2.2.187 Problems 18601 to 18700

Table 2.375: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

18601

\[ {}y^{\prime \prime }+y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.757

18602

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-4 y^{\prime }-4 y = x \]

[[_3rd_order, _with_linear_symmetries]]

0.138

18603

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.662

18604

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = \cos \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.701

18605

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = {\mathrm e}^{x} \]

[[_3rd_order, _with_linear_symmetries]]

0.152

18606

\[ {}y^{\prime \prime \prime \prime }-y = x^{4} \]

[[_high_order, _linear, _nonhomogeneous]]

0.150

18607

\[ {}e y^{\prime \prime } = \frac {P \left (\frac {L}{2}-x \right )}{2} \]

[[_2nd_order, _quadrature]]

1.037

18608

\[ {}e y^{\prime \prime } = \frac {w \left (\frac {L^{2}}{4}-x^{2}\right )}{2} \]

[[_2nd_order, _quadrature]]

1.047

18609

\[ {}e y^{\prime \prime } = -\frac {\left (w L +P \right ) x}{2}-\frac {w \,x^{2}}{2} \]

[[_2nd_order, _quadrature]]

1.069

18610

\[ {}e y^{\prime \prime } = -P \left (L -x \right ) \]

[[_2nd_order, _quadrature]]

1.056

18611

\[ {}e y^{\prime \prime } = -P L +\left (w L +P \right ) x -\frac {w \left (L^{2}+x^{2}\right )}{2} \]

[[_2nd_order, _quadrature]]

1.174

18612

\[ {}e y^{\prime \prime } = P \left (-y+a \right ) \]

[[_2nd_order, _missing_x]]

3.091

18613

\[ {}x^{3} y^{\prime \prime \prime }+7 x^{2} y^{\prime \prime }+8 y^{\prime } x = \ln \left (x \right )^{2} \]

[[_3rd_order, _missing_y]]

0.354

18614

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x -8 y = x \]

[[_2nd_order, _with_linear_symmetries]]

0.991

18615

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y = x^{3} \]

[[_3rd_order, _with_linear_symmetries]]

0.284

18616

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 y^{\prime } x +4 y = \ln \left (x \right ) \]

[[_3rd_order, _with_linear_symmetries]]

0.271

18617

\[ {}x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

0.148

18618

\[ {}x y^{\prime \prime }+2 y^{\prime } = 2 x \]

[[_2nd_order, _missing_y]]

0.797

18619

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

1.488

18620

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y = 2 x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.028

18621

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y = x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.915

18622

\[ {}y^{\prime \prime }-\cot \left (x \right ) y^{\prime }+y \csc \left (x \right )^{2} = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.067

18623

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }+\left (3 x -2\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.978

18624

\[ {}\left (3 x^{2}+x \right ) y^{\prime \prime }+2 \left (1+6 x \right ) y^{\prime }+6 y = \sin \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.398

18625

\[ {}\left (x^{3}+x^{2}-3 x +1\right ) y^{\prime \prime \prime }+\left (9 x^{2}+6 x -9\right ) y^{\prime \prime }+\left (18 x +6\right ) y^{\prime }+6 y = x^{3} \]

[[_3rd_order, _fully, _exact, _linear]]

1.200

18626

\[ {}x^{2} y^{\prime \prime \prime }+5 x y^{\prime \prime }+4 y^{\prime } = -\frac {1}{x^{2}} \]

[[_3rd_order, _missing_y]]

0.271

18627

\[ {}y^{\prime \prime } = \cos \left (x \right ) \]

[[_2nd_order, _quadrature]]

0.878

18628

\[ {}x^{2} y^{\prime \prime } = \ln \left (x \right ) \]

[[_2nd_order, _quadrature]]

0.513

18629

\[ {}y^{\prime \prime } = -a^{2} y \]

[[_2nd_order, _missing_x]]

1.424

18630

\[ {}y^{\prime \prime } = \frac {1}{y^{2}} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

77.857

18631

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.491

18632

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.571

18633

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-1-{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.709

18634

\[ {}x y^{\prime \prime }+3 y^{\prime } = 3 x \]

[[_2nd_order, _missing_y]]

1.036

18635

\[ {}x = y^{\prime \prime }+y^{\prime } \]

[[_2nd_order, _missing_y]]

0.988

18636

\[ {}x = {y^{\prime }}^{2}+y \]

[[_homogeneous, ‘class C‘], _dAlembert]

0.770

18637

\[ {}y = y^{\prime } x -{y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.484

18638

\[ {}V^{\prime \prime }+\frac {2 V^{\prime }}{r} = 0 \]

[[_2nd_order, _missing_y]]

0.535

18639

\[ {}V^{\prime \prime }+\frac {V^{\prime }}{r} = 0 \]

[[_2nd_order, _missing_y]]

0.660

18640

\[ {}\left [\begin {array}{c} z^{\prime }+7 y-3 z=0 \\ 7 y^{\prime }+63 y-36 z=0 \end {array}\right ] \]

system_of_ODEs

0.374

18641

\[ {}\left [\begin {array}{c} z^{\prime }+2 y^{\prime }+3 y=0 \\ y^{\prime }+3 y-2 z=0 \end {array}\right ] \]

system_of_ODEs

0.405

18642

\[ {}\left [\begin {array}{c} y^{\prime }+3 y+z=0 \\ z^{\prime }+3 y+5 z=0 \end {array}\right ] \]

system_of_ODEs

0.313

18643

\[ {}\left [\begin {array}{c} y^{\prime }+3 y+2 z=0 \\ z^{\prime }+2 y-4 z=0 \end {array}\right ] \]

system_of_ODEs

0.545

18644

\[ {}\left [\begin {array}{c} y^{\prime }-3 y-2 z=0 \\ z^{\prime }+y-2 z=0 \end {array}\right ] \]

system_of_ODEs

0.671

18645

\[ {}\left [\begin {array}{c} y^{\prime }+z^{\prime }+6 y=0 \\ z^{\prime }+5 y+z=0 \end {array}\right ] \]

system_of_ODEs

0.464

18646

\[ {}\left [\begin {array}{c} z^{\prime }+y^{\prime }+5 y-3 z=x +{\mathrm e}^{x} \\ y^{\prime }+2 y-z={\mathrm e}^{x} \end {array}\right ] \]

system_of_ODEs

0.918

18647

\[ {}\left [\begin {array}{c} z^{\prime }+y+3 z={\mathrm e}^{x} \\ y^{\prime }+3 y+4 z={\mathrm e}^{2 x} \end {array}\right ] \]

system_of_ODEs

0.931

18648

\[ {}\left [\begin {array}{c} z^{\prime }-3 y+2 z={\mathrm e}^{x} \\ y^{\prime }+2 y-z={\mathrm e}^{3 x} \end {array}\right ] \]

system_of_ODEs

1.231

18649

\[ {}\left [\begin {array}{c} z^{\prime }+5 y-2 z=x \\ y^{\prime }+4 y+z=x \end {array}\right ] \]

system_of_ODEs

2.058

18650

\[ {}\left [\begin {array}{c} z^{\prime }+7 y-9 z={\mathrm e}^{x} \\ y^{\prime }-y-3 z={\mathrm e}^{2 x} \end {array}\right ] \]

system_of_ODEs

1.717

18651

\[ {}\left [\begin {array}{c} y^{\prime }-2 y-2 z={\mathrm e}^{3 x} \\ z^{\prime }+5 y-2 z={\mathrm e}^{4 x} \end {array}\right ] \]

system_of_ODEs

1.178

18652

\[ {}{y^{\prime }}^{2}+y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.507

18653

\[ {}y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\frac {2 y}{x^{2}} = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.157

18654

\[ {}v^{\prime \prime }+\frac {2 v^{\prime }}{r} = 0 \]

[[_2nd_order, _missing_y]]

0.526

18655

\[ {}y^{\prime \prime }-k^{2} y = 0 \]

[[_2nd_order, _missing_x]]

1.646

18656

\[ {}\left (1-x \right ) y^{\prime }-1-y = 0 \]

[_separable]

1.574

18657

\[ {}y^{\prime }+\sqrt {\frac {1-y^{2}}{-x^{2}+1}} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

33.732

18658

\[ {}y-y^{\prime } x = a \left (y^{\prime }+y^{2}\right ) \]

[_separable]

1.604

18659

\[ {}3 \,{\mathrm e}^{x} \tan \left (y\right )+\left (1-{\mathrm e}^{x}\right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

[_separable]

3.296

18660

\[ {}x^{2}+y^{2}-2 x y^{\prime } y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7.760

18661

\[ {}y^{2}+\left (x^{2}+x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6.819

18662

\[ {}x^{2} y-\left (x^{3}+y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

142.574

18663

\[ {}\left (3 x +4 y\right ) y^{\prime }+y-2 x = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

88.821

18664

\[ {}3 y-7 x +7+\left (7 y-3 x +3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.176

18665

\[ {}\left (y-3 x +3\right ) y^{\prime } = 2 y-x -4 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

88.627

18666

\[ {}x^{2}-4 x y-2 y^{2}+\left (y^{2}-4 x y-2 x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

4.351

18667

\[ {}x +y y^{\prime }+\frac {y^{\prime } x -y}{x^{2}+y^{2}} = 0 \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

1.526

18668

\[ {}a^{2}-2 x y-y^{2}-\left (x +y\right )^{2} y^{\prime } = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

1.554

18669

\[ {}2 a x +b y+g +\left (2 c y+b x +e \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.551

18670

\[ {}\left (2 x^{2} y+4 x^{3}-12 x y^{2}+3 y^{2}-x \,{\mathrm e}^{y}+{\mathrm e}^{2 x}\right ) y^{\prime }+12 x^{2} y+2 x y^{2}+4 x^{3}-4 y^{3}+2 \,{\mathrm e}^{2 x} y-{\mathrm e}^{y} = 0 \]

[_exact]

3.029

18671

\[ {}y-y^{\prime } x +\ln \left (x \right ) = 0 \]

[_linear]

0.949

18672

\[ {}\left (x y+1\right ) y-x \left (1-x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.898

18673

\[ {}a \left (y^{\prime } x +2 y\right ) = x y^{\prime } y \]

[_separable]

2.292

18674

\[ {}x^{4} {\mathrm e}^{x}-2 m x y^{2}+2 m \,x^{2} y y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _Bernoulli]

2.589

18675

\[ {}y \left ({\mathrm e}^{x}+2 x y\right )-{\mathrm e}^{x} y^{\prime } = 0 \]

[_Bernoulli]

2.289

18676

\[ {}x^{2} y-2 x y^{2}-\left (x^{3}-3 x^{2} y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4.739

18677

\[ {}y \left (x y+2 x^{2} y^{2}\right )+x \left (x y-x^{2} y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.979

18678

\[ {}2 y y^{\prime }+2 x +x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

2.240

18679

\[ {}x^{2}+y^{2}-x^{2} y y^{\prime } = 0 \]

[_rational, _Bernoulli]

1.889

18680

\[ {}3 x^{2} y^{4}+2 x y+\left (2 x^{3} y^{3}-x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

4.904

18681

\[ {}y^{4}+2 y+\left (x y^{3}+2 y^{4}-4 x \right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

2.293

18682

\[ {}y^{3}-2 x^{2} y+\left (2 x y^{2}-x^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

46.452

18683

\[ {}2 x^{2} y-3 y^{4}+\left (3 x^{3}+2 x y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

4.543

18684

\[ {}y^{2}+2 x^{2} y+\left (2 x^{3}-x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2.321

18685

\[ {}y^{\prime } x -a y = x +1 \]

[_linear]

2.171

18686

\[ {}y^{\prime }+y = {\mathrm e}^{-x} \]

[[_linear, ‘class A‘]]

0.911

18687

\[ {}\cos \left (x \right )^{2} y^{\prime }+y = \tan \left (x \right ) \]

[_linear]

4.159

18688

\[ {}\left (x +1\right ) y^{\prime }-n y = {\mathrm e}^{x} \left (x +1\right )^{n +1} \]

[_linear]

1.734

18689

\[ {}\left (x^{2}+1\right ) y^{\prime }+2 x y = 4 x^{2} \]

[_linear]

1.194

18690

\[ {}y^{\prime }+\frac {y}{x} = y^{6} x^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2.280

18691

\[ {}1+y^{2} = \left (\arctan \left (y\right )-x \right ) y^{\prime } \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

8.149

18692

\[ {}y^{\prime }+\frac {2 y}{x} = 3 x^{2} y^{{1}/{3}} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6.424

18693

\[ {}y^{\prime }+\frac {x y}{-x^{2}+1} = x \sqrt {y} \]

[_rational, _Bernoulli]

2.586

18694

\[ {}3 x \left (-x^{2}+1\right ) y^{2} y^{\prime }+\left (2 x^{2}-1\right ) y^{3} = a \,x^{3} \]

[_rational, _Bernoulli]

2.482

18695

\[ {}\left (x +y\right )^{2} y^{\prime } = a^{2} \]

[[_homogeneous, ‘class C‘], _dAlembert]

12.497

18696

\[ {}y^{\prime } x -y = \sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5.200

18697

\[ {}y^{\prime } x -y = x \sqrt {x^{2}+y^{2}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

3.533

18698

\[ {}\sec \left (x \right )^{2} \tan \left (y\right )+\sec \left (y\right )^{2} \tan \left (x \right ) y^{\prime } = 0 \]

[_separable]

39.977

18699

\[ {}y^{2}+x y^{2}+\left (x^{2}-x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

1.906

18700

\[ {}y^{\prime }+\frac {\left (-2 x +1\right ) y}{x^{2}} = 1 \]

[_linear]

1.590