2.1.46 problem 46
Internal
problem
ID
[8706]
Book
:
First
order
enumerated
odes
Section
:
section
1
Problem
number
:
46
Date
solved
:
Tuesday, December 17, 2024 at 12:58:11 PM
CAS
classification
:
[_quadrature]
Solve
\begin{align*} y {y^{\prime }}^{2}&=0 \end{align*}
Factoring the ode gives these factors
\begin{align*}
\tag{1} y &= 0 \\
\tag{2} {y^{\prime }}^{2} &= 0 \\
\end{align*}
Now each of the above equations is solved in
turn.
Solving equation (1)
Solving for \(y\) from
\begin{align*} y = 0 \end{align*}
Solving gives \(y = 0\)
Solving equation (2)
Solving for the derivative gives these ODE’s to solve
\begin{align*}
\tag{1} y^{\prime }&=0 \\
\tag{2} y^{\prime }&=0 \\
\end{align*}
Now each of the above is solved
separately.
Solving Eq. (1)
Since the ode has the form \(y^{\prime }=f(x)\), then we only need to integrate \(f(x)\).
\begin{align*} \int {dy} &= \int {0\, dx} + c_1 \\ y &= c_1 \end{align*}
Solving Eq. (2)
Since the ode has the form \(y^{\prime }=f(x)\), then we only need to integrate \(f(x)\).
\begin{align*} \int {dy} &= \int {0\, dx} + c_2 \\ y &= c_2 \end{align*}
Maple step by step solution
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & y \left (x \right ) \left (\frac {d}{d x}y \left (x \right )\right )^{2}=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & \frac {d}{d x}y \left (x \right ) \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y \left (x \right )=0 \\ \bullet & {} & \textrm {Integrate both sides with respect to}\hspace {3pt} x \\ {} & {} & \int \left (\frac {d}{d x}y \left (x \right )\right )d x =\int 0d x +\mathit {C1} \\ \bullet & {} & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & y \left (x \right )=\mathit {C1} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} y \left (x \right ) \\ {} & {} & y \left (x \right )=\mathit {C1} \end {array} \]
Maple trace
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
Maple dsolve solution
Solving time : 0.002
(sec)
Leaf size : 9
dsolve(y(x)*diff(y(x),x)^2 = 0,
y(x),singsol=all)
\begin{align*}
y &= 0 \\
y &= c_{1} \\
\end{align*}
Mathematica DSolve solution
Solving time : 0.002
(sec)
Leaf size : 12
DSolve[{y[x]*(D[y[x],x])^2==0,{}},
y[x],x,IncludeSingularSolutions->True]
\begin{align*}
y(x)\to 0 \\
y(x)\to c_1 \\
\end{align*}