\(y^{\prime } = \left (1+6 x +y\right )^{{1}/{3}}\) |
|
62 |
\(y^{\prime } = \left (1+6 x +y\right )^{{1}/{4}}\) |
|
63 |
\(y^{\prime } = \left (a +b x +y\right )^{4}\) |
|
64 |
\(y^{\prime } = \left (\pi +x +7 y\right )^{{7}/{2}}\) |
|
65 |
\(y^{\prime } = \left (a +b x +c y\right )^{6}\) |
|
66 |
\(y^{\prime } = {\mathrm e}^{x +y}\) |
|
67 |
\(y^{\prime } = 10+{\mathrm e}^{x +y}\) |
|
68 |
\(y^{\prime } = 10 \,{\mathrm e}^{x +y}+x^{2}\) |
|
69 |
\(y^{\prime } = x \,{\mathrm e}^{x +y}+\sin \left (x \right )\) |
|
70 |
\(y^{\prime } = 5 \,{\mathrm e}^{x^{2}+20 y}+\sin \left (x \right )\) |
|
ID |
problem |
ODE |
1 |
\([x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-x \left (t \right ) = y \left (t \right )+t, x^{\prime }\left (t \right )+y^{\prime }\left (t \right ) = 2 x \left (t \right )+3 y \left (t \right )+{\mathrm e}^{t}]\) |
|
2 |
\([2 x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-x \left (t \right ) = y \left (t \right )+t, x^{\prime }\left (t \right )+y^{\prime }\left (t \right ) = 2 x \left (t \right )+3 y \left (t \right )+{\mathrm e}^{t}]\) |
|
3 |
\([x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-x \left (t \right ) = y \left (t \right )+t +\sin \left (t \right )+\cos \left (t \right ), x^{\prime }\left (t \right )+y^{\prime }\left (t \right ) = 2 x \left (t \right )+3 y \left (t \right )+{\mathrm e}^{t}]\) |
|
ID |
problem |
ODE |
1 |
\(y^{\prime } t +y = t\) |
|
2 |
\(y^{\prime }-y t = 0\) |
|
3 |
\(y^{\prime } t +y = 0\) |
|
4 |
\(y^{\prime } t +y = 0\) |
|
5 |
\(y^{\prime } t +y = 0\) |
|
6 |
\(y^{\prime } t +y = 0\) |
|
7 |
\(y^{\prime } t +y = 0\) |
|
8 |
\(y^{\prime } t +y = \sin \left (t \right )\) |
|
9 |
\(y^{\prime } t +y = t\) |
|
10 |
\(y^{\prime } t +y = t\) |
|
11 |
\(y^{\prime }+t^{2} y = 0\) |
|
12 |
\(\left (a t +1\right ) y^{\prime }+y = t\) |
|
13 |
\(y^{\prime }+\left (a t +b t \right ) y = 0\) |
|
14 |
\(y^{\prime }+\left (a t +b t \right ) y = 0\) |
|