2.1.68 problem 68
Internal
problem
ID
[8728]
Book
:
First
order
enumerated
odes
Section
:
section
1
Problem
number
:
68
Date
solved
:
Tuesday, December 17, 2024 at 01:01:42 PM
CAS
classification
:
[[_1st_order, `_with_symmetry_[F(x),G(x)]`]]
Solve
\begin{align*} y^{\prime }&=10 \,{\mathrm e}^{x +y}+x^{2} \end{align*}
Solved as first order ode of type ID 1
Time used: 0.491 (sec)
Writing the ode as
\begin{align*} y^{\prime } &= 10 \,{\mathrm e}^{x +y}+x^{2}\tag {1} \end{align*}
And using the substitution \(u={\mathrm e}^{-y}\) then
\begin{align*} u' &= -y^{\prime } {\mathrm e}^{-y} \end{align*}
The above shows that
\begin{align*} y^{\prime } &= -u^{\prime }\left (x \right ) {\mathrm e}^{y}\\ &= -\frac {u^{\prime }\left (x \right )}{u} \end{align*}
Substituting this in (1) gives
\begin{align*} -\frac {u^{\prime }\left (x \right )}{u}&=\frac {10 \,{\mathrm e}^{x}}{u}+x^{2} \end{align*}
The above simplifies to
\begin{align*} -u^{\prime }\left (x \right )&=10 \,{\mathrm e}^{x}+x^{2} u \left (x \right )\\ u^{\prime }\left (x \right )+x^{2} u \left (x \right )&=-10 \,{\mathrm e}^{x}\tag {2} \end{align*}
Now ode (2) is solved for \(u \left (x \right )\) .
In canonical form a linear first order is
\begin{align*} u^{\prime }\left (x \right ) + q(x)u \left (x \right ) &= p(x) \end{align*}
Comparing the above to the given ode shows that
\begin{align*} q(x) &=x^{2}\\ p(x) &=-10 \,{\mathrm e}^{x} \end{align*}
The integrating factor \(\mu \) is
\begin{align*} \mu &= e^{\int {q\,dx}}\\ &= {\mathrm e}^{\int x^{2}d x}\\ &= {\mathrm e}^{\frac {x^{3}}{3}} \end{align*}
The ode becomes
\begin{align*}
\frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}x}}\left ( \mu u\right ) &= \mu p \\
\frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}x}}\left ( \mu u\right ) &= \left (\mu \right ) \left (-10 \,{\mathrm e}^{x}\right ) \\
\frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}x}} \left (u \,{\mathrm e}^{\frac {x^{3}}{3}}\right ) &= \left ({\mathrm e}^{\frac {x^{3}}{3}}\right ) \left (-10 \,{\mathrm e}^{x}\right ) \\
\mathrm {d} \left (u \,{\mathrm e}^{\frac {x^{3}}{3}}\right ) &= \left (-10 \,{\mathrm e}^{x} {\mathrm e}^{\frac {x^{3}}{3}}\right )\, \mathrm {d} x \\
\end{align*}
Integrating gives
\begin{align*} u \,{\mathrm e}^{\frac {x^{3}}{3}}&= \int {-10 \,{\mathrm e}^{x} {\mathrm e}^{\frac {x^{3}}{3}} \,dx} \\ &=\int -10 \,{\mathrm e}^{x} {\mathrm e}^{\frac {x^{3}}{3}}d x + c_1 \end{align*}
Dividing throughout by the integrating factor \({\mathrm e}^{\frac {x^{3}}{3}}\) gives the final solution
\[ u \left (x \right ) = {\mathrm e}^{-\frac {x^{3}}{3}} \left (\int -10 \,{\mathrm e}^{x} {\mathrm e}^{\frac {x^{3}}{3}}d x +c_1 \right ) \]
Substituting the
solution found for \(u \left (x \right )\) in \(u={\mathrm e}^{-y}\) gives
\begin{align*} y&= -\ln \left (u \left (x \right )\right )\\ &= -\ln \left (-\ln \left (\left (-10 \left (\int {\mathrm e}^{\frac {x \left (x^{2}+3\right )}{3}}d x \right )+c_1 \right ) {\mathrm e}^{-\frac {x^{3}}{3}}\right )\right )\\ &= -\ln \left (\left (-10 \left (\int {\mathrm e}^{\frac {x \left (x^{2}+3\right )}{3}}d x \right )+c_1 \right ) {\mathrm e}^{-\frac {x^{3}}{3}}\right ) \end{align*}
Figure 2.97: Slope field plot
\(y^{\prime } = 10 \,{\mathrm e}^{x +y}+x^{2}\)
Summary of solutions found
\begin{align*}
y &= -\ln \left (\left (-10 \left (\int {\mathrm e}^{\frac {x \left (x^{2}+3\right )}{3}}d x \right )+c_1 \right ) {\mathrm e}^{-\frac {x^{3}}{3}}\right ) \\
\end{align*}
Maple step by step solution
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y \left (x \right )=10 \,{\mathrm e}^{x +y \left (x \right )}+x^{2} \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & \frac {d}{d x}y \left (x \right ) \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y \left (x \right )=10 \,{\mathrm e}^{x +y \left (x \right )}+x^{2} \end {array} \]
Maple trace
` Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
` , ` -> Computing symmetries using: way = 3
` , ` -> Computing symmetries using: way = 4
` , ` -> Computing symmetries using: way = 5
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
<- symmetry pattern of the form [0, F(x)*G(y)] successful `
Maple dsolve solution
Solving time : 0.019
(sec)
Leaf size : 30
dsolve ( diff ( y ( x ), x ) = 10* exp ( x + y ( x ))+ x ^2,
y(x),singsol=all)
\[
y = \frac {x^{3}}{3}-\ln \left (-c_{1} -10 \left (\int {\mathrm e}^{\frac {x \left (x^{2}+3\right )}{3}}d x \right )\right )
\]
Mathematica DSolve solution
Solving time : 0.413
(sec)
Leaf size : 115
DSolve [{ D [ y [ x ], x ]==10* Exp [ x + y [ x ]]+ x ^2,{}},
y[x],x,IncludeSingularSolutions-> True ]
\[
\text {Solve}\left [\int _1^{y(x)}-\frac {1}{10} e^{-K[2]} \left (10 e^{K[2]} \int _1^x-\frac {1}{10} e^{\frac {K[1]^3}{3}-K[2]} K[1]^2dK[1]+e^{\frac {x^3}{3}}\right )dK[2]+\int _1^x\left (\frac {1}{10} e^{\frac {K[1]^3}{3}-y(x)} K[1]^2+e^{\frac {K[1]^3}{3}+K[1]}\right )dK[1]=c_1,y(x)\right ]
\]