2.7.1 Problem 1 (eq 98)

Maple
Mathematica
Sympy

Internal problem ID [18500]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First Edition (1929)
Section : Chapter V. Singular solutions. section 36. Problems at page 99
Problem number : 1 (eq 98)
Date solved : Thursday, March 13, 2025 at 12:08:49 PM
CAS classification : [[_1st_order, _with_linear_symmetries]]

Solve

4yy32x2y2+4xyy+x3=16y2

Solving for the derivative gives these ODE’s to solve

(1)y=(x645x3y2+432y4+332x9+91y2x61376y4x3+6912y6y)1/36yx(x3+12y2)6y(x645x3y2+432y4+332x9+91y2x61376y4x3+6912y6y)1/3+x26y(2)y=(x645x3y2+432y4+332x9+91y2x61376y4x3+6912y6y)1/312y+x(x3+12y2)12y(x645x3y2+432y4+332x9+91y2x61376y4x3+6912y6y)1/3+x26y+i3((x645x3y2+432y4+332x9+91y2x61376y4x3+6912y6y)1/36y+x(x3+12y2)6y(x645x3y2+432y4+332x9+91y2x61376y4x3+6912y6y)1/3)2(3)y=(x645x3y2+432y4+332x9+91y2x61376y4x3+6912y6y)1/312y+x(x3+12y2)12y(x645x3y2+432y4+332x9+91y2x61376y4x3+6912y6y)1/3+x26yi3((x645x3y2+432y4+332x9+91y2x61376y4x3+6912y6y)1/36y+x(x3+12y2)6y(x645x3y2+432y4+332x9+91y2x61376y4x3+6912y6y)1/3)2

Now each of the above is solved separately.

Solving Eq. (1)

Solving for y gives

(1)y=x4+x2(x645x3y2+432y4+332x9+91y2x61376y4x3+6912y6y)1/312xy2+(x645x3y2+432y4+332x9+91y2x61376y4x3+6912y6y)2/36y(x645x3y2+432y4+332x9+91y2x61376y4x3+6912y6y)1/3

Each of the above ode’s is now solved An ode y=f(x,y) is isobaric if

(1)f(tx,tmy)=tm1f(x,y)

Where here

(2)f(x,y)=x4+x2(x645x3y2+432y4+332x9+91y2x61376y4x3+6912y6y)1/312xy2+(x645x3y2+432y4+332x9+91y2x61376y4x3+6912y6y)2/36y(x645x3y2+432y4+332x9+91y2x61376y4x3+6912y6y)1/3

m is the order of isobaric. Substituting (2) into (1) and solving for m gives

m=32

Since the ode is isobaric of order m=32, then the substitution

y=uxm=ux3/2

Converts the ODE to a separable in u(x). Performing this substitution gives

3xu(x)2+x3/2u(x)=x4+x2(x645x6u(x)2+432x6u(x)4+332x9+91x9u(x)21376x9u(x)4+6912x9u(x)6x3/2u(x))1/312x4u(x)2+(x645x6u(x)2+432x6u(x)4+332x9+91x9u(x)21376x9u(x)4+6912x9u(x)6x3/2u(x))2/36x3/2u(x)(x645x6u(x)2+432x6u(x)4+332x9+91x9u(x)21376x9u(x)4+6912x9u(x)6x3/2u(x))1/3

The ode

(1)u(x)=(931/3(3(4323u(x)4453u(x)2+9u(x)(27u(x)22)(4u(x)1)2(4u(x)+1)2+3))1/3u(x)21232/3u(x)2+(3(4323u(x)4453u(x)2+9u(x)(27u(x)22)(4u(x)1)2(4u(x)+1)2+3))2/3+31/3(3(4323u(x)4453u(x)2+9u(x)(27u(x)22)(4u(x)1)2(4u(x)+1)2+3))1/3+32/3)32/318(3(4323u(x)4453u(x)2+9u(x)(27u(x)22)(4u(x)1)2(4u(x)+1)2+3))1/3u(x)x

is separable as it can be written as

u(x)=(931/3(3(4323u(x)4453u(x)2+9u(x)(27u(x)22)(4u(x)1)2(4u(x)+1)2+3))1/3u(x)21232/3u(x)2+(3(4323u(x)4453u(x)2+9u(x)(27u(x)22)(4u(x)1)2(4u(x)+1)2+3))2/3+31/3(3(4323u(x)4453u(x)2+9u(x)(27u(x)22)(4u(x)1)2(4u(x)+1)2+3))1/3+32/3)32/318(3(4323u(x)4453u(x)2+9u(x)(27u(x)22)(4u(x)1)2(4u(x)+1)2+3))1/3u(x)x=f(x)g(u)

Where

f(x)=32/318xg(u)=931/3(3(4323u4453u2+9u(27u22)(4u1)2(4u+1)2+3))1/3u21232/3u2+(3(4323u4453u2+9u(27u22)(4u1)2(4u+1)2+3))2/3+31/3(3(4323u4453u2+9u(27u22)(4u1)2(4u+1)2+3))1/3+32/3(3(4323u4453u2+9u(27u22)(4u1)2(4u+1)2+3))1/3u

Integrating gives

1g(u)du=f(x)dx(3(4323u4453u2+9u(27u22)(4u1)2(4u+1)2+3))1/3u931/3(3(4323u4453u2+9u(27u22)(4u1)2(4u+1)2+3))1/3u21232/3u2+(3(4323u4453u2+9u(27u22)(4u1)2(4u+1)2+3))2/3+31/3(3(4323u4453u2+9u(27u22)(4u1)2(4u+1)2+3))1/3+32/3du=32/318xdx
u(x)(3(4323τ4453τ2+9τ(27τ22)(4τ1)2(4τ+1)2+3))1/3τ931/3(3(4323τ4453τ2+9τ(27τ22)(4τ1)2(4τ+1)2+3))1/3τ21232/3τ2+(3(4323τ4453τ2+9τ(27τ22)(4τ1)2(4τ+1)2+3))2/3+31/3(3(4323τ4453τ2+9τ(27τ22)(4τ1)2(4τ+1)2+3))1/3+32/3dτ=32/3ln(x1/18)+c1

Converting u(x)(3(4323τ4453τ2+9τ(27τ22)(4τ1)2(4τ+1)2+3))1/3τ931/3(3(4323τ4453τ2+9τ(27τ22)(4τ1)2(4τ+1)2+3))1/3τ21232/3τ2+(3(4323τ4453τ2+9τ(27τ22)(4τ1)2(4τ+1)2+3))2/3+31/3(3(4323τ4453τ2+9τ(27τ22)(4τ1)2(4τ+1)2+3))1/3+32/3dτ=32/3ln(x)18+c1 back to y gives

yx3/2(3(4323τ4453τ2+9τ(27τ22)(4τ1)2(4τ+1)2+3))1/3τ931/3(3(4323τ4453τ2+9τ(27τ22)(4τ1)2(4τ+1)2+3))1/3τ21232/3τ2+(3(4323τ4453τ2+9τ(27τ22)(4τ1)2(4τ+1)2+3))2/3+31/3(3(4323τ4453τ2+9τ(27τ22)(4τ1)2(4τ+1)2+3))1/3+32/3dτ=32/3ln(x)18+c1

Solving Eq. (2)

Writing the ode as

y=i3x4+12i3xy2+i3(x645x3y2+432y4+332x9+91x6y21376x3y4+6912y6y)2/3x4+2x2(x645x3y2+432y4+332x9+91x6y21376x3y4+6912y6y)1/3+12xy2(x645x3y2+432y4+332x9+91x6y21376x3y4+6912y6y)2/312y(x645x3y2+432y4+332x9+91x6y21376x3y4+6912y6y)1/3y=ω(x,y)

The condition of Lie symmetry is the linearized PDE given by

(A)ηx+ω(ηyξx)ω2ξyωxξωyη=0

To determine ξ,η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ=xa2+ya3+a1(2E)η=xb2+yb3+b1

Where the unknown coefficients are

{a1,a2,a3,b1,b2,b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)Expression too large to display

Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display

Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {x,y} in them.

{x,y,(2x327y2)(x316y2)2,(x645x3y2+432y4+33(2x327y2)(x316y2)2y)1/3,(x645x3y2+432y4+33(2x327y2)(x316y2)2y)2/3}

The following substitution is now made to be able to collect on all terms with {x,y} in them

{x=v1,y=v2,(2x327y2)(x316y2)2=v3,(x645x3y2+432y4+33(2x327y2)(x316y2)2y)1/3=v4,(x645x3y2+432y4+33(2x327y2)(x316y2)2y)2/3=v5}

The above PDE (6E) now becomes

(7E)Expression too large to display

Collecting the above on the terms vi introduced, and these are

{v1,v2,v3,v4,v5}

Equation (7E) now becomes

(8E)Expression too large to display

Setting each coefficients in (8E) to zero gives the following equations to solve

20736a1=048a1=02160a1=07344a3=012a3=0588a3=020736a3=01080b1=024b1=010368b1=0936b2=024b2=03888b2=062208b2=09953283a1=0131043a1=02883a1=01981443a1=04469763a3=035643a3=0723a3=0626403a3=09953283a3=0990723b1=01443b1=065523b1=04976643b1=0967683b2=0597603b2=01443b2=056883b2=029859843b2=031104a2+20736b3=072a2+48b3=03240a22160b3=014929923a2+9953283b3=0196563a2+131043b3=04323a22883b3=02972163a21981443b3=031705344ia3105684483a3=08957952ia129859843a1=01741824ib15806083b1=01741824ib25806083b2=0520128ia11733763a1=0288720ia3962403a3=0248832ib1+829443b1=0248832ib2+829443b2=0174528ia3+581763a3=014652ib148843b1=014652ib248843b2=09828ia1+32763a1=02952ia3+9843a3=0540ia11803a1=0144ia3483a3=0144ib1+483b1=0144ib2+483b2=072ia3243a3=0288ib1+963b1=0288ib2+963b2=0324ia11083a1=03276ib110923b1=03276ib210923b2=010116ia3+33723a3=028188ia1+93963a1=039708ia3132363a3=074304ia1247683a1=0257904ib1+859683b1=0257904ib2+859683b2=02985984ib1+9953283b1=02985984ib2+9953283b2=03877632ia1+12925443a1=04216320ia3+14054403a3=098537472ia3+328458243a3=0152064i3a3152064a3=062208i3a162208a1=09936i3b19936b1=09936i3b29936b2=01728i3b1+1728b1=01728i3b2+1728b2=01476i3a11476a1=01476i3a3+1476a3=0492i3a3492a3=0180i3b1+180b1=0180i3b2+180b2=024i3a1+24a1=012i3b112b1=012i3b212b2=06i3a3+6a3=06i3a3+6a3=012i3b112b1=012i3b212b2=024i3a1+24a1=0204i3a3204a3=0540i3a1540a1=0756i3b1+756b1=0756i3b2+756b2=013104i3a3+13104a3=020736i3a1+20736a1=020736i3b1+20736b1=020736i3b2+20736b2=0684288i3a3+684288a3=017915904ia2+11943936ib359719683a2+39813123b3=0786672ia2+524448ib32622243a2+1748163b3=0746496ia2+497664ib3+2488323a21658883b3=019656ia2+13104ib3+65523a243683b3=0756ia2+504ib32523a2+1683b3=0540ia2360ib31803a2+1203b3=040608ia227072ib3+135363a290243b3=0222912ia2148608ib3743043a2+495363b3=06407424ia24271616ib3+21358083a214238723b3=0124416i3a2+82944i3b3124416a2+82944b3=05184i3a2+3456i3b3+5184a23456b3=02160i3a2+1440i3b32160a2+1440b3=036i3a2+24i3b3+36a224b3=036i3a224i3b3+36a224b3=01080i3a2720i3b31080a2+720b3=032400i3a221600i3b3+32400a221600b3=0

Solving the above equations for the unknowns gives

a1=0a2=2b33a3=0b1=0b2=0b3=b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

ξ=2x3η=y

The next step is to determine the canonical coordinates R,S. The canonical coordinates map (x,y)(R,S) where (R,S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

(1)dxξ=dyη=dS

The above comes from the requirements that (ξx+ηy)S(x,y)=1. Starting with the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where S(R). Therefore

dydx=ηξ=y2x3=3y2x

This is easily solved to give

y=c1x3/2

Where now the coordinate R is taken as the constant of integration. Hence

R=yx3/2

And S is found from

dS=dxξ=dx2x3

Integrating gives

S=dxT=3ln(x)2

Where the constant of integration is set to zero as we just need one solution. Now that R,S are found, we need to setup the ode in these coordinates. This is done by evaluating

(2)dSdR=Sx+ω(x,y)SyRx+ω(x,y)Ry

Where in the above Rx,Ry,Sx,Sy are all partial derivatives and ω(x,y) is the right hand side of the original ode given by

ω(x,y)=i3x4+12i3xy2+i3(x645x3y2+432y4+332x9+91x6y21376x3y4+6912y6y)2/3x4+2x2(x645x3y2+432y4+332x9+91x6y21376x3y4+6912y6y)1/3+12xy2(x645x3y2+432y4+332x9+91x6y21376x3y4+6912y6y)2/312y(x645x3y2+432y4+332x9+91x6y21376x3y4+6912y6y)1/3

Evaluating all the partial derivatives gives

Rx=3y2x5/2Ry=1x3/2Sx=32xSy=0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

(2A)dSdR=18x3/2(x645x3y2+432y4+332(x316y2)2(x327y22)y)1/3y(i3x+x)(x645x3y2+432y4+332(x316y2)2(x327y22)y)2/3+(2x3+18y2)(x645x3y2+432y4+332(x316y2)2(x327y22)y)1/3+(x312y2)x2(1+i3)

We now need to express the RHS as function of R only. This is done by solving for x,y in terms of R,S from the result obtained earlier and simplifying. This gives

dSdR=18R((48R33R)327R22+432R445R2+1)1/3(i31)((48R33R)327R22+432R445R2+1)2/3+(18R2+2)((48R33R)327R22+432R445R2+1)1/3+12(1+i3)(R2112)

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R,S.

Since the ode has the form ddRS(R)=f(R), then we only need to integrate f(R).

dS=18R((48R33R)327R22+432R445R2+1)1/3i((48R33R)327R22+432R445R2+1)2/33+12i3R218((48R33R)327R22+432R445R2+1)1/3R2((48R33R)327R22+432R445R2+1)2/3i3+12R2+2((48R33R)327R22+432R445R2+1)1/31dRS(R)=18R((48R33R)327R22+432R445R2+1)1/3i((48R33R)327R22+432R445R2+1)2/33+12i3R218((48R33R)327R22+432R445R2+1)1/3R2((48R33R)327R22+432R445R2+1)2/3i3+12R2+2((48R33R)327R22+432R445R2+1)1/31dR+c3
S(R)=18R((48R33R)327R22+432R445R2+1)1/3i((48R33R)327R22+432R445R2+1)2/33+12i3R218((48R33R)327R22+432R445R2+1)1/3R2((48R33R)327R22+432R445R2+1)2/3i3+12R2+2((48R33R)327R22+432R445R2+1)1/31dR+c3

To complete the solution, we just need to transform the above back to x,y coordinates. This results in

3ln(x)2=yx3/218_a((48_a33_a)327_a22+432_a445_a2+1)1/3i((48_a33_a)327_a22+432_a445_a2+1)2/33+12i3_a218((48_a33_a)327_a22+432_a445_a2+1)1/3_a2((48_a33_a)327_a22+432_a445_a2+1)2/3i3+12_a2+2((48_a33_a)327_a22+432_a445_a2+1)1/31d_a+c3

Solving Eq. (3)

Writing the ode as

y=i3x4+12i3xy2+i3(x645x3y2+432y4+332x9+91x6y21376x3y4+6912y6y)2/3+x42x2(x645x3y2+432y4+332x9+91x6y21376x3y4+6912y6y)1/312xy2+(x645x3y2+432y4+332x9+91x6y21376x3y4+6912y6y)2/312y(x645x3y2+432y4+332x9+91x6y21376x3y4+6912y6y)1/3y=ω(x,y)

The condition of Lie symmetry is the linearized PDE given by

(A)ηx+ω(ηyξx)ω2ξyωxξωyη=0

To determine ξ,η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ=xa2+ya3+a1(2E)η=xb2+yb3+b1

Where the unknown coefficients are

{a1,a2,a3,b1,b2,b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)Expression too large to display

Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display

Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {x,y} in them.

{x,y,(2x327y2)(x316y2)2,(x645x3y2+432y4+33(2x327y2)(x316y2)2y)1/3,(x645x3y2+432y4+33(2x327y2)(x316y2)2y)2/3}

The following substitution is now made to be able to collect on all terms with {x,y} in them

{x=v1,y=v2,(2x327y2)(x316y2)2=v3,(x645x3y2+432y4+33(2x327y2)(x316y2)2y)1/3=v4,(x645x3y2+432y4+33(2x327y2)(x316y2)2y)2/3=v5}

The above PDE (6E) now becomes

(7E)Expression too large to display

Collecting the above on the terms vi introduced, and these are

{v1,v2,v3,v4,v5}

Equation (7E) now becomes

(8E)Expression too large to display

Setting each coefficients in (8E) to zero gives the following equations to solve

20736a1=048a1=02160a1=07344a3=012a3=0588a3=020736a3=01080b1=024b1=010368b1=0936b2=024b2=03888b2=062208b2=09953283a1=0131043a1=02883a1=01981443a1=04469763a3=035643a3=0723a3=0626403a3=09953283a3=0990723b1=01443b1=065523b1=04976643b1=0967683b2=0597603b2=01443b2=056883b2=029859843b2=031104a2+20736b3=072a2+48b3=03240a22160b3=029859843a1+8957952ia1=01733763a1+520128ia1=0247683a174304ia1=01803a1+540ia1=01083a1324ia1=032763a1+9828ia1=093963a128188ia1=012925443a13877632ia1=014929923a2+9953283b3=0196563a2+131043b3=04323a22883b3=02972163a21981443b3=0105684483a3+31705344ia3=0962403a3+288720ia3=0132363a339708ia3=0483a3+144ia3=0243a372ia3=09843a3+2952ia3=033723a310116ia3=0581763a3+174528ia3=014054403a34216320ia3=0328458243a398537472ia3=05806083b1+1741824ib1=048843b1+14652ib1=010923b13276ib1=0483b1+144ib1=0963b1288ib1=0829443b1+248832ib1=0859683b1257904ib1=09953283b12985984ib1=05806083b2+1741824ib2=048843b2+14652ib2=010923b23276ib2=0483b2+144ib2=0963b2288ib2=0829443b2+248832ib2=0859683b2257904ib2=09953283b22985984ib2=0684288i3a3+684288a3=020736i3a1+20736a1=020736i3b1+20736b1=020736i3b2+20736b2=013104i3a3+13104a3=0756i3b1+756b1=0756i3b2+756b2=0540i3a1540a1=0204i3a3204a3=024i3a1+24a1=012i3b112b1=012i3b212b2=06i3a3+6a3=06i3a3+6a3=012i3b112b1=012i3b212b2=024i3a1+24a1=0180i3b1+180b1=0180i3b2+180b2=0492i3a3492a3=01476i3a11476a1=01476i3a3+1476a3=01728i3b1+1728b1=01728i3b2+1728b2=09936i3b19936b1=09936i3b29936b2=062208i3a162208a1=0152064i3a3152064a3=059719683a2+39813123b3+17915904ia211943936ib3=02622243a2+1748163b3+786672ia2524448ib3=0743043a2+495363b3222912ia2+148608ib3=02523a2+1683b3+756ia2504ib3=01803a2+1203b3540ia2+360ib3=065523a243683b3+19656ia213104ib3=0135363a290243b340608ia2+27072ib3=02488323a21658883b3+746496ia2497664ib3=021358083a214238723b36407424ia2+4271616ib3=032400i3a2+21600i3b3+32400a221600b3=01080i3a2+720i3b31080a2+720b3=036i3a2+24i3b3+36a224b3=036i3a224i3b3+36a224b3=02160i3a21440i3b32160a2+1440b3=05184i3a23456i3b3+5184a23456b3=0124416i3a282944i3b3124416a2+82944b3=0

Solving the above equations for the unknowns gives

a1=0a2=2b33a3=0b1=0b2=0b3=b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

ξ=2x3η=y

The next step is to determine the canonical coordinates R,S. The canonical coordinates map (x,y)(R,S) where (R,S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

(1)dxξ=dyη=dS

The above comes from the requirements that (ξx+ηy)S(x,y)=1. Starting with the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where S(R). Therefore

dydx=ηξ=y2x3=3y2x

This is easily solved to give

y=c1x3/2

Where now the coordinate R is taken as the constant of integration. Hence

R=yx3/2

And S is found from

dS=dxξ=dx2x3

Integrating gives

S=dxT=3ln(x)2

Where the constant of integration is set to zero as we just need one solution. Now that R,S are found, we need to setup the ode in these coordinates. This is done by evaluating

(2)dSdR=Sx+ω(x,y)SyRx+ω(x,y)Ry

Where in the above Rx,Ry,Sx,Sy are all partial derivatives and ω(x,y) is the right hand side of the original ode given by

ω(x,y)=i3x4+12i3xy2+i3(x645x3y2+432y4+332x9+91x6y21376x3y4+6912y6y)2/3+x42x2(x645x3y2+432y4+332x9+91x6y21376x3y4+6912y6y)1/312xy2+(x645x3y2+432y4+332x9+91x6y21376x3y4+6912y6y)2/312y(x645x3y2+432y4+332x9+91x6y21376x3y4+6912y6y)1/3

Evaluating all the partial derivatives gives

Rx=3y2x5/2Ry=1x3/2Sx=32xSy=0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

(2A)dSdR=18x3/2(x645x3y2+432y4+332(x316y2)2(x327y22)y)1/3yx(1i3)(x645x3y2+432y4+332(x316y2)2(x327y22)y)2/3+2(x39y2)(x645x3y2+432y4+332(x316y2)2(x327y22)y)1/3+(x312y2)x2(i31)

We now need to express the RHS as function of R only. This is done by solving for x,y in terms of R,S from the result obtained earlier and simplifying. This gives

dSdR=18R((48R33R)327R22+432R445R2+1)1/3(1+i3)((48R33R)327R22+432R445R2+1)2/3+(18R22)((48R33R)327R22+432R445R2+1)1/3+12(i31)(R2112)

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R,S.

Since the ode has the form ddRS(R)=f(R), then we only need to integrate f(R).

dS=18R((48R33R)327R22+432R445R2+1)1/3i3((48R33R)327R22+432R445R2+1)2/3+12i3R2+18((48R33R)327R22+432R445R2+1)1/3R2i3+((48R33R)327R22+432R445R2+1)2/312R22((48R33R)327R22+432R445R2+1)1/3+1dRS(R)=18R((48R33R)327R22+432R445R2+1)1/3i3((48R33R)327R22+432R445R2+1)2/3+12i3R2+18((48R33R)327R22+432R445R2+1)1/3R2i3+((48R33R)327R22+432R445R2+1)2/312R22((48R33R)327R22+432R445R2+1)1/3+1dR+c5
S(R)=18R((48R33R)327R22+432R445R2+1)1/3i3((48R33R)327R22+432R445R2+1)2/3+12i3R2+18((48R33R)327R22+432R445R2+1)1/3R2i3+((48R33R)327R22+432R445R2+1)2/312R22((48R33R)327R22+432R445R2+1)1/3+1dR+c5

To complete the solution, we just need to transform the above back to x,y coordinates. This results in

3ln(x)2=yx3/218_a((48_a33_a)327_a22+432_a445_a2+1)1/3i((48_a33_a)327_a22+432_a445_a2+1)2/33+12i3_a2+18((48_a33_a)327_a22+432_a445_a2+1)1/3_a2i3+((48_a33_a)327_a22+432_a445_a2+1)2/312_a22((48_a33_a)327_a22+432_a445_a2+1)1/3+1d_a+c5

Maple
ode:=4*y(x)*diff(y(x),x)^3-2*x^2*diff(y(x),x)^2+4*x*y(x)*diff(y(x),x)+x^3 = 16*y(x)^2; 
dsolve(ode,y(x), singsol=all);
 
No solution found

Maple step by step

Let’s solve4yy32y2x2+4xyy+x3=16y2Highest derivative means the order of the ODE is1ySolve for the highest derivative[y=(x645x3y2+432y4+332x9+91y2x61376x3y4+6912y6y)1/36yx(x3+12y2)6y(x645x3y2+432y4+332x9+91y2x61376x3y4+6912y6y)1/3+x26y,y=(x645x3y2+432y4+332x9+91y2x61376x3y4+6912y6y)1/312y+x(x3+12y2)12y(x645x3y2+432y4+332x9+91y2x61376x3y4+6912y6y)1/3+x26yI3((x645x3y2+432y4+332x9+91y2x61376x3y4+6912y6y)1/36y+x(x3+12y2)6y(x645x3y2+432y4+332x9+91y2x61376x3y4+6912y6y)1/3)2,y=(x645x3y2+432y4+332x9+91y2x61376x3y4+6912y6y)1/312y+x(x3+12y2)12y(x645x3y2+432y4+332x9+91y2x61376x3y4+6912y6y)1/3+x26y+I3((x645x3y2+432y4+332x9+91y2x61376x3y4+6912y6y)1/36y+x(x3+12y2)6y(x645x3y2+432y4+332x9+91y2x61376x3y4+6912y6y)1/3)2]Solve the equationy=(x645x3y2+432y4+332x9+91y2x61376x3y4+6912y6y)1/36yx(x3+12y2)6y(x645x3y2+432y4+332x9+91y2x61376x3y4+6912y6y)1/3+x26ySolve the equationy=(x645x3y2+432y4+332x9+91y2x61376x3y4+6912y6y)1/312y+x(x3+12y2)12y(x645x3y2+432y4+332x9+91y2x61376x3y4+6912y6y)1/3+x26yI3((x645x3y2+432y4+332x9+91y2x61376x3y4+6912y6y)1/36y+x(x3+12y2)6y(x645x3y2+432y4+332x9+91y2x61376x3y4+6912y6y)1/3)2Solve the equationy=(x645x3y2+432y4+332x9+91y2x61376x3y4+6912y6y)1/312y+x(x3+12y2)12y(x645x3y2+432y4+332x9+91y2x61376x3y4+6912y6y)1/3+x26y+I3((x645x3y2+432y4+332x9+91y2x61376x3y4+6912y6y)1/36y+x(x3+12y2)6y(x645x3y2+432y4+332x9+91y2x61376x3y4+6912y6y)1/3)2Set of solutions{workingODE,workingODE,workingODE}
Mathematica. Time used: 50.04 (sec). Leaf size: 49162
ode=4*y[x]*D[y[x],x]^3-2*x^2*D[y[x],x]^2+4*x*y[x]*D[y[x],x]+x^3==16*y[x]^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Too large to display

Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**3 - 2*x**2*Derivative(y(x), x)**2 + 4*x*y(x)*Derivative(y(x), x) - 16*y(x)**2 + 4*y(x)*Derivative(y(x), x)**3,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out