Internal
problem
ID
[19755] Book
:
Elementary
Differential
Equations.
By
Thornton
C.
Fry.
D
Van
Nostrand.
NY.
First
Edition
(1929) Section
:
Chapter
VII.
Linear
equations
of
order
higher
than
the
first.
section
56.
Problems
at
page
163 Problem
number
:
6 Date
solved
:
Thursday, December 11, 2025 at 01:54:24 PM CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
The particular solution is
now found using the method of undetermined coefficients. Looking at the RHS of the
ode, which is
\[ {\mathrm e}^{-2 u} \]
Shows that the corresponding undetermined set of the basis functions
(UC_set) for the trial solution is
\[ [\{{\mathrm e}^{-2 u}\}] \]
While the set of the basis functions for the homogeneous
solution found earlier is
\[ \{{\mathrm e}^{3 u} \cos \left (2 u \right ), {\mathrm e}^{3 u} \sin \left (2 u \right )\} \]
Since there is no duplication between the basis function in
the UC_set and the basis functions of the homogeneous solution, the trial solution
is a linear combination of all the basis in the UC_set.
\[
v_p = A_{1} {\mathrm e}^{-2 u}
\]
The unknowns \(\{A_{1}\}\) are found
by substituting the above trial solution \(v_p\) into the ODE and comparing coefficients.
Substituting the trial solution into the ODE and simplifying gives
\begin{align*} v^{\prime \prime }-6 v^{\prime }+13 v &= 0 \tag {1} \\ A v^{\prime \prime } + B v^{\prime } + C v &= 0 \tag {2} \end{align*}
Comparing (1) and (2) shows that
\begin{align*} A &= 1 \\ B &= -6\tag {3} \\ C &= 13 \end{align*}
Applying the Liouville transformation on the dependent variable gives
\begin{align*} z(u) &= v e^{\int \frac {B}{2 A} \,du} \end{align*}
Then (2) becomes
\begin{align*} z''(u) = r z(u)\tag {4} \end{align*}
Where \(r\) is given by
\begin{align*} r &= \frac {s}{t}\tag {5} \\ &= \frac {2 A B' - 2 B A' + B^2 - 4 A C}{4 A^2} \end{align*}
Substituting the values of \(A,B,C\) from (3) in the above and simplifying gives
\begin{align*} r &= \frac {-4}{1}\tag {6} \end{align*}
Comparing the above to (5) shows that
\begin{align*} s &= -4\\ t &= 1 \end{align*}
Therefore eq. (4) becomes
\begin{align*} z''(u) &= -4 z \left (u \right ) \tag {7} \end{align*}
Equation (7) is now solved. After finding \(z(u)\) then \(v\) is found using the inverse transformation
\begin{align*} v &= z \left (u \right ) e^{-\int \frac {B}{2 A} \,du} \end{align*}
The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases
depending on the order of poles of \(r\) and the order of \(r\) at \(\infty \). The following table summarizes these
cases.
Need to have at least one pole
that is either order \(2\) or odd order
greater than \(2\). Any other pole order
is allowed as long as the above
condition is satisfied. Hence the
following set of pole orders are all
allowed. \(\{1,2\}\),\(\{1,3\}\),\(\{2\}\),\(\{3\}\),\(\{3,4\}\),\(\{1,2,5\}\).
no condition
3
\(\left \{ 1,2\right \} \)
\(\left \{ 2,3,4,5,6,7,\cdots \right \} \)
Table 2.22: Necessary conditions for each Kovacic case
The order of \(r\) at \(\infty \) is the degree of \(t\) minus the degree of \(s\). Therefore
There are no poles in \(r\). Therefore the set of poles \(\Gamma \) is empty. Since there is no odd order pole
larger than \(2\) and the order at \(\infty \) is \(0\) then the necessary conditions for case one are met. Therefore
\begin{align*} L &= [1] \end{align*}
Since \(r = -4\) is not a function of \(u\), then there is no need run Kovacic algorithm to obtain a solution for
transformed ode \(z''=r z\) as one solution is
\[ z_1(u) = \cos \left (2 u \right ) \]
Using the above, the solution for the original ode can now be
found. The first solution to the original ode in \(v\) is found from
Since there is no duplication between the basis function in
the UC_set and the basis functions of the homogeneous solution, the trial solution
is a linear combination of all the basis in the UC_set.
\[
v_p = A_{1} {\mathrm e}^{-2 u}
\]
The unknowns \(\{A_{1}\}\) are found
by substituting the above trial solution \(v_p\) into the ODE and comparing coefficients.
Substituting the trial solution into the ODE and simplifying gives
\[
v = {\mathrm e}^{3 u} \sin \left (2 u \right ) c_2 +{\mathrm e}^{3 u} \cos \left (2 u \right ) c_1 +\frac {{\mathrm e}^{-2 u}}{29}
\]
Maple trace
Methodsfor second order ODEs:---Trying classification methods ---tryinga quadraturetryinghigh order exact linear fully integrabletryingdifferential order: 2; linear nonhomogeneous with symmetry [0,1]tryinga double symmetry of the form [xi=0, eta=F(x)]->Try solving first the homogeneous part of the ODEchecking if the LODE has constant coefficients<- constant coefficients successful<-solving first the homogeneous part of the ODE successful
Maple step by step
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \frac {d^{2}}{d u^{2}}v \left (u \right )-6 \frac {d}{d u}v \left (u \right )+13 v \left (u \right )={\mathrm e}^{-2 u} \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & \frac {d^{2}}{d u^{2}}v \left (u \right ) \\ \bullet & {} & \textrm {Characteristic polynomial of homogeneous ODE}\hspace {3pt} \\ {} & {} & r^{2}-6 r +13=0 \\ \bullet & {} & \textrm {Use quadratic formula to solve for}\hspace {3pt} r \\ {} & {} & r =\frac {6\pm \left (\sqrt {-16}\right )}{2} \\ \bullet & {} & \textrm {Roots of the characteristic polynomial}\hspace {3pt} \\ {} & {} & r =\left (3-2 \,\mathrm {I}, 3+2 \,\mathrm {I}\right ) \\ \bullet & {} & \textrm {1st solution of the homogeneous ODE}\hspace {3pt} \\ {} & {} & v_{1}\left (u \right )={\mathrm e}^{3 u} \cos \left (2 u \right ) \\ \bullet & {} & \textrm {2nd solution of the homogeneous ODE}\hspace {3pt} \\ {} & {} & v_{2}\left (u \right )={\mathrm e}^{3 u} \sin \left (2 u \right ) \\ \bullet & {} & \textrm {General solution of the ODE}\hspace {3pt} \\ {} & {} & v \left (u \right )=\mathit {C1} v_{1}\left (u \right )+\mathit {C2} v_{2}\left (u \right )+v_{p}\left (u \right ) \\ \bullet & {} & \textrm {Substitute in solutions of the homogeneous ODE}\hspace {3pt} \\ {} & {} & v \left (u \right )=\mathit {C1} \,{\mathrm e}^{3 u} \cos \left (2 u \right )+\mathit {C2} \,{\mathrm e}^{3 u} \sin \left (2 u \right )+v_{p}\left (u \right ) \\ \square & {} & \textrm {Find a particular solution}\hspace {3pt} v_{p}\left (u \right )\hspace {3pt}\textrm {of the ODE}\hspace {3pt} \\ {} & \circ & \textrm {Use variation of parameters to find}\hspace {3pt} v_{p}\hspace {3pt}\textrm {here}\hspace {3pt} f \left (u \right )\hspace {3pt}\textrm {is the forcing function}\hspace {3pt} \\ {} & {} & \left [v_{p}\left (u \right )=-v_{1}\left (u \right ) \int \frac {v_{2}\left (u \right ) f \left (u \right )}{W \left (v_{1}\left (u \right ), v_{2}\left (u \right )\right )}d u +v_{2}\left (u \right ) \int \frac {v_{1}\left (u \right ) f \left (u \right )}{W \left (v_{1}\left (u \right ), v_{2}\left (u \right )\right )}d u , f \left (u \right )={\mathrm e}^{-2 u}\right ] \\ {} & \circ & \textrm {Wronskian of solutions of the homogeneous equation}\hspace {3pt} \\ {} & {} & W \left (v_{1}\left (u \right ), v_{2}\left (u \right )\right )=\left [\begin {array}{cc} {\mathrm e}^{3 u} \cos \left (2 u \right ) & {\mathrm e}^{3 u} \sin \left (2 u \right ) \\ 3 \,{\mathrm e}^{3 u} \cos \left (2 u \right )-2 \,{\mathrm e}^{3 u} \sin \left (2 u \right ) & 3 \,{\mathrm e}^{3 u} \sin \left (2 u \right )+2 \,{\mathrm e}^{3 u} \cos \left (2 u \right ) \end {array}\right ] \\ {} & \circ & \textrm {Compute Wronskian}\hspace {3pt} \\ {} & {} & W \left (v_{1}\left (u \right ), v_{2}\left (u \right )\right )=2 \,{\mathrm e}^{6 u} \\ {} & \circ & \textrm {Substitute functions into equation for}\hspace {3pt} v_{p}\left (u \right ) \\ {} & {} & v_{p}\left (u \right )=-\frac {{\mathrm e}^{3 u} \left (\int \sin \left (2 u \right ) {\mathrm e}^{-5 u}d u \cos \left (2 u \right )-\int \cos \left (2 u \right ) {\mathrm e}^{-5 u}d u \sin \left (2 u \right )\right )}{2} \\ {} & \circ & \textrm {Compute integrals}\hspace {3pt} \\ {} & {} & v_{p}\left (u \right )=\frac {{\mathrm e}^{-2 u}}{29} \\ \bullet & {} & \textrm {Substitute particular solution into general solution to ODE}\hspace {3pt} \\ {} & {} & v \left (u \right )=\mathit {C1} \,{\mathrm e}^{3 u} \cos \left (2 u \right )+\mathit {C2} \,{\mathrm e}^{3 u} \sin \left (2 u \right )+\frac {{\mathrm e}^{-2 u}}{29} \end {array} \]
2.7.6.4 ✓Mathematica. Time used: 0.077 (sec). Leaf size: 39