Chapter 1
Lookup tables for all problems in current book

1.1 section 1
1.2 section 2 (system of first order odes)
1.3 section 3. First order odes solved using Laplace method

1.1 section 1

Table 1.1: Lookup table

ID

problem

ODE

8661

1

\(y^{\prime } = 0\)

8662

2

\(y^{\prime } = a\)

8663

3

\(y^{\prime } = x\)

8664

4

\(y^{\prime } = 1\)

8665

5

\(y^{\prime } = a x\)

8666

6

\(y^{\prime } = a x y\)

8667

7

\(y^{\prime } = a x +y\)

8668

8

\(y^{\prime } = a x +b y\)

8669

9

\(y^{\prime } = y\)

8670

10

\(y^{\prime } = b y\)

8671

11

\(y^{\prime } = a x +b y^{2}\)

8672

12

\(c y^{\prime } = 0\)

8673

13

\(c y^{\prime } = a\)

8674

14

\(c y^{\prime } = a x\)

8675

15

\(c y^{\prime } = a x +y\)

8676

16

\(c y^{\prime } = a x +b y\)

8677

17

\(c y^{\prime } = y\)

8678

18

\(c y^{\prime } = b y\)

8679

19

\(c y^{\prime } = a x +b y^{2}\)

8680

20

\(c y^{\prime } = \frac {a x +b y^{2}}{r}\)

8681

21

\(c y^{\prime } = \frac {a x +b y^{2}}{r x}\)

8682

22

\(c y^{\prime } = \frac {a x +b y^{2}}{r \,x^{2}}\)

8683

23

\(c y^{\prime } = \frac {a x +b y^{2}}{y}\)

8684

24

\(a \sin \left (x \right ) y x y^{\prime } = 0\)

8685

25

\(f \left (x \right ) \sin \left (x \right ) y x y^{\prime } \pi = 0\)

8686

26

\(y^{\prime } = \sin \left (x \right )+y\)

8687

27

\(y^{\prime } = \sin \left (x \right )+y^{2}\)

8688

28

\(y^{\prime } = \cos \left (x \right )+\frac {y}{x}\)

8689

29

\(y^{\prime } = \cos \left (x \right )+\frac {y^{2}}{x}\)

8690

30

\(y^{\prime } = x +y+b y^{2}\)

8691

31

\(x y^{\prime } = 0\)

8692

32

\(5 y^{\prime } = 0\)

8693

33

\({\mathrm e} y^{\prime } = 0\)

8694

34

\(\pi y^{\prime } = 0\)

8695

35

\(\sin \left (x \right ) y^{\prime } = 0\)

8696

36

\(f \left (x \right ) y^{\prime } = 0\)

8697

37

\(x y^{\prime } = 1\)

8698

38

\(x y^{\prime } = \sin \left (x \right )\)

8699

39

\(\left (x -1\right ) y^{\prime } = 0\)

8700

40

\(y y^{\prime } = 0\)

8701

41

\(x y y^{\prime } = 0\)

8702

42

\(x y \sin \left (x \right ) y^{\prime } = 0\)

8703

43

\(\pi y \sin \left (x \right ) y^{\prime } = 0\)

8704

44

\(x \sin \left (x \right ) y^{\prime } = 0\)

8705

45

\(x \sin \left (x \right ) {y^{\prime }}^{2} = 0\)

8706

46

\(y {y^{\prime }}^{2} = 0\)

8707

47

\({y^{\prime }}^{n} = 0\)

8708

48

\(x {y^{\prime }}^{n} = 0\)

8709

49

\({y^{\prime }}^{2} = x\)

8710

50

\({y^{\prime }}^{2} = x +y\)

8711

51

\({y^{\prime }}^{2} = \frac {y}{x}\)

8712

52

\({y^{\prime }}^{2} = \frac {y^{2}}{x}\)

8713

53

\({y^{\prime }}^{2} = \frac {y^{3}}{x}\)

8714

54

\({y^{\prime }}^{3} = \frac {y^{2}}{x}\)

8715

55

\({y^{\prime }}^{2} = \frac {1}{y x}\)

8716

56

\({y^{\prime }}^{2} = \frac {1}{x y^{3}}\)

8717

57

\({y^{\prime }}^{2} = \frac {1}{x^{2} y^{3}}\)

8718

58

\({y^{\prime }}^{4} = \frac {1}{x y^{3}}\)

8719

59

\({y^{\prime }}^{2} = \frac {1}{x^{3} y^{4}}\)

8720

60

\(y^{\prime } = \sqrt {1+6 x +y}\)

8721

61

\(y^{\prime } = \left (1+6 x +y\right )^{{1}/{3}}\)

8722

62

\(y^{\prime } = \left (1+6 x +y\right )^{{1}/{4}}\)

8723

63

\(y^{\prime } = \left (a +b x +y\right )^{4}\)

8724

64

\(y^{\prime } = \left (\pi +x +7 y\right )^{{7}/{2}}\)

8725

65

\(y^{\prime } = \left (a +b x +c y\right )^{6}\)

8726

66

\(y^{\prime } = {\mathrm e}^{x +y}\)

8727

67

\(y^{\prime } = 10+{\mathrm e}^{x +y}\)

8728

68

\(y^{\prime } = 10 \,{\mathrm e}^{x +y}+x^{2}\)

8729

69

\(y^{\prime } = x \,{\mathrm e}^{x +y}+\sin \left (x \right )\)

8730

70

\(y^{\prime } = 5 \,{\mathrm e}^{x^{2}+20 y}+\sin \left (x \right )\)

1.2 section 2 (system of first order odes)

Table 1.3: Lookup table

ID

problem

ODE

8731

1

\([x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-x \left (t \right ) = y \left (t \right )+t, x^{\prime }\left (t \right )+y^{\prime }\left (t \right ) = 2 x \left (t \right )+3 y \left (t \right )+{\mathrm e}^{t}]\)

8732

2

\([2 x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-x \left (t \right ) = y \left (t \right )+t, x^{\prime }\left (t \right )+y^{\prime }\left (t \right ) = 2 x \left (t \right )+3 y \left (t \right )+{\mathrm e}^{t}]\)

8733

3

\([x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-x \left (t \right ) = y \left (t \right )+t +\sin \left (t \right )+\cos \left (t \right ), x^{\prime }\left (t \right )+y^{\prime }\left (t \right ) = 2 x \left (t \right )+3 y \left (t \right )+{\mathrm e}^{t}]\)

1.3 section 3. First order odes solved using Laplace method

Table 1.5: Lookup table

ID

problem

ODE

8734

1

\(y^{\prime } t +y = t\)

8735

2

\(y^{\prime }-y t = 0\)

8736

3

\(y^{\prime } t +y = 0\)

8737

4

\(y^{\prime } t +y = 0\)

8738

5

\(y^{\prime } t +y = 0\)

8739

6

\(y^{\prime } t +y = 0\)

8740

7

\(y^{\prime } t +y = 0\)

8741

8

\(y^{\prime } t +y = \sin \left (t \right )\)

8742

9

\(y^{\prime } t +y = t\)

8743

10

\(y^{\prime } t +y = t\)

8744

11

\(y^{\prime }+t^{2} y = 0\)

8745

12

\(\left (a t +1\right ) y^{\prime }+y = t\)

8746

13

\(y^{\prime }+\left (a t +b t \right ) y = 0\)

8747

14

\(y^{\prime }+\left (a t +b t \right ) y = 0\)