2.2.186 Problems 18501 to 18600

Table 2.373: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

18501

\[ {}\sqrt {-u^{2}+1}\, v^{\prime } = 2 u \sqrt {1-v^{2}} \]

[_separable]

2.171

18502

\[ {}\sqrt {1+v^{\prime }} = \frac {{\mathrm e}^{u}}{2} \]

[_quadrature]

0.478

18503

\[ {}\frac {y^{\prime }}{x} = y \sin \left (x^{2}-1\right )-\frac {2 y}{\sqrt {x}} \]

[_separable]

2.272

18504

\[ {}y^{\prime } = 1+\frac {2 y}{x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.403

18505

\[ {}v^{\prime }+2 u v = 2 u \]

[_separable]

1.081

18506

\[ {}1+v^{2}+\left (u^{2}+1\right ) v v^{\prime } = 0 \]

[_separable]

2.794

18507

\[ {}u \ln \left (u \right ) v^{\prime }+\sin \left (v\right )^{2} = 1 \]

[_separable]

2.445

18508

\[ {}4 y {y^{\prime }}^{3}-2 x^{2} {y^{\prime }}^{2}+4 x y^{\prime } y+x^{3} = 16 y^{2} \]

[[_1st_order, _with_linear_symmetries]]

120.153

18509

\[ {}\theta ^{\prime \prime }-p^{2} \theta = 0 \]

[[_2nd_order, _missing_x]]

1.634

18510

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

1.466

18511

\[ {}y^{\prime \prime }+12 y = 7 y^{\prime } \]

[[_2nd_order, _missing_x]]

0.342

18512

\[ {}r^{\prime \prime }-a^{2} r = 0 \]

[[_2nd_order, _missing_x]]

1.564

18513

\[ {}y^{\prime \prime \prime \prime }-a^{4} y = 0 \]

[[_high_order, _missing_x]]

0.095

18514

\[ {}v^{\prime \prime }-6 v^{\prime }+13 v = {\mathrm e}^{-2 u} \]

[[_2nd_order, _with_linear_symmetries]]

0.666

18515

\[ {}y^{\prime \prime }+4 y^{\prime }-y = \sin \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.624

18516

\[ {}y^{\prime \prime }+3 y = \sin \left (x \right )+\frac {\sin \left (3 x \right )}{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.188

18517

\[ {}5 x^{\prime }+x = \sin \left (3 t \right ) \]

[[_linear, ‘class A‘]]

1.637

18518

\[ {}x^{\prime \prime \prime \prime }-6 x^{\prime \prime \prime }+11 x^{\prime \prime }-6 x^{\prime } = {\mathrm e}^{-3 t} \]

[[_high_order, _missing_y]]

0.150

18519

\[ {}x^{4} y^{\prime \prime \prime \prime }+x^{3} y^{\prime \prime \prime }-20 x^{2} y^{\prime \prime }+20 y^{\prime } x = 17 x^{6} \]

[[_high_order, _missing_y]]

0.370

18520

\[ {}t^{4} x^{\prime \prime \prime \prime }-2 t^{3} x^{\prime \prime \prime }-20 t^{2} x^{\prime \prime }+12 x^{\prime } t +16 x = \cos \left (3 \ln \left (t \right )\right ) \]

[[_high_order, _exact, _linear, _nonhomogeneous]]

0.823

18521

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = 0 \]

[[_3rd_order, _missing_x]]

0.075

18522

\[ {}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime } = {\mathrm e}^{2 x} \]

[[_high_order, _missing_y]]

0.149

18523

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = \cos \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.607

18524

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +y = \frac {1}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.579

18525

\[ {}y^{\prime \prime } = c \left (1+{y^{\prime }}^{2}\right ) \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

1.437

18526

\[ {}y^{\prime \prime } = c \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

[[_2nd_order, _missing_x]]

3.002

18527

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.199

18528

\[ {}y^{\prime \prime } = -m^{2} y \]

[[_2nd_order, _missing_x]]

1.358

18529

\[ {}1+{y^{\prime }}^{2}+\frac {m y^{\prime \prime }}{\sqrt {1+{y^{\prime }}^{2}}} = 0 \]

[[_2nd_order, _missing_x]]

2.557

18530

\[ {}y = y^{\prime } x +y^{\prime }-{y^{\prime }}^{3} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.538

18531

\[ {}x y^{\prime \prime }+2 y^{\prime } = x y \]

[[_2nd_order, _with_linear_symmetries]]

0.511

18532

\[ {}y-2 y^{\prime } x -y {y^{\prime }}^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.234

18533

\[ {}y^{\prime }+\frac {x y}{x^{2}+1} = \frac {1}{x \left (x^{2}+1\right )} \]

[_linear]

1.207

18534

\[ {}y^{\prime \prime \prime }+\frac {3 y^{\prime \prime }}{x} = 0 \]

[[_3rd_order, _missing_y]]

0.697

18535

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +5 y = \frac {1}{x} \]

[[_2nd_order, _with_linear_symmetries]]

1.547

18536

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 2 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

0.510

18537

\[ {}v^{\prime \prime }+\frac {2 v^{\prime }}{r} = 0 \]

[[_2nd_order, _missing_y]]

0.535

18538

\[ {}y^{\prime \prime }-2 y y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.980

18539

\[ {}y^{\prime \prime }-{y^{\prime }}^{2}-y {y^{\prime }}^{3} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.636

18540

\[ {}\left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} = r y^{\prime \prime } \]

[[_2nd_order, _missing_x]]

2.459

18541

\[ {}y^{\prime \prime \prime } y^{\prime }-3 {y^{\prime \prime }}^{2}+3 y^{\prime \prime } {y^{\prime }}^{2}-2 {y^{\prime }}^{4}-x {y^{\prime }}^{5} = 0 \]

[[_3rd_order, _missing_y], [_3rd_order, _with_exponential_symmetries], [_3rd_order, _with_linear_symmetries]]

0.316

18542

\[ {}\left (1+y^{2}\right ) y^{\prime \prime }-2 y {y^{\prime }}^{2}-2 \left (1+y^{2}\right ) y^{\prime } = y^{2} \left (1+y^{2}\right ) \]

[[_2nd_order, _missing_x]]

3.732

18543

\[ {}y^{2} y^{\prime \prime \prime }-\left (3 y y^{\prime }+2 x y^{2}\right ) y^{\prime \prime }+\left (2 {y^{\prime }}^{2}+2 x y^{\prime } y+3 x^{2} y^{2}\right ) y^{\prime }+x^{3} y^{3} = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.092

18544

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.896

18545

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

0.619

18546

\[ {}x^{3} v^{\prime \prime \prime }+2 x^{2} v^{\prime \prime }+v = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.201

18547

\[ {}v^{\prime \prime }+\frac {2 x v^{\prime }}{x^{2}+1}+\frac {v}{\left (x^{2}+1\right )^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.740

18548

\[ {}y^{\prime }+\frac {y}{x} = -x^{2}+1 \]

[_linear]

0.997

18549

\[ {}y^{\prime }+\cot \left (x \right ) y = \csc \left (x \right )^{2} \]

[_linear]

1.780

18550

\[ {}y^{\prime } = x -y \]

[[_linear, ‘class A‘]]

0.972

18551

\[ {}\left (x^{2}+1\right ) y^{\prime }+x^{2} y = x^{3}-x^{2} \arctan \left (x \right ) \]

[_linear]

3.604

18552

\[ {}y^{\prime }+\frac {x y}{x^{2}+1} = \frac {1}{x \left (x^{2}+1\right )} \]

[_linear]

1.255

18553

\[ {}x \left (-x^{2}+1\right ) y^{\prime }+\left (x^{2}-1\right ) y = x^{3} \]

[_linear]

1.178

18554

\[ {}y^{\prime }+\cos \left (x \right ) y = \frac {\sin \left (2 x \right )}{2} \]

[_linear]

2.304

18555

\[ {}x \left (-x^{2}+1\right ) y^{\prime }+\left (2 x^{2}-1\right ) y = a \,x^{3} \]

[_linear]

1.312

18556

\[ {}y^{\prime }+y \sin \left (x \right ) = \sin \left (x \right ) y^{2} \]

[_separable]

2.672

18557

\[ {}\left (-x^{2}+1\right ) y^{\prime }-x y = a x y^{2} \]

[_separable]

3.088

18558

\[ {}y^{\prime }+\cos \left (x \right ) y = y^{n} \sin \left (2 x \right ) \]

[_Bernoulli]

5.205

18559

\[ {}3 y^{2} y^{\prime }+y^{3} = x -1 \]

[_rational, _Bernoulli]

2.093

18560

\[ {}y^{\prime }-y \tan \left (x \right ) = y^{4} \sec \left (x \right ) \]

[_Bernoulli]

2.767

18561

\[ {}y \sqrt {x^{2}-1}+x \sqrt {-1+y^{2}}\, y^{\prime } = 0 \]

[_separable]

2.397

18562

\[ {}\left (1+{\mathrm e}^{y}\right ) \cos \left (x \right )+{\mathrm e}^{y} \sin \left (x \right ) y^{\prime } = 0 \]

[_separable]

2.143

18563

\[ {}\sqrt {2 a y-y^{2}}\, \csc \left (x \right )+y \tan \left (x \right ) y^{\prime } = 0 \]

[_separable]

7.096

18564

\[ {}y \left (3+y\right ) y^{\prime } = x \left (3+2 y\right ) \]

[_separable]

2.276

18565

\[ {}x^{3}-3 x^{2} y+5 x y^{2}-7 y^{3}+\left (y^{4}+2 y^{2}-x^{3}+5 x^{2} y-21 x y^{2}\right ) y^{\prime } = 0 \]

[_exact, _rational]

1.673

18566

\[ {}x^{3}+4 x y+y^{2}+\left (2 x^{2}+2 x y+4 y^{3}\right ) y^{\prime } = 0 \]

[_exact, _rational]

1.638

18567

\[ {}\sin \left (x \right ) \cos \left (y\right )+\cos \left (x \right ) \sin \left (y\right ) y^{\prime } = 0 \]

[_separable]

2.731

18568

\[ {}x^{2}+\ln \left (y\right )+\frac {x y^{\prime }}{y} = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

2.502

18569

\[ {}x \left (x -2 y\right ) y^{\prime }+x^{2}+2 y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

77.716

18570

\[ {}5 x y^{\prime } y-x^{2}-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4.741

18571

\[ {}\left (x^{2}+3 x y-y^{2}\right ) y^{\prime }-3 y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4.899

18572

\[ {}\left (x^{2}+2 x y\right ) y^{\prime }-3 x^{2}+2 x y-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7.769

18573

\[ {}5 x y^{\prime } y-4 x^{2}-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

198.014

18574

\[ {}\left (x^{2}-2 x y\right ) y^{\prime }+x^{2}-3 x y+2 y^{2} = 0 \]

[_linear]

1.445

18575

\[ {}3 x^{2} y^{\prime }+2 x^{2}-3 y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

2.189

18576

\[ {}\left (3 x +2 y-7\right ) y^{\prime } = 2 x -3 y+6 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.107

18577

\[ {}\left (6 x -5 y+4\right ) y^{\prime } = 1+2 x -y \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

8.041

18578

\[ {}\left (5 x -2 y+7\right ) y^{\prime } = x -3 y+2 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

11.720

18579

\[ {}\left (x -3 y+4\right ) y^{\prime } = 5 x -7 y \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7.970

18580

\[ {}\left (x -3 y+4\right ) y^{\prime } = 2 x -6 y+7 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.039

18581

\[ {}\left (5 x -2 y+7\right ) y^{\prime } = 10 x -4 y+6 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.116

18582

\[ {}\left (2 x -2 y+5\right ) y^{\prime } = x -y+3 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.003

18583

\[ {}\left (6 x -4 y+1\right ) y^{\prime } = 3 x -2 y+1 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.047

18584

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

0.323

18585

\[ {}y^{\prime \prime }+2 y^{\prime }-2 y = 0 \]

[[_2nd_order, _missing_x]]

0.402

18586

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

0.074

18587

\[ {}2 y^{\prime \prime \prime }+y^{\prime \prime }-4 y^{\prime }-3 y = 0 \]

[[_3rd_order, _missing_x]]

0.085

18588

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0 \]

[[_3rd_order, _missing_x]]

0.072

18589

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+y^{\prime }-5 y = 0 \]

[[_3rd_order, _missing_x]]

0.092

18590

\[ {}2 y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime }+2 y = 0 \]

[[_3rd_order, _missing_x]]

0.089

18591

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]

[[_high_order, _missing_x]]

0.090

18592

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 0 \]

[[_high_order, _missing_x]]

0.101

18593

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 2 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

0.420

18594

\[ {}y^{\prime \prime \prime }+4 y^{\prime \prime }+3 y^{\prime } = x^{2} \]

[[_3rd_order, _missing_y]]

0.133

18595

\[ {}y^{\prime \prime }-4 y^{\prime }+2 y = x \]

[[_2nd_order, _with_linear_symmetries]]

0.562

18596

\[ {}y^{\prime \prime }+3 y^{\prime }-y = {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

0.560

18597

\[ {}y^{\prime \prime \prime }+5 y^{\prime \prime }+6 y^{\prime } = x \]

[[_3rd_order, _missing_y]]

0.137

18598

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = x \]

[[_3rd_order, _with_linear_symmetries]]

0.141

18599

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

0.559

18600

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x \]

[[_2nd_order, _with_linear_symmetries]]

0.480