2.7.5 Problem 5

2.7.5.1 Solved as higher order constant coeff ode
2.7.5.2 Maple
2.7.5.3 Mathematica
2.7.5.4 Sympy

Internal problem ID [19754]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First Edition (1929)
Section : Chapter VII. Linear equations of order higher than the first. section 56. Problems at page 163
Problem number : 5
Date solved : Thursday, December 11, 2025 at 01:54:21 PM
CAS classification : [[_high_order, _missing_x]]

Entering higher order ode solver

\begin{align*} y^{\prime \prime \prime \prime }-a^{4} y&=0 \\ \end{align*}
2.7.5.1 Solved as higher order constant coeff ode

0.033 (sec)

The characteristic equation is

\[ -a^{4}+\lambda ^{4} = 0 \]
The roots of the above equation are
\begin{align*} \lambda _1 &= a\\ \lambda _2 &= -a\\ \lambda _3 &= i a\\ \lambda _4 &= -i a \end{align*}

Therefore the homogeneous solution is

\[ y_h(x)={\mathrm e}^{a x} c_1 +{\mathrm e}^{i a x} c_2 +{\mathrm e}^{-a x} c_3 +{\mathrm e}^{-i a x} c_4 \]
The fundamental set of solutions for the homogeneous solution are the following
\begin{align*} y_1 &= {\mathrm e}^{a x}\\ y_2 &= {\mathrm e}^{i a x}\\ y_3 &= {\mathrm e}^{-a x}\\ y_4 &= {\mathrm e}^{-i a x} \end{align*}
2.7.5.2 Maple. Time used: 0.004 (sec). Leaf size: 30
ode:=diff(diff(diff(diff(y(x),x),x),x),x)-a^4*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \,{\mathrm e}^{-a x}+c_2 \,{\mathrm e}^{a x}+c_3 \sin \left (a x \right )+c_4 \cos \left (a x \right ) \]

Maple trace

Methods for high order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
<- constant coefficients successful
 
2.7.5.3 Mathematica. Time used: 0.002 (sec). Leaf size: 53
ode=D[y[x],{x,4}]-a^2*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_2 e^{-\sqrt {a} x}+c_4 e^{\sqrt {a} x}+c_1 \cos \left (\sqrt {a} x\right )+c_3 \sin \left (\sqrt {a} x\right ) \end{align*}
2.7.5.4 Sympy. Time used: 0.076 (sec). Leaf size: 32
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(-a**4*y(x) + Derivative(y(x), (x, 4)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- a x} + C_{2} e^{a x} + C_{3} e^{- i a x} + C_{4} e^{i a x} \]