2.1.40 problem 40
Internal
problem
ID
[8700]
Book
:
First
order
enumerated
odes
Section
:
section
1
Problem
number
:
40
Date
solved
:
Tuesday, December 17, 2024 at 12:58:07 PM
CAS
classification
:
[_quadrature]
Solve
\begin{align*} y y^{\prime }&=0 \end{align*}
Factoring the ode gives these factors
\begin{align*}
\tag{1} y &= 0 \\
\tag{2} y^{\prime } &= 0 \\
\end{align*}
Now each of the above equations is solved in
turn.
Solving equation (1)
Solving for \(y\) from
\begin{align*} y = 0 \end{align*}
Solving gives \(y = 0\)
Solving equation (2)
Solved as first order quadrature ode
Time used: 0.013 (sec)
Since the ode has the form \(y^{\prime }=f(x)\) , then we only need to integrate \(f(x)\) .
\begin{align*} \int {dy} &= \int {0\, dx} + c_1 \\ y &= c_1 \end{align*}
Figure 2.58: Slope field plot
\(y^{\prime } = 0\)
Summary of solutions found
\begin{align*}
y &= c_1 \\
\end{align*}
Solved as first order homogeneous class D2 ode
Time used: 0.154 (sec)
Applying change of variables \(y = u \left (x \right ) x\) , then the ode becomes
\begin{align*} u^{\prime }\left (x \right ) x +u \left (x \right ) = 0 \end{align*}
Which is now solved The ode \(u^{\prime }\left (x \right ) = -\frac {u \left (x \right )}{x}\) is separable as it can be written as
\begin{align*} u^{\prime }\left (x \right )&= -\frac {u \left (x \right )}{x}\\ &= f(x) g(u) \end{align*}
Where
\begin{align*} f(x) &= -\frac {1}{x}\\ g(u) &= u \end{align*}
Integrating gives
\begin{align*} \int { \frac {1}{g(u)} \,du} &= \int { f(x) \,dx}\\ \int { \frac {1}{u}\,du} &= \int { -\frac {1}{x} \,dx}\\ \ln \left (u \left (x \right )\right )&=\ln \left (\frac {1}{x}\right )+c_1 \end{align*}
We now need to find the singular solutions, these are found by finding for what values \(g(u)\) is
zero, since we had to divide by this above. Solving \(g(u)=0\) or \(u=0\) for \(u \left (x \right )\) gives
\begin{align*} u \left (x \right )&=0 \end{align*}
Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be
used.
Therefore the solutions found are
\begin{align*} \ln \left (u \left (x \right )\right ) = \ln \left (\frac {1}{x}\right )+c_1\\ u \left (x \right ) = 0 \end{align*}
Solving for \(u \left (x \right )\) gives
\begin{align*}
u \left (x \right ) &= 0 \\
u \left (x \right ) &= \frac {{\mathrm e}^{c_1}}{x} \\
\end{align*}
Converting \(u \left (x \right ) = 0\) back to \(y\) gives
\begin{align*} y = 0 \end{align*}
Converting \(u \left (x \right ) = \frac {{\mathrm e}^{c_1}}{x}\) back to \(y\) gives
\begin{align*} y = {\mathrm e}^{c_1} \end{align*}
Figure 2.59: Slope field plot
\(y^{\prime } = 0\)
Summary of solutions found
\begin{align*}
y &= 0 \\
y &= {\mathrm e}^{c_1} \\
\end{align*}
Solved as first order ode of type differential
Time used: 0.009 (sec)
Writing the ode as
\begin{align*} y^{\prime }&=0\tag {1} \end{align*}
Which becomes
\begin{align*} \left (1\right ) dy &= \left (0\right ) dx\tag {2} \end{align*}
But the RHS is complete differential because
\begin{align*} \left (0\right ) dx &= d\left (0\right ) \end{align*}
Hence (2) becomes
\begin{align*} \left (1\right ) dy &= d\left (0\right ) \end{align*}
Integrating gives
\begin{align*} y = c_1 \end{align*}
Figure 2.60: Slope field plot
\(y^{\prime } = 0\)
Summary of solutions found
\begin{align*}
y &= c_1 \\
\end{align*}
Maple step by step solution
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & y \left (x \right ) \left (\frac {d}{d x}y \left (x \right )\right )=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & \frac {d}{d x}y \left (x \right ) \\ \bullet & {} & \textrm {Separate variables}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y \left (x \right )=0 \\ \bullet & {} & \textrm {Integrate both sides with respect to}\hspace {3pt} x \\ {} & {} & \int \left (\frac {d}{d x}y \left (x \right )\right )d x =\int 0d x +\mathit {C1} \\ \bullet & {} & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & y \left (x \right )=\mathit {C1} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} y \left (x \right ) \\ {} & {} & y \left (x \right )=\mathit {C1} \end {array} \]
Maple trace
` Classification methods on request
Methods to be used are: [exact]
----------------------------
* Tackling ODE using method: exact
--- Trying classification methods ---
trying exact
<- exact successful `
Maple dsolve solution
Solving time : 0.003
(sec)
Leaf size : 11
dsolve ( y ( x )* diff ( y ( x ), x ) = 0,
y(x),singsol=all)
\begin{align*}
y &= 0 \\
y &= -c_{1} \\
\end{align*}
Mathematica DSolve solution
Solving time : 0.002
(sec)
Leaf size : 12
DSolve [{ y [ x ]* D [ y [ x ], x ]==0,{}},
y[x],x,IncludeSingularSolutions-> True ]
\begin{align*}
y(x)\to 0 \\
y(x)\to c_1 \\
\end{align*}