Internal
problem
ID
[8720] Book
:
First
order
enumerated
odes Section
:
section
1 Problem
number
:
60 Date
solved
:
Tuesday, December 17, 2024 at 12:58:26 PM CAS
classification
:
[[_homogeneous, `class C`], _dAlembert]
Solve
\begin{align*} y^{\prime }&=\sqrt {1+6 x +y} \end{align*}
Substituting
equations (1E,2E) and \(\omega \) into (A) gives
\begin{equation}
\tag{5E} b_{2}+\sqrt {1+6 x +y}\, \left (b_{3}-a_{2}\right )-\left (1+6 x +y \right ) a_{3}-\frac {3 \left (x a_{2}+y a_{3}+a_{1}\right )}{\sqrt {1+6 x +y}}-\frac {x b_{2}+y b_{3}+b_{1}}{2 \sqrt {1+6 x +y}} = 0
\end{equation}
Putting the above in normal form gives
\[
-\frac {12 a_{3} \sqrt {1+6 x +y}\, x +2 a_{3} \sqrt {1+6 x +y}\, y +2 a_{3} \sqrt {1+6 x +y}-2 b_{2} \sqrt {1+6 x +y}+18 x a_{2}+x b_{2}-12 b_{3} x +2 a_{2} y +6 y a_{3}-y b_{3}+6 a_{1}+2 a_{2}+b_{1}-2 b_{3}}{2 \sqrt {1+6 x +y}} = 0
\]
Setting the numerator to zero gives
\begin{equation}
\tag{6E} -12 a_{3} \sqrt {1+6 x +y}\, x -2 a_{3} \sqrt {1+6 x +y}\, y -2 a_{3} \sqrt {1+6 x +y}+2 b_{2} \sqrt {1+6 x +y}-18 x a_{2}-x b_{2}+12 b_{3} x -2 a_{2} y -6 y a_{3}+y b_{3}-6 a_{1}-2 a_{2}-b_{1}+2 b_{3} = 0
\end{equation}
Simplifying the above gives
\begin{equation}
\tag{6E} -2 \left (1+6 x +y \right ) a_{2}+2 \left (1+6 x +y \right ) b_{3}-12 a_{3} \sqrt {1+6 x +y}\, x -2 a_{3} \sqrt {1+6 x +y}\, y -2 a_{3} \sqrt {1+6 x +y}+2 b_{2} \sqrt {1+6 x +y}-6 x a_{2}-x b_{2}-6 y a_{3}-y b_{3}-6 a_{1}-b_{1} = 0
\end{equation}
Since the PDE has
radicals, simplifying gives
\[
-12 a_{3} \sqrt {1+6 x +y}\, x -2 a_{3} \sqrt {1+6 x +y}\, y -2 a_{3} \sqrt {1+6 x +y}+2 b_{2} \sqrt {1+6 x +y}-18 x a_{2}-x b_{2}+12 b_{3} x -2 a_{2} y -6 y a_{3}+y b_{3}-6 a_{1}-2 a_{2}-b_{1}+2 b_{3} = 0
\]
Looking at the above PDE shows the following are all
the terms with \(\{x, y\}\) in them.
\[
\left \{x, y, \sqrt {1+6 x +y}\right \}
\]
The following substitution is now made to be able to
collect on all terms with \(\{x, y\}\) in them
\[
\left \{x = v_{1}, y = v_{2}, \sqrt {1+6 x +y} = v_{3}\right \}
\]
The next step is to determine the canonical coordinates \(R,S\). The canonical coordinates map \(\left ( x,y\right ) \to \left ( R,S \right )\)
where \(\left ( R,S \right )\) are the canonical coordinates which make the original ode become a quadrature and
hence solved by integration.
The characteristic pde which is used to find the canonical coordinates is
The above comes from the requirements that \(\left ( \xi \frac {\partial }{\partial x} + \eta \frac {\partial }{\partial y}\right ) S(x,y) = 1\). Starting with the first pair of ode’s in (1)
gives an ode to solve for the independent variable \(R\) in the canonical coordinates, where \(S(R)\). Since
\(\xi =0\) then in this special case
\begin{align*} R = x \end{align*}
\(S\) is found from
\begin{align*} S &= \int { \frac {1}{\eta }} dy\\ &= \int { \frac {1}{-\sqrt {1+6 x +y}-6}} dy \end{align*}
Which results in
\begin{align*} S&= -2 \sqrt {1+6 x +y}+6 \ln \left (\sqrt {1+6 x +y}+6\right )-6 \ln \left (-6+\sqrt {1+6 x +y}\right )+6 \ln \left (-35+6 x +y \right ) \end{align*}
Now that \(R,S\) are found, we need to setup the ode in these coordinates. This is done by
evaluating
We now need to express the RHS as function of \(R\) only. This is done by solving for \(x,y\) in terms of
\(R,S\) from the result obtained earlier and simplifying. This gives
\begin{align*} \frac {dS}{dR} &= -1 \end{align*}
The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts
an ode, no matter how complicated it is, to one that can be solved by integration when the
ode is in the canonical coordiates \(R,S\).
Since the ode has the form \(\frac {d}{d R}S \left (R \right )=f(R)\), then we only need to integrate \(f(R)\).
This ODE is now solved for \(p \left (x \right )\). No inversion is needed. Integrating gives
\begin{align*} \int \frac {2 p}{p +6}d p &= dx\\ 2 p -12 \ln \left (p +6\right )&= x +c_1 \end{align*}
Singular solutions are found by solving
\begin{align*} \frac {p +6}{2 p}&= 0 \end{align*}
for \(p \left (x \right )\). This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.
\begin{align*} p \left (x \right ) = -6 \end{align*}
`Methodsfor first order ODEs:---Trying classification methods ---tryinghomogeneous types:tryinghomogeneous C1storder, trying the canonical coordinates of the invariance group-> Calling odsolve with the ODE`, diff(y(x), x) = -6, y(x)` *** Sublevel 2 ***Methods for first order ODEs:--- Trying classification methods ---trying a quadraturetrying 1st order linear<- 1st order linear successful<-1st order, canonical coordinates successful<-homogeneous successful`