2.2.186 Problems 18501 to 18600

Table 2.373: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

18501

\[ {}x y^{2} \left ({y^{\prime }}^{2}+2\right ) = 2 y^{\prime } y^{3}+x^{3} \]

[_separable]

16.443

18502

\[ {}y = -x y^{\prime }+x^{4} {y^{\prime }}^{2} \]

[[_homogeneous, ‘class G‘], _rational]

3.773

18503

\[ {}{y^{\prime }}^{2}-9 y^{\prime }+18 = 0 \]

[_quadrature]

1.114

18504

\[ {}a y {y^{\prime }}^{2}+\left (2 x -b \right ) y^{\prime }-y = 0 \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

1.628

18505

\[ {}\left (-y+x y^{\prime }\right )^{2} = a \left (1+{y^{\prime }}^{2}\right ) \left (y^{2}+x^{2}\right )^{{3}/{2}} \]

[[_1st_order, _with_linear_symmetries]]

100.286

18506

\[ {}\left (-y+x y^{\prime }\right )^{2} = {y^{\prime }}^{2}-\frac {2 y y^{\prime }}{x}+1 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

23.296

18507

\[ {}3 y^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+4 y^{2}-x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

6.244

18508

\[ {}\left (y^{2}+x^{2}\right ) \left (1+y^{\prime }\right )^{2}-2 \left (x +y\right ) \left (1+y^{\prime }\right ) \left (x +y y^{\prime }\right )+\left (x +y y^{\prime }\right )^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10.158

18509

\[ {}\left (y y^{\prime }+n x \right )^{2} = \left (y^{2}+n \,x^{2}\right ) \left (1+{y^{\prime }}^{2}\right ) \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5.658

18510

\[ {}y^{2} \left (1-{y^{\prime }}^{2}\right ) = b \]

[_quadrature]

72.718

18511

\[ {}\left (-y+x y^{\prime }\right ) \left (x +y y^{\prime }\right ) = h^{2} y^{\prime } \]

[_rational]

123.604

18512

\[ {}{y^{\prime }}^{2}+2 y^{\prime } y \cot \left (x \right ) = y^{2} \]

[_separable]

1.825

18513

\[ {}\left ({y^{\prime }}^{2}-\frac {1}{a^{2}-x^{2}}\right ) \left (y^{\prime }-\sqrt {\frac {y}{x}}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

251.550

18514

\[ {}x +\frac {y^{\prime }}{\sqrt {1+{y^{\prime }}^{2}}} = a \]

[_quadrature]

0.886

18515

\[ {}x y {y^{\prime }}^{2}+y^{\prime } \left (3 x^{2}-2 y^{2}\right )-6 x y = 0 \]

[_separable]

8.223

18516

\[ {}{y^{\prime }}^{3}-4 x y y^{\prime }+8 y^{2} = 0 \]

[[_1st_order, _with_linear_symmetries]]

507.285

18517

\[ {}{y^{\prime }}^{3}-\left (y^{2}+x y+x^{2}\right ) {y^{\prime }}^{2}+\left (x^{3} y+y^{2} x^{2}+x y^{3}\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

2.549

18518

\[ {}{y^{\prime }}^{3}+m {y^{\prime }}^{2} = a \left (y+m x \right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

30.802

18519

\[ {}{\mathrm e}^{3 x} \left (y^{\prime }-1\right )+{y^{\prime }}^{3} {\mathrm e}^{2 y} = 0 \]

unknown

31.026

18520

\[ {}\left (1-y^{2}+\frac {y^{4}}{x^{2}}\right ) {y^{\prime }}^{2}-\frac {2 y y^{\prime }}{x}+\frac {y^{2}}{x^{2}} = 0 \]

[‘y=_G(x,y’)‘]

16.648

18521

\[ {}y-\frac {1}{\sqrt {1+{y^{\prime }}^{2}}} = b \]

[_quadrature]

32.873

18522

\[ {}y = x y^{\prime }+\frac {m}{y^{\prime }} \]

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

0.542

18523

\[ {}y = 2 x y^{\prime }+y^{2} {y^{\prime }}^{3} \]

[[_1st_order, _with_linear_symmetries]]

106.908

18524

\[ {}y = x y^{\prime }+a \sqrt {1+{y^{\prime }}^{2}} \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

9.283

18525

\[ {}{y^{\prime }}^{2}+x y^{\prime }-y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.387

18526

\[ {}y^{\prime } \sqrt {x} = \sqrt {y} \]

[_separable]

34.188

18527

\[ {}x^{2} {y^{\prime }}^{2}-3 x y y^{\prime }+2 y^{2}+x^{3} = 0 \]

[[_homogeneous, ‘class G‘], _rational]

76.680

18528

\[ {}\left (1+y^{\prime }\right )^{3} = \frac {7 \left (x +y\right ) \left (1-y^{\prime }\right )^{3}}{4 a} \]

[[_homogeneous, ‘class C‘], _dAlembert]

34.905

18529

\[ {}y^{2} \left (1+{y^{\prime }}^{2}\right ) = r^{2} \]

[_quadrature]

424.807

18530

\[ {}x {y^{\prime }}^{2}-\left (x -a \right )^{2} = 0 \]

[_quadrature]

0.460

18531

\[ {}{y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.560

18532

\[ {}a {y^{\prime }}^{3} = 27 y \]

[_quadrature]

3.963

18533

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+a x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3.621

18534

\[ {}x^{3} {y^{\prime }}^{2}+x^{2} y y^{\prime }+a^{3} = 0 \]

[[_homogeneous, ‘class G‘]]

24.017

18535

\[ {}y^{2}-2 x y y^{\prime }+{y^{\prime }}^{2} \left (x^{2}-1\right ) = m^{2} \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.803

18536

\[ {}y = x y^{\prime }+\sqrt {b^{2}+a^{2} y^{\prime }} \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

3.877

18537

\[ {}y = x y^{\prime }-{y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.500

18538

\[ {}4 {y^{\prime }}^{2} = 9 x \]

[_quadrature]

0.419

18539

\[ {}4 x \left (x -1\right ) \left (-2+x \right ) {y^{\prime }}^{2}-\left (3 x^{2}-6 x +2\right )^{2} = 0 \]

[_quadrature]

0.435

18540

\[ {}\left (8 {y^{\prime }}^{3}-27\right ) x = 12 {y^{\prime }}^{2} y \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

1.046

18541

\[ {}{y^{\prime }}^{2} \left (-a^{2}+x^{2}\right )-2 x y y^{\prime }+y^{2}-b^{2} = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

6.636

18542

\[ {}\left (-y+x y^{\prime }\right ) \left (x -y y^{\prime }\right ) = 2 y^{\prime } \]

[_rational]

92.792

18543

\[ {}y^{\prime \prime }+3 y^{\prime }-54 y = 0 \]

[[_2nd_order, _missing_x]]

0.780

18544

\[ {}y^{\prime \prime }-m^{2} y = 0 \]

[[_2nd_order, _missing_x]]

13.832

18545

\[ {}2 y^{\prime \prime }+5 y^{\prime }-12 y = 0 \]

[[_2nd_order, _missing_x]]

0.638

18546

\[ {}9 y^{\prime \prime }+18 y^{\prime }-16 y = 0 \]

[[_2nd_order, _missing_x]]

0.621

18547

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y = 0 \]

[[_3rd_order, _missing_x]]

0.134

18548

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-9 y^{\prime \prime }-11 y^{\prime }-4 y = 0 \]

[[_high_order, _missing_x]]

0.115

18549

\[ {}y^{\prime \prime }+8 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

2.322

18550

\[ {}y^{\prime \prime \prime \prime }-m^{2} y = 0 \]

[[_high_order, _missing_x]]

0.098

18551

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+8 y^{\prime \prime }-8 y^{\prime }+4 y = 0 \]

[[_high_order, _missing_x]]

0.069

18552

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = {\mathrm e}^{4 x} \]

[[_2nd_order, _with_linear_symmetries]]

0.630

18553

\[ {}y^{\prime \prime }-y = 2+5 x \]

[[_2nd_order, _with_linear_symmetries]]

0.651

18554

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 2 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

0.631

18555

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-8 y^{\prime }+12 y = X \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.375

18556

\[ {}y^{\prime \prime \prime }+y = 3+{\mathrm e}^{-x}+5 \,{\mathrm e}^{2 x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.145

18557

\[ {}y^{\prime \prime \prime }-y = \left (1+{\mathrm e}^{x}\right )^{2} \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.269

18558

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 3 \,{\mathrm e}^{\frac {5 x}{2}} \]

[[_2nd_order, _with_linear_symmetries]]

0.760

18559

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime } = x^{2} \]

[[_3rd_order, _missing_y]]

0.117

18560

\[ {}y^{\prime \prime \prime }+8 y = x^{4}+2 x +1 \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.135

18561

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = \cos \left (2 x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.102

18562

\[ {}y^{\prime \prime }+a^{2} y = \cos \left (a x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.764

18563

\[ {}y^{\prime \prime }-4 y = 2 \sin \left (\frac {x}{2}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.138

18564

\[ {}y^{\prime \prime \prime }+y = \sin \left (3 x \right )-\cos \left (\frac {x}{2}\right )^{2} \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.355

18565

\[ {}y^{\prime \prime \prime \prime }+y = x \,{\mathrm e}^{2 x} \]

[[_high_order, _linear, _nonhomogeneous]]

0.222

18566

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{2 x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.231

18567

\[ {}y^{\prime \prime }+2 y = x^{2} {\mathrm e}^{3 x}+{\mathrm e}^{x} \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

11.739

18568

\[ {}y^{\prime \prime }+4 y = x \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.492

18569

\[ {}y^{\prime \prime }-y = x^{2} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.193

18570

\[ {}y^{\prime \prime \prime \prime }+4 y = 0 \]

[[_high_order, _missing_x]]

0.163

18571

\[ {}y^{\left (5\right )}-13 y^{\prime \prime \prime }+26 y^{\prime \prime }+82 y^{\prime }+104 y = 0 \]

[[_high_order, _missing_x]]

0.139

18572

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }+y^{\prime } = {\mathrm e}^{2 x}+x^{2}+x \]

[[_3rd_order, _missing_y]]

0.152

18573

\[ {}y^{\prime \prime }+4 y = \sin \left (3 x \right )+{\mathrm e}^{x}+x^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6.207

18574

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = x +{\mathrm e}^{m x} \]

[[_2nd_order, _with_linear_symmetries]]

0.829

18575

\[ {}y^{\prime \prime }-a^{2} y = {\mathrm e}^{a x}+{\mathrm e}^{n x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

4.194

18576

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }-6 y^{\prime }+8 y = x \]

[[_3rd_order, _with_linear_symmetries]]

0.092

18577

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+y^{\prime \prime } = x^{2} \left (b x +a \right ) \]

[[_high_order, _missing_y]]

0.126

18578

\[ {}y^{\prime \prime \prime }-13 y^{\prime }+12 y = x \]

[[_3rd_order, _with_linear_symmetries]]

0.086

18579

\[ {}y^{\prime \prime \prime \prime }+2 n^{2} y^{\prime \prime }+n^{4} y = \cos \left (m x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

0.148

18580

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = x^{2} \cos \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

0.964

18581

\[ {}y^{\prime \prime }+a^{2} y = \sec \left (a x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.142

18582

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x^{2} {\mathrm e}^{3 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.316

18583

\[ {}y^{\prime \prime }+n^{2} y = x^{4} {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

17.934

18584

\[ {}y^{\prime \prime \prime \prime }-a^{4} y = x^{4} \]

[[_high_order, _linear, _nonhomogeneous]]

0.122

18585

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+y^{\prime \prime } = x \]

[[_high_order, _missing_y]]

0.243

18586

\[ {}y^{\prime \prime \prime \prime }-y = {\mathrm e}^{x} \cos \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

0.105

18587

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

96.143

18588

\[ {}y^{\prime \prime \prime }-7 y^{\prime }-6 y = {\mathrm e}^{2 x} \left (x +1\right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.111

18589

\[ {}y^{\prime \prime }-2 y^{\prime }+4 y = {\mathrm e}^{x} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

391.687

18590

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = {\mathrm e}^{-x} \]

[[_3rd_order, _with_linear_symmetries]]

0.797

18591

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }+4 y = {\mathrm e}^{x} x^{2} \]

[[_high_order, _linear, _nonhomogeneous]]

0.218

18592

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = x \,{\mathrm e}^{x}+{\mathrm e}^{x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.207

18593

\[ {}y^{\prime \prime }-y = x \sin \left (x \right )+\left (x^{2}+1\right ) {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

190.173

18594

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = {\mathrm e}^{x} \cos \left (2 x \right )+\cos \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

160.967

18595

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y = {\mathrm e}^{x}+\cos \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.349

18596

\[ {}y^{\prime \prime }-9 y^{\prime }+20 y = 20 x \]

[[_2nd_order, _with_linear_symmetries]]

153.252

18597

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y = {\mathrm e}^{3 x} \]

[[_3rd_order, _with_linear_symmetries]]

0.151

18598

\[ {}y^{\prime \prime \prime }+y = {\mathrm e}^{2 x} \sin \left (x \right )+{\mathrm e}^{\frac {x}{2}} \sin \left (\frac {\sqrt {3}\, x}{2}\right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

4.046

18599

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 2 \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

2.095

18600

\[ {}x^{2} y^{\prime \prime }+y = 3 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

3.079