2.6 Table of ODEs solved using series method

Table 2.483: Differential equations solved using Laplace transform

#

ODE

CAS classification

Solved?

530

\[ {}x^{\prime \prime }+4 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

531

\[ {}x^{\prime \prime }+9 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

532

\[ {}x^{\prime \prime }-x^{\prime }-2 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

533

\[ {}x^{\prime \prime }+8 x^{\prime }+15 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

534

\[ {}x^{\prime \prime }+x = \sin \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

535

\[ {}x^{\prime \prime }+4 x = \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

536

\[ {}x^{\prime \prime }+x = \cos \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

537

\[ {}x^{\prime \prime }+9 x = 1 \]
i.c.

[[_2nd_order, _missing_x]]

538

\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = 1 \]
i.c.

[[_2nd_order, _missing_x]]

539

\[ {}x^{\prime \prime }+3 x^{\prime }+2 x = t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

541

\[ {}x^{\prime \prime }+6 x^{\prime }+25 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

542

\[ {}x^{\prime \prime }-6 x^{\prime }+8 x = 2 \]
i.c.

[[_2nd_order, _missing_x]]

543

\[ {}x^{\prime \prime }-4 x = 3 t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

544

\[ {}x^{\prime \prime }+4 x^{\prime }+8 x = {\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

545

\[ {}x^{\prime \prime \prime }+x^{\prime \prime }-6 x^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

546

\[ {}x^{\prime \prime \prime \prime }-x = 0 \]
i.c.

[[_high_order, _missing_x]]

547

\[ {}x^{\prime \prime \prime \prime }+x = 0 \]
i.c.

[[_high_order, _missing_x]]

548

\[ {}x^{\prime \prime \prime \prime }+13 x^{\prime \prime }+36 x = 0 \]
i.c.

[[_high_order, _missing_x]]

549

\[ {}x^{\prime \prime \prime \prime }+8 x^{\prime \prime }+16 x = 0 \]
i.c.

[[_high_order, _missing_x]]

550

\[ {}x^{\prime \prime \prime \prime }+2 x^{\prime \prime }+x = {\mathrm e}^{2 t} \]
i.c.

[[_high_order, _with_linear_symmetries]]

551

\[ {}x^{\prime \prime }+4 x^{\prime }+13 x = t \,{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

552

\[ {}x^{\prime \prime }+6 x^{\prime }+18 x = \cos \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

553

\[ {}x^{\prime \prime }+9 x = 6 \cos \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

554

\[ {}x^{\prime \prime }+\frac {2 x^{\prime }}{5}+\frac {226 x}{25} = 6 \,{\mathrm e}^{-\frac {t}{5}} \cos \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

555

\[ {}t x^{\prime \prime }+\left (t -2\right ) x^{\prime }+x = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

556

\[ {}t x^{\prime \prime }+\left (3 t -1\right ) x^{\prime }+3 x = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

557

\[ {}t x^{\prime \prime }-\left (4 t +1\right ) x^{\prime }+2 \left (2 t +1\right ) x = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

558

\[ {}t x^{\prime \prime }+2 \left (t -1\right ) x^{\prime }-2 x = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

559

\[ {}t x^{\prime \prime }-2 x^{\prime }+x t = 0 \]
i.c.

[_Lienard]

560

\[ {}t x^{\prime \prime }+\left (4 t -2\right ) x^{\prime }+\left (13 t -4\right ) x = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

561

\[ {}x^{\prime \prime }+4 x = f \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

562

\[ {}x^{\prime \prime }+2 x^{\prime }+x = f \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

563

\[ {}x^{\prime \prime }+4 x^{\prime }+13 x = f \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

564

\[ {}x^{\prime \prime }+4 x = \delta \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

565

\[ {}x^{\prime \prime }+4 x = \delta \left (t \right )+\delta \left (t -\pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

566

\[ {}x^{\prime \prime }+4 x^{\prime }+4 x = 1+\delta \left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

567

\[ {}x^{\prime \prime }+2 x^{\prime }+x = t +\delta \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

568

\[ {}x^{\prime \prime }+2 x^{\prime }+2 x = 2 \delta \left (t -\pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

569

\[ {}x^{\prime \prime }+9 x = \delta \left (t -3 \pi \right )+\cos \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

570

\[ {}x^{\prime \prime }+4 x^{\prime }+5 x = \delta \left (t -\pi \right )+\delta \left (t -2 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

571

\[ {}x^{\prime \prime }+2 x^{\prime }+x = \delta \left (t \right )-\delta \left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

572

\[ {}x^{\prime \prime }+4 x = f \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

573

\[ {}x^{\prime \prime }+6 x^{\prime }+9 x = f \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

574

\[ {}x^{\prime \prime }+6 x^{\prime }+8 x = f \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

575

\[ {}x^{\prime \prime }+4 x^{\prime }+8 x = f \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1483

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1484

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1485

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1486

\[ {}y^{\prime \prime }-2 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1487

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1488

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = 0 \]
i.c.

[[_high_order, _missing_x]]

1489

\[ {}y^{\prime \prime \prime \prime }-4 y = 0 \]
i.c.

[[_high_order, _missing_x]]

1490

\[ {}y^{\prime \prime }+\omega ^{2} y = \cos \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1491

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1492

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 0 & \pi \le t <\infty \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1493

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 1 & 0\le t <1 \\ 0 & 1\le t <\infty \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1494

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0\le t <1 \\ 2-t & 1\le t <2 \\ 0 & 2\le t <\infty \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1495

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} 1 & 0\le t <3 \pi \\ 0 & 3 \pi \le t <\infty \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1496

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & \pi \le t <2 \pi \\ 0 & \operatorname {otherwise} \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1497

\[ {}y^{\prime \prime }+4 y = \sin \left (t \right )-\operatorname {Heaviside}\left (t -2 \pi \right ) \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1498

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0\le t <10 \\ 0 & \operatorname {otherwise} \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1499

\[ {}y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = t -\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right ) \left (t -\frac {\pi }{2}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1500

\[ {}y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = \left \{\begin {array}{cc} \sin \left (t \right ) & 0\le t <\pi \\ 0 & \operatorname {otherwise} \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1501

\[ {}y^{\prime \prime }+4 y = \operatorname {Heaviside}\left (t -\pi \right )-\operatorname {Heaviside}\left (t -3 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1502

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 1-\operatorname {Heaviside}\left (t -\pi \right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

1503

\[ {}u^{\prime \prime }+\frac {u^{\prime }}{4}+u = k \left (\operatorname {Heaviside}\left (t -\frac {3}{2}\right )-\operatorname {Heaviside}\left (t -\frac {5}{2}\right )\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1504

\[ {}u^{\prime \prime }+\frac {u^{\prime }}{4}+u = \frac {\operatorname {Heaviside}\left (t -\frac {3}{2}\right )}{2}-\frac {\operatorname {Heaviside}\left (t -\frac {5}{2}\right )}{2} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1505

\[ {}u^{\prime \prime }+\frac {u^{\prime }}{4}+u = \frac {\operatorname {Heaviside}\left (t -5\right ) \left (t -5\right )-\operatorname {Heaviside}\left (t -5-k \right ) \left (t -5-k \right )}{k} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1506

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \delta \left (t -\pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1507

\[ {}y^{\prime \prime }+4 y = \delta \left (t -\pi \right )-\delta \left (t -2 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1508

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \delta \left (t -5\right )+\operatorname {Heaviside}\left (t -10\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1509

\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = \sin \left (t \right )+\delta \left (t -3 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1510

\[ {}y^{\prime \prime }+y = \delta \left (t -2 \pi \right ) \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1511

\[ {}y^{\prime \prime }+4 y = 2 \delta \left (t -\frac {\pi }{4}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1512

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \cos \left (t \right )+\delta \left (t -\frac {\pi }{2}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1513

\[ {}y^{\prime \prime \prime \prime }-y = \delta \left (t -1\right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

1514

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{2}+y = \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1515

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{4}+y = \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1516

\[ {}y^{\prime \prime }+y = \frac {\operatorname {Heaviside}\left (t -4+k \right )-\operatorname {Heaviside}\left (t -4-k \right )}{2 k} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1518

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \delta \left (t -\pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2671

\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = {\mathrm e}^{2 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

2672

\[ {}2 y^{\prime \prime }+y^{\prime }-y = {\mathrm e}^{3 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

2673

\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

2674

\[ {}y^{\prime \prime }+y = t^{2} \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2675

\[ {}y^{\prime \prime }+3 y^{\prime }+7 y = \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2676

\[ {}y^{\prime \prime }+y^{\prime }+y = t^{3} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2677

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = {\mathrm e}^{4 t} \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

2678

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

2679

\[ {}y^{\prime \prime }+y = \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2680

\[ {}y^{\prime \prime }+y = t \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2681

\[ {}y^{\prime \prime }-2 y^{\prime }+y = t \,{\mathrm e}^{t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2682

\[ {}y^{\prime \prime }-2 y^{\prime }+7 y = \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2683

\[ {}y^{\prime \prime }+y^{\prime }+y = 1+{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

2684

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} 2 & 0\le t \le 3 \\ 3 t -7 & 3<t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2685

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 2 \left (t -3\right ) \operatorname {Heaviside}\left (t -3\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2686

\[ {}y^{\prime \prime }+y^{\prime }+y = \operatorname {Heaviside}\left (t -\pi \right )-\operatorname {Heaviside}\left (t -2 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2687

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 1 & 0\le t <4 \\ 0 & 4<t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2688

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} \sin \left (t \right ) & 0\le t <\pi \\ \cos \left (t \right ) & \pi \le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2689

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} \cos \left (t \right ) & 0\le t <\frac {\pi }{2} \\ 0 & \frac {\pi }{2}\le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2690

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \left \{\begin {array}{cc} \sin \left (2 t \right ) & 0\le t <\frac {\pi }{2} \\ 0 & \frac {\pi }{2}\le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2691

\[ {}y^{\prime \prime }+y^{\prime }+7 y = \left \{\begin {array}{cc} t & 0\le t <2 \\ 0 & 2\le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2692

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} t^{2} & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2693

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \left \{\begin {array}{cc} 0 & 0\le t <1 \\ t & 1\le t <2 \\ 0 & 2\le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2694

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2695

\[ {}y^{\prime \prime }+4 y = \sin \left (t \right )+\delta \left (t -\pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2696

\[ {}y^{\prime \prime }+y^{\prime }+y = 2 \delta \left (t -1\right )-\delta \left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2697

\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-t}+3 \delta \left (t -3\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2774

\[ {}\left [\begin {array}{c} x_{1}^{\prime }\left (t \right )=x_{1} \left (t \right )-3 x_{2} \left (t \right ) \\ x_{2}^{\prime }\left (t \right )=-2 x_{1} \left (t \right )+2 x_{2} \left (t \right ) \end {array}\right ] \]
i.c.

system_of_ODEs

2775

\[ {}\left [\begin {array}{c} x_{1}^{\prime }\left (t \right )=x_{1} \left (t \right )-x_{2} \left (t \right ) \\ x_{2}^{\prime }\left (t \right )=5 x_{1} \left (t \right )-3 x_{2} \left (t \right ) \end {array}\right ] \]
i.c.

system_of_ODEs

2776

\[ {}\left [\begin {array}{c} x_{1}^{\prime }\left (t \right )=3 x_{1} \left (t \right )-2 x_{2} \left (t \right )+t \\ x_{2}^{\prime }\left (t \right )=2 x_{1} \left (t \right )-2 x_{2} \left (t \right )+3 \,{\mathrm e}^{t} \end {array}\right ] \]
i.c.

system_of_ODEs

2777

\[ {}\left [\begin {array}{c} x_{1}^{\prime }\left (t \right )=x_{1} \left (t \right )+x_{2} \left (t \right )+2 \,{\mathrm e}^{t} \\ x_{2}^{\prime }\left (t \right )=4 x_{1} \left (t \right )+x_{2} \left (t \right )-{\mathrm e}^{t} \end {array}\right ] \]
i.c.

system_of_ODEs

2778

\[ {}\left [\begin {array}{c} x_{1}^{\prime }\left (t \right )=3 x_{1} \left (t \right )-4 x_{2} \left (t \right )+{\mathrm e}^{t} \\ x_{2}^{\prime }\left (t \right )=x_{1} \left (t \right )-x_{2} \left (t \right )+{\mathrm e}^{t} \end {array}\right ] \]
i.c.

system_of_ODEs

2779

\[ {}\left [\begin {array}{c} x_{1}^{\prime }\left (t \right )=2 x_{1} \left (t \right )-5 x_{2} \left (t \right )+\sin \left (t \right ) \\ x_{2}^{\prime }\left (t \right )=x_{1} \left (t \right )-2 x_{2} \left (t \right )+\tan \left (t \right ) \end {array}\right ] \]
i.c.

system_of_ODEs

2780

\[ {}\left [\begin {array}{c} x_{1}^{\prime }\left (t \right )=4 x_{1} \left (t \right )+5 x_{2} \left (t \right )+4 \,{\mathrm e}^{t} \cos \left (t \right ) \\ x_{2}^{\prime }\left (t \right )=-2 x_{1} \left (t \right )-2 x_{2} \left (t \right ) \end {array}\right ] \]
i.c.

system_of_ODEs

2781

\[ {}\left [\begin {array}{c} x_{1}^{\prime }\left (t \right )=x_{2} \left (t \right )+f_{1} \left (t \right ) \\ x_{2}^{\prime }\left (t \right )=-x_{1} \left (t \right )+f_{2} \left (t \right ) \end {array}\right ] \]
i.c.

system_of_ODEs

2782

\[ {}\left [\begin {array}{c} x_{1}^{\prime }\left (t \right )=2 x_{1} \left (t \right )-2 x_{2} \left (t \right ) \\ x_{2}^{\prime }\left (t \right )=4 x_{1} \left (t \right )-2 x_{2} \left (t \right )+\delta \left (t -\pi \right ) \end {array}\right ] \]
i.c.

system_of_ODEs

2783

\[ {}\left [\begin {array}{c} x_{1}^{\prime }\left (t \right )=3 x_{1} \left (t \right )-2 x_{2} \left (t \right )+1-\operatorname {Heaviside}\left (t -\pi \right ) \\ x_{2}^{\prime }\left (t \right )=2 x_{1} \left (t \right )-2 x_{2} \left (t \right ) \end {array}\right ] \]
i.c.

system_of_ODEs

2784

\[ {}\left [\begin {array}{c} x_{1}^{\prime }\left (t \right )=x_{1} \left (t \right )+2 x_{2} \left (t \right )-3 x_{3} \left (t \right ) \\ x_{2}^{\prime }\left (t \right )=x_{1} \left (t \right )+x_{2} \left (t \right )+2 x_{3} \left (t \right ) \\ x_{3}^{\prime }\left (t \right )=x_{1} \left (t \right )-x_{2} \left (t \right )+4 x_{3} \left (t \right ) \end {array}\right ] \]
i.c.

system_of_ODEs

2785

\[ {}\left [\begin {array}{c} x_{1}^{\prime }\left (t \right )=2 x_{1} \left (t \right )+x_{3} \left (t \right )+{\mathrm e}^{2 t} \\ x_{2}^{\prime }\left (t \right )=2 x_{2} \left (t \right ) \\ x_{3}^{\prime }\left (t \right )=3 x_{3} \left (t \right )+{\mathrm e}^{2 t} \end {array}\right ] \]
i.c.

system_of_ODEs

2786

\[ {}\left [\begin {array}{c} x_{1}^{\prime }\left (t \right )=-x_{1} \left (t \right )-x_{2} \left (t \right )+2 x_{3} \left (t \right )+{\mathrm e}^{t} \\ x_{2}^{\prime }\left (t \right )=x_{1} \left (t \right )+x_{2} \left (t \right )+x_{3} \left (t \right ) \\ x_{3}^{\prime }\left (t \right )=2 x_{1} \left (t \right )+x_{2} \left (t \right )+3 x_{3} \left (t \right ) \end {array}\right ] \]
i.c.

system_of_ODEs

2787

\[ {}\left [\begin {array}{c} x_{1}^{\prime }\left (t \right )=x_{1} \left (t \right ) \\ x_{2}^{\prime }\left (t \right )=2 x_{1} \left (t \right )+x_{2} \left (t \right )-2 x_{3} \left (t \right ) \\ x_{3}^{\prime }\left (t \right )=3 x_{1} \left (t \right )+2 x_{2} \left (t \right )+x_{3} \left (t \right )+{\mathrm e}^{t} \cos \left (2 t \right ) \end {array}\right ] \]
i.c.

system_of_ODEs

2788

\[ {}\left [\begin {array}{c} x_{1}^{\prime }\left (t \right )=3 x_{1} \left (t \right ) \\ x_{2}^{\prime }\left (t \right )=x_{1} \left (t \right )+3 x_{2} \left (t \right ) \\ x_{3}^{\prime }\left (t \right )=3 x_{3} \left (t \right ) \\ x_{4}^{\prime }\left (t \right )=2 x_{3} \left (t \right )+3 x_{4} \left (t \right ) \end {array}\right ] \]
i.c.

system_of_ODEs

3928

\[ {}y^{\prime }-2 y = 6 \,{\mathrm e}^{5 t} \]
i.c.

[[_linear, ‘class A‘]]

3929

\[ {}y^{\prime }+y = 8 \,{\mathrm e}^{3 t} \]
i.c.

[[_linear, ‘class A‘]]

3930

\[ {}y^{\prime }+3 y = 2 \,{\mathrm e}^{-t} \]
i.c.

[[_linear, ‘class A‘]]

3931

\[ {}y^{\prime }+2 y = 4 t \]
i.c.

[[_linear, ‘class A‘]]

3932

\[ {}y^{\prime }-y = 6 \cos \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

3933

\[ {}y^{\prime }-y = 5 \sin \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

3934

\[ {}y^{\prime }+y = 5 \,{\mathrm e}^{t} \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

3935

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

3936

\[ {}y^{\prime \prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

3937

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 4 \]
i.c.

[[_2nd_order, _missing_x]]

3938

\[ {}y^{\prime \prime }-y^{\prime }-12 y = 36 \]
i.c.

[[_2nd_order, _missing_x]]

3939

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 10 \,{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

3940

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 4 \,{\mathrm e}^{3 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

3941

\[ {}y^{\prime \prime }-2 y^{\prime } = 30 \,{\mathrm e}^{-3 t} \]
i.c.

[[_2nd_order, _missing_y]]

3942

\[ {}y^{\prime \prime }-y = 12 \,{\mathrm e}^{2 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

3943

\[ {}y^{\prime \prime }+4 y = 10 \,{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

3944

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 12-6 \,{\mathrm e}^{t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

3945

\[ {}y^{\prime \prime }-y = 6 \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3946

\[ {}y^{\prime \prime }-9 y = 13 \sin \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3947

\[ {}y^{\prime \prime }-y = 8 \sin \left (t \right )-6 \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3948

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 10 \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3949

\[ {}y^{\prime \prime }+5 y^{\prime }+4 y = 20 \sin \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3950

\[ {}y^{\prime \prime }+5 y^{\prime }+4 y = 20 \sin \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3951

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 3 \cos \left (t \right )+\sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3952

\[ {}y^{\prime \prime }+4 y = 9 \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3953

\[ {}y^{\prime \prime }+y = 6 \cos \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3954

\[ {}y^{\prime \prime }+9 y = 7 \sin \left (4 t \right )+14 \cos \left (4 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3955

\[ {}y^{\prime \prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

3956

\[ {}y^{\prime }+2 y = 2 \operatorname {Heaviside}\left (t -1\right ) \]
i.c.

[[_linear, ‘class A‘]]

3957

\[ {}y^{\prime }-2 y = \operatorname {Heaviside}\left (t -2\right ) {\mathrm e}^{t -2} \]
i.c.

[[_linear, ‘class A‘]]

3958

\[ {}y^{\prime }-y = 4 \operatorname {Heaviside}\left (t -\frac {\pi }{4}\right ) \sin \left (t +\frac {\pi }{4}\right ) \]
i.c.

[[_linear, ‘class A‘]]

3959

\[ {}y^{\prime }+2 y = \operatorname {Heaviside}\left (t -\pi \right ) \sin \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

3960

\[ {}y^{\prime }+3 y = \left \{\begin {array}{cc} 1 & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

3961

\[ {}y^{\prime }-3 y = \left \{\begin {array}{cc} \sin \left (t \right ) & 0\le t <\frac {\pi }{2} \\ 1 & \frac {\pi }{2}\le t \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

3962

\[ {}y^{\prime }-3 y = -10 \,{\mathrm e}^{-t +a} \sin \left (-2 t +2 a \right ) \operatorname {Heaviside}\left (t -a \right ) \]
i.c.

[[_linear, ‘class A‘]]

3963

\[ {}y^{\prime \prime }-y = \operatorname {Heaviside}\left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3964

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 1-3 \operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3965

\[ {}y^{\prime \prime }-4 y = \operatorname {Heaviside}\left (t -1\right )-\operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3966

\[ {}y^{\prime \prime }+y = t -\operatorname {Heaviside}\left (t -1\right ) \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3967

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = -10 \operatorname {Heaviside}\left (t -\frac {\pi }{4}\right ) \cos \left (t +\frac {\pi }{4}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3968

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 30 \operatorname {Heaviside}\left (t -1\right ) {\mathrm e}^{-t +1} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3969

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 5 \operatorname {Heaviside}\left (t -3\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3970

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 2 \sin \left (t \right )+\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right ) \left (1+\cos \left (t \right )\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3971

\[ {}y^{\prime }-y = \left \{\begin {array}{cc} 2 & 0\le t <1 \\ -1 & 1\le t \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

3972

\[ {}y^{\prime }-y = \left \{\begin {array}{cc} 2 & 0\le t <1 \\ -1 & 1\le t \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

3973

\[ {}y^{\prime }+y = \delta \left (t -5\right ) \]
i.c.

[[_linear, ‘class A‘]]

3974

\[ {}y^{\prime }-2 y = \delta \left (t -2\right ) \]
i.c.

[[_linear, ‘class A‘]]

3975

\[ {}y^{\prime }+4 y = 3 \delta \left (t -1\right ) \]
i.c.

[[_linear, ‘class A‘]]

3976

\[ {}y^{\prime }-5 y = 2 \,{\mathrm e}^{-t}+\delta \left (t -3\right ) \]
i.c.

[[_linear, ‘class A‘]]

3977

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3978

\[ {}y^{\prime \prime }-4 y = \delta \left (t -3\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3979

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = \delta \left (t -\frac {\pi }{2}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3980

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = \delta \left (t -\frac {\pi }{4}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3981

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = \delta \left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3982

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = \delta \left (t -\frac {\pi }{4}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3983

\[ {}y^{\prime \prime }+9 y = 15 \sin \left (2 t \right )+\delta \left (t -\frac {\pi }{6}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3984

\[ {}y^{\prime \prime }+16 y = 4 \cos \left (3 t \right )+\delta \left (t -\frac {\pi }{3}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3985

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 4 \sin \left (t \right )+\delta \left (t -\frac {\pi }{6}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

4514

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 60 \cos \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

4515

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 9 \,{\mathrm e}^{-2 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

4516

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 2 t^{2}+1 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

4517

\[ {}y^{\prime \prime }+4 y = 8 \sin \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

4518

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 4 \,{\mathrm e}^{-t}+2 \,{\mathrm e}^{t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

4519

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 8 \,{\mathrm e}^{-t} \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

4520

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 8 \,{\mathrm e}^{t} \sin \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

4521

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 54 t \,{\mathrm e}^{-2 t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

4522

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 9 \,{\mathrm e}^{2 t} \operatorname {Heaviside}\left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

4523

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 2 \sin \left (t \right ) \operatorname {Heaviside}\left (t -\pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

4524

\[ {}y^{\prime \prime }+4 y = 8 \operatorname {Heaviside}\left (t -\pi \right ) \sin \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

4525

\[ {}y^{\prime \prime }+4 y = 8 \left (t^{2}+t -1\right ) \operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

4526

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{t} \operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

4527

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = \delta \left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

4528

\[ {}y^{\prime \prime }+4 y = 4 \operatorname {Heaviside}\left (t -\pi \right )+2 \delta \left (t -\pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

4529

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+4 y^{\prime }-4 y = 10 \,{\mathrm e}^{-t} \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

4530

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 120 \,{\mathrm e}^{3 t} \operatorname {Heaviside}\left (t -1\right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

4531

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-4 y = 40 t^{2} \operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

4532

\[ {}y^{\prime \prime \prime \prime }+4 y = \left (2 t^{2}+t +1\right ) \delta \left (t -1\right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

4552

\[ {}\left [\begin {array}{c} x^{\prime }\left (t \right )-x \left (t \right )-2 y \left (t \right )=16 t \,{\mathrm e}^{t} \\ 2 x \left (t \right )-y^{\prime }\left (t \right )-2 y \left (t \right )=0 \end {array}\right ] \]
i.c.

system_of_ODEs

4553

\[ {}\left [\begin {array}{c} x^{\prime }\left (t \right )-2 x \left (t \right )+y \left (t \right )=5 \,{\mathrm e}^{t} \cos \left (t \right ) \\ x \left (t \right )+y^{\prime }\left (t \right )-2 y \left (t \right )=10 \,{\mathrm e}^{t} \sin \left (t \right ) \end {array}\right ] \]
i.c.

system_of_ODEs

4554

\[ {}\left [\begin {array}{c} x^{\prime }\left (t \right )-4 x \left (t \right )+3 y \left (t \right )=\sin \left (t \right ) \\ 2 x \left (t \right )+y^{\prime }\left (t \right )-y \left (t \right )=2 \cos \left (t \right ) \end {array}\right ] \]
i.c.

system_of_ODEs

4555

\[ {}\left [\begin {array}{c} x^{\prime }\left (t \right )-2 x \left (t \right )-y \left (t \right )=2 \,{\mathrm e}^{t} \\ x \left (t \right )-y^{\prime }\left (t \right )+2 y \left (t \right )=3 \,{\mathrm e}^{4 t} \end {array}\right ] \]
i.c.

system_of_ODEs

4556

\[ {}\left [\begin {array}{c} x^{\prime \prime }\left (t \right )+x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-2 y \left (t \right )=40 \,{\mathrm e}^{3 t} \\ x^{\prime }\left (t \right )+x \left (t \right )-y^{\prime }\left (t \right )=36 \,{\mathrm e}^{t} \end {array}\right ] \]
i.c.

system_of_ODEs

4557

\[ {}\left [\begin {array}{c} x^{\prime }\left (t \right )-2 x \left (t \right )-y \left (t \right )=2 \,{\mathrm e}^{t} \\ y^{\prime }\left (t \right )-2 y \left (t \right )-4 z \left (t \right )=4 \,{\mathrm e}^{2 t} \\ x \left (t \right )-z^{\prime }\left (t \right )-z \left (t \right )=0 \end {array}\right ] \]
i.c.

system_of_ODEs

4558

\[ {}\left [\begin {array}{c} x^{\prime \prime }\left (t \right )+2 x \left (t \right )-2 y^{\prime }\left (t \right )=0 \\ 3 x^{\prime }\left (t \right )+y^{\prime \prime }\left (t \right )-8 y \left (t \right )=240 \,{\mathrm e}^{t} \end {array}\right ] \]
i.c.

system_of_ODEs

4559

\[ {}\left [\begin {array}{c} x^{\prime }\left (t \right )-x \left (t \right )-2 y \left (t \right )=0 \\ x \left (t \right )-y^{\prime }\left (t \right )=15 \cos \left (t \right ) \operatorname {Heaviside}\left (t -\pi \right ) \end {array}\right ] \]
i.c.

system_of_ODEs

4560

\[ {}\left [\begin {array}{c} x^{\prime }\left (t \right )-x \left (t \right )+y \left (t \right )=2 \sin \left (t \right ) \left (1-\operatorname {Heaviside}\left (t -\pi \right )\right ) \\ 2 x \left (t \right )-y^{\prime }\left (t \right )-y \left (t \right )=0 \end {array}\right ] \]
i.c.

system_of_ODEs

4561

\[ {}\left [\begin {array}{c} 2 x^{\prime }\left (t \right )+x \left (t \right )-5 y^{\prime }\left (t \right )-4 y \left (t \right )=28 \,{\mathrm e}^{t} \operatorname {Heaviside}\left (t -2\right ) \\ 3 x^{\prime }\left (t \right )-2 x \left (t \right )-4 y^{\prime }\left (t \right )+y \left (t \right )=0 \end {array}\right ] \]
i.c.

system_of_ODEs

6544

\[ {}y^{\prime }+2 y = 0 \]
i.c.

[_quadrature]

6545

\[ {}y^{\prime }+2 y = 2 \]
i.c.

[_quadrature]

6546

\[ {}y^{\prime }+2 y = {\mathrm e}^{x} \]
i.c.

[[_linear, ‘class A‘]]

6547

\[ {}y^{\prime \prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

6548

\[ {}y^{\prime \prime }-y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

6549

\[ {}y^{\prime \prime }-y = {\mathrm e}^{x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

6550

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = \sin \left (2 x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

6551

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

6552

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

6553

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 3 \,{\mathrm e}^{-2 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

6554

\[ {}y^{\prime \prime }+5 y^{\prime }-3 y = \operatorname {Heaviside}\left (x -4\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

6555

\[ {}y^{\prime \prime \prime }-y = 5 \]
i.c.

[[_3rd_order, _missing_x]]

6556

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]
i.c.

[[_high_order, _missing_x]]

6557

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = {\mathrm e}^{x} x^{2} \]
i.c.

[[_3rd_order, _linear, _nonhomogeneous]]

6558

\[ {}x^{\prime \prime }+4 x^{\prime }+4 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

6559

\[ {}q^{\prime \prime }+9 q^{\prime }+14 q = \frac {\sin \left (t \right )}{2} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

7023

\[ {}y^{\prime }+\frac {26 y}{5} = \frac {97 \sin \left (2 t \right )}{5} \]
i.c.

[[_linear, ‘class A‘]]

7024

\[ {}y^{\prime }+2 y = 0 \]
i.c.

[_quadrature]

7025

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

7026

\[ {}y^{\prime \prime }+9 y = 10 \,{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

7027

\[ {}y^{\prime \prime }-\frac {y}{4} = 0 \]
i.c.

[[_2nd_order, _missing_x]]

7028

\[ {}y^{\prime \prime }-6 y^{\prime }+5 y = 29 \cos \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

7029

\[ {}y^{\prime \prime }+7 y^{\prime }+12 y = 21 \,{\mathrm e}^{3 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

7030

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

7031

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 6 t -8 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

7032

\[ {}y^{\prime \prime }+\frac {y}{25} = \frac {t^{2}}{50} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

7033

\[ {}y^{\prime \prime }+3 y^{\prime }+\frac {9 y}{4} = 9 t^{3}+64 \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

7034

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

7035

\[ {}y^{\prime }-6 y = 0 \]
i.c.

[_quadrature]

7036

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 50 t -100 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

7037

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = 6 \,{\mathrm e}^{2 t -3} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

7038

\[ {}9 y^{\prime \prime }-6 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

7039

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = {\mathrm e}^{-3 t}-{\mathrm e}^{-5 t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

7040

\[ {}y^{\prime \prime }+10 y^{\prime }+24 y = 144 t^{2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

7041

\[ {}y^{\prime \prime }+9 y = \left \{\begin {array}{cc} 8 \sin \left (t \right ) & 0<t <\pi \\ 0 & \pi <t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

7042

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 4 t & 0<t <1 \\ 8 & 1<t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

7043

\[ {}y^{\prime \prime }+y^{\prime }-2 y = \left \{\begin {array}{cc} 3 \sin \left (t \right )-\cos \left (t \right ) & 0<t <2 \pi \\ 3 \sin \left (2 t \right )-\cos \left (2 t \right ) & 2 \pi <t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

7044

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0<t <1 \\ 0 & 1<t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

7045

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0<t <1 \\ 0 & 1<t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

7046

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = \left \{\begin {array}{cc} 10 \sin \left (t \right ) & 0<t <2 \pi \\ 0 & 2 \pi <t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

7047

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 8 t^{2} & 0<t <5 \\ 0 & 5<t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

7048

\[ {}y^{\prime \prime }+4 y = \delta \left (t -\pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

7049

\[ {}y^{\prime \prime }+16 y = 4 \delta \left (t -3 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

7050

\[ {}y^{\prime \prime }+y = \delta \left (t -\pi \right )-\delta \left (t -2 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

7051

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

7052

\[ {}4 y^{\prime \prime }+24 y^{\prime }+37 y = 17 \,{\mathrm e}^{-t}+\delta \left (t -\frac {1}{2}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

7053

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 10 \sin \left (t \right )+10 \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

7054

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = \left (1-\operatorname {Heaviside}\left (t -10\right )\right ) {\mathrm e}^{t}-{\mathrm e}^{10} \delta \left (t -10\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

7055

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = \delta \left (t -\frac {\pi }{2}\right )+\cos \left (t \right ) \operatorname {Heaviside}\left (t -\pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

7056

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = \operatorname {Heaviside}\left (t -1\right )+\delta \left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

7057

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 25 t -100 \delta \left (t -\pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

7843

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 5 \,{\mathrm e}^{3 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

7844

\[ {}y^{\prime \prime }+y^{\prime }-6 y = t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

7845

\[ {}y^{\prime \prime }-y = t^{2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

7846

\[ {}L i^{\prime }+R i = E_{0} \operatorname {Heaviside}\left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

7847

\[ {}L i^{\prime }+R i = E_{0} \delta \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

7848

\[ {}L i^{\prime }+R i = E_{0} \sin \left (\omega t \right ) \]
i.c.

[[_linear, ‘class A‘]]

7849

\[ {}y^{\prime \prime }+3 y^{\prime }-5 y = 1 \]
i.c.

[[_2nd_order, _missing_x]]

7850

\[ {}y^{\prime \prime }+3 y^{\prime }-2 y = -6 \,{\mathrm e}^{-t +\pi } \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

7851

\[ {}y^{\prime \prime }+2 y^{\prime }-y = t \,{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

7852

\[ {}y^{\prime \prime }-y^{\prime }+y = 3 \,{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

7853

\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

7854

\[ {}y^{\prime \prime }+3 y^{\prime }+3 y = 2 \]

[[_2nd_order, _missing_x]]

7855

\[ {}y^{\prime \prime }+y^{\prime }+2 y = t \]

[[_2nd_order, _with_linear_symmetries]]

7856

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = t \,{\mathrm e}^{2 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

7857

\[ {}i^{\prime \prime }+2 i^{\prime }+3 i = \left \{\begin {array}{cc} 30 & 0<t <2 \pi \\ 0 & 2 \pi \le t \le 5 \pi \\ 10 & 5 \pi <t <\infty \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8000

\[ {}y^{\prime }-y = 1 \]
i.c.

[_quadrature]

8001

\[ {}2 y^{\prime }+y = 0 \]
i.c.

[_quadrature]

8002

\[ {}y^{\prime }+6 y = {\mathrm e}^{4 t} \]
i.c.

[[_linear, ‘class A‘]]

8003

\[ {}y^{\prime }-y = 2 \cos \left (5 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

8004

\[ {}y^{\prime \prime }+5 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

8005

\[ {}y^{\prime \prime }-4 y^{\prime } = 6 \,{\mathrm e}^{3 t}-3 \,{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _missing_y]]

8006

\[ {}y^{\prime \prime }+y = \sqrt {2}\, \sin \left (\sqrt {2}\, t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8007

\[ {}y^{\prime \prime }+9 y = {\mathrm e}^{t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

8008

\[ {}2 y^{\prime \prime \prime }+3 y^{\prime \prime }-3 y^{\prime }-2 y = {\mathrm e}^{-t} \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

8009

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = \sin \left (3 t \right ) \]
i.c.

[[_3rd_order, _linear, _nonhomogeneous]]

8010

\[ {}y^{\prime }+y = {\mathrm e}^{-3 t} \cos \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

8011

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

8012

\[ {}y^{\prime }+4 y = {\mathrm e}^{-4 t} \]
i.c.

[[_linear, ‘class A‘]]

8013

\[ {}y^{\prime }-y = 1+t \,{\mathrm e}^{t} \]
i.c.

[[_linear, ‘class A‘]]

8014

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

8015

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = t^{3} {\mathrm e}^{2 t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8016

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

8017

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = t^{3} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8018

\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

8019

\[ {}2 y^{\prime \prime }+20 y^{\prime }+51 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

8020

\[ {}y^{\prime \prime }-y = {\mathrm e}^{t} \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8021

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = t +1 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

8022

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

8023

\[ {}y^{\prime \prime }+8 y^{\prime }+20 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

8024

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} 0 & 0\le t <1 \\ 5 & 1\le t \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

8025

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} 1 & 0\le t <1 \\ -1 & 1\le t \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

8026

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} t & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

8027

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 1 & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8028

\[ {}y^{\prime \prime }+4 y = \operatorname {Heaviside}\left (t -2 \pi \right ) \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8029

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = \operatorname {Heaviside}\left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8030

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} 0 & 0\le t <\pi \\ 1 & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8031

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 1-\operatorname {Heaviside}\left (t -2\right )-\operatorname {Heaviside}\left (-4+t \right )+\operatorname {Heaviside}\left (t -6\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8032

\[ {}y^{\prime }+y = t \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

8033

\[ {}y^{\prime }-y = t \,{\mathrm e}^{t} \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

8034

\[ {}y^{\prime \prime }+9 y = \cos \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8035

\[ {}y^{\prime \prime }+y = \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8036

\[ {}y^{\prime \prime }+16 y = \left \{\begin {array}{cc} \cos \left (4 t \right ) & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8037

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} 1 & 0\le t <\frac {\pi }{2} \\ \sin \left (t \right ) & \frac {\pi }{2}\le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8040

\[ {}y^{\prime \prime }+y = \sin \left (t \right )+t \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8041

\[ {}y^{\prime }-3 y = \delta \left (t -2\right ) \]
i.c.

[[_linear, ‘class A‘]]

8042

\[ {}y^{\prime }+y = \delta \left (t -1\right ) \]
i.c.

[[_linear, ‘class A‘]]

8043

\[ {}y^{\prime \prime }+y = \delta \left (t -2 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8044

\[ {}y^{\prime \prime }+16 y = \delta \left (t -2 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8045

\[ {}y^{\prime \prime }+y = \delta \left (t -\frac {\pi }{2}\right )+\delta \left (t -\frac {3 \pi }{2}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8046

\[ {}y^{\prime \prime }+y = \delta \left (t -2 \pi \right )+\delta \left (t -4 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8047

\[ {}y^{\prime \prime }+2 y^{\prime } = \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _missing_y]]

8048

\[ {}y^{\prime \prime }-2 y^{\prime } = 1+\delta \left (t -2\right ) \]
i.c.

[[_2nd_order, _missing_y]]

8049

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = \delta \left (t -2 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8050

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8051

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = \delta \left (t -\pi \right )+\delta \left (t -3 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8052

\[ {}y^{\prime \prime }-7 y^{\prime }+6 y = {\mathrm e}^{t}+\delta \left (t -2\right )+\delta \left (-4+t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8053

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

8054

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = \delta \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

8654

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = 6 \,{\mathrm e}^{2 t -2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

8734

\[ {}t y^{\prime }+y = t \]
i.c.

[_linear]

8735

\[ {}y^{\prime }-t y = 0 \]
i.c.

[_separable]

8736

\[ {}t y^{\prime }+y = 0 \]
i.c.

[_separable]

8737

\[ {}t y^{\prime }+y = 0 \]
i.c.

[_separable]

8738

\[ {}t y^{\prime }+y = 0 \]
i.c.

[_separable]

8739

\[ {}t y^{\prime }+y = 0 \]

[_separable]

8740

\[ {}t y^{\prime }+y = 0 \]
i.c.

[_separable]

8741

\[ {}t y^{\prime }+y = \sin \left (t \right ) \]
i.c.

[_linear]

8742

\[ {}t y^{\prime }+y = t \]
i.c.

[_linear]

8743

\[ {}t y^{\prime }+y = t \]
i.c.

[_linear]

8744

\[ {}y^{\prime }+t^{2} y = 0 \]
i.c.

[_separable]

8745

\[ {}\left (a t +1\right ) y^{\prime }+y = t \]
i.c.

[_linear]

8746

\[ {}y^{\prime }+\left (a t +t b \right ) y = 0 \]
i.c.

[_separable]

8747

\[ {}y^{\prime }+\left (a t +t b \right ) y = 0 \]
i.c.

[_separable]

12860

\[ {}x^{\prime }+5 x = \operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_linear, ‘class A‘]]

12861

\[ {}x^{\prime }+x = \sin \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

12862

\[ {}x^{\prime \prime }-x^{\prime }-6 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12863

\[ {}x^{\prime \prime }-2 x^{\prime }+2 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12864

\[ {}x^{\prime \prime }-2 x^{\prime }+2 x = {\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

12865

\[ {}x^{\prime \prime }-x^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12866

\[ {}x^{\prime \prime }+\frac {2 x^{\prime }}{5}+2 x = 1-\operatorname {Heaviside}\left (t -5\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

12867

\[ {}x^{\prime \prime }+9 x = \sin \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

12868

\[ {}x^{\prime \prime }-2 x = 1 \]
i.c.

[[_2nd_order, _missing_x]]

12869

\[ {}x^{\prime } = 2 x+\operatorname {Heaviside}\left (t -1\right ) \]
i.c.

[[_linear, ‘class A‘]]

12870

\[ {}x^{\prime \prime }+4 x = \cos \left (2 t \right ) \operatorname {Heaviside}\left (2 \pi -t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

12871

\[ {}x^{\prime } = x-2 \operatorname {Heaviside}\left (t -1\right ) \]
i.c.

[[_linear, ‘class A‘]]

12872

\[ {}x^{\prime } = -x+\operatorname {Heaviside}\left (t -1\right )-\operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_linear, ‘class A‘]]

12873

\[ {}x^{\prime \prime }+\pi ^{2} x = \pi ^{2} \operatorname {Heaviside}\left (-t +1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

12874

\[ {}x^{\prime \prime }-4 x = 1-\operatorname {Heaviside}\left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

12875

\[ {}x^{\prime \prime }+3 x^{\prime }+2 x = {\mathrm e}^{-4 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

12876

\[ {}x^{\prime }+3 x = \delta \left (t -1\right )+\operatorname {Heaviside}\left (-4+t \right ) \]
i.c.

[[_linear, ‘class A‘]]

12877

\[ {}x^{\prime \prime }-x = \delta \left (t -5\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

12878

\[ {}x^{\prime \prime }+x = \delta \left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

12879

\[ {}x^{\prime \prime }+4 x = \delta \left (t -2\right )-\delta \left (t -5\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

12880

\[ {}x^{\prime \prime }+x = 3 \delta \left (t -2 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

12881

\[ {}y^{\prime \prime }+y^{\prime }+y = \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

12882

\[ {}x^{\prime \prime }+4 x = \frac {\operatorname {Heaviside}\left (t -5\right ) \left (t -5\right )}{5}+\left (2-\frac {t}{5}\right ) \operatorname {Heaviside}\left (t -10\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13320

\[ {}y^{\prime }-y = {\mathrm e}^{3 t} \]
i.c.

[[_linear, ‘class A‘]]

13321

\[ {}y^{\prime }+y = 2 \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

13322

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13323

\[ {}y^{\prime \prime }+y^{\prime }-12 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13324

\[ {}y^{\prime \prime }+4 y = 8 \]
i.c.

[[_2nd_order, _missing_x]]

13325

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13326

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 18 \,{\mathrm e}^{-t} \sin \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13327

\[ {}y^{\prime \prime }+2 y^{\prime }+y = t \,{\mathrm e}^{-2 t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13328

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = 4 t \,{\mathrm e}^{-3 t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13329

\[ {}y^{\prime \prime }-8 y^{\prime }+15 y = 9 t \,{\mathrm e}^{2 t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13330

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+7 y^{\prime }-3 y = 20 \sin \left (t \right ) \]
i.c.

[[_3rd_order, _linear, _nonhomogeneous]]

13331

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 36 t \,{\mathrm e}^{4 t} \]
i.c.

[[_3rd_order, _linear, _nonhomogeneous]]

13332

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \left \{\begin {array}{cc} 2 & 0<t <4 \\ 0 & 4<t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13333

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = \left \{\begin {array}{cc} 6 & 0<t <2 \\ 0 & 2<t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13334

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = \left \{\begin {array}{cc} 1 & 0<t <\frac {\pi }{2} \\ 0 & \frac {\pi }{2}<t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13335

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = \left \{\begin {array}{cc} 3 & 0<t <2 \pi \\ 0 & 2 \pi <t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13336

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} -4 t +8 \pi & 0<t <2 \pi \\ 0 & 2<t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13337

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0<t <\pi \\ \pi & \pi <t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13695

\[ {}y^{\prime \prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13696

\[ {}4 y^{\prime \prime }-4 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13697

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13698

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13699

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13700

\[ {}4 y^{\prime \prime }-4 y^{\prime }+37 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13701

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13702

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13703

\[ {}4 y^{\prime \prime }-12 y^{\prime }+13 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13704

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13705

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13706

\[ {}y^{\prime \prime \prime \prime }+y = 0 \]
i.c.

[[_high_order, _missing_x]]

13707

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13708

\[ {}y^{\prime \prime }-20 y^{\prime }+51 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13709

\[ {}2 y^{\prime \prime }+3 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13710

\[ {}3 y^{\prime \prime }+8 y^{\prime }-3 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13711

\[ {}2 y^{\prime \prime }+20 y^{\prime }+51 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13712

\[ {}4 y^{\prime \prime }+40 y^{\prime }+101 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13713

\[ {}y^{\prime \prime }+6 y^{\prime }+34 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13714

\[ {}y^{\prime \prime \prime }+8 y^{\prime \prime }+16 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

13715

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+13 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

13716

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+13 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

13717

\[ {}y^{\prime \prime \prime }+4 y^{\prime \prime }+29 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

13718

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+25 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

13719

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+10 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

13720

\[ {}y^{\prime \prime \prime \prime }+13 y^{\prime \prime }+36 y = 0 \]
i.c.

[[_high_order, _missing_x]]

13721

\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = 9 t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13722

\[ {}4 y^{\prime \prime }+16 y^{\prime }+17 y = 17 t -1 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13723

\[ {}4 y^{\prime \prime }+5 y^{\prime }+4 y = 3 \,{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13724

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = t^{2} {\mathrm e}^{2 t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13725

\[ {}y^{\prime \prime }+9 y = {\mathrm e}^{-2 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13726

\[ {}2 y^{\prime \prime }-3 y^{\prime }+17 y = 17 t -1 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13727

\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13728

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = t +2 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13729

\[ {}2 y^{\prime }+y = {\mathrm e}^{-\frac {t}{2}} \]
i.c.

[[_linear, ‘class A‘]]

13730

\[ {}y^{\prime \prime }+8 y^{\prime }+20 y = \sin \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13731

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = t^{2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13732

\[ {}2 y^{\prime \prime }+y^{\prime }-y = 4 \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13733

\[ {}y^{\prime }-y = {\mathrm e}^{2 t} \]
i.c.

[[_linear, ‘class A‘]]

13734

\[ {}3 y^{\prime \prime }+5 y^{\prime }-2 y = 7 \,{\mathrm e}^{-2 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13735

\[ {}y^{\prime }+y = \operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_linear, ‘class A‘]]

13736

\[ {}y^{\prime }-2 y = 4 t \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -2\right )\right ) \]
i.c.

[[_linear, ‘class A‘]]

13737

\[ {}y^{\prime \prime }+9 y = 24 \sin \left (t \right ) \left (\operatorname {Heaviside}\left (t \right )+\operatorname {Heaviside}\left (t -\pi \right )\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13738

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13739

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 5 \cos \left (t \right ) \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right )\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13740

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 36 t \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -1\right )\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13741

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = 39 \operatorname {Heaviside}\left (t \right )-507 \left (t -2\right ) \operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13742

\[ {}y^{\prime \prime }+4 y = 3 \operatorname {Heaviside}\left (t \right )-3 \operatorname {Heaviside}\left (-4+t \right )+\left (2 t -5\right ) \operatorname {Heaviside}\left (-4+t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13743

\[ {}4 y^{\prime \prime }+4 y^{\prime }+5 y = 25 t \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right )\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13744

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = \operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -1\right )+\operatorname {Heaviside}\left (t -2\right )-\operatorname {Heaviside}\left (t -3\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13745

\[ {}y^{\prime \prime }-2 y^{\prime } = \left \{\begin {array}{cc} 4 & 0\le t <1 \\ 6 & 1\le t \end {array}\right . \]
i.c.

[[_2nd_order, _missing_y]]

13746

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \left \{\begin {array}{cc} 0 & 0\le t <1 \\ 1 & 1\le t <2 \\ -1 & 2\le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13747

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0\le t <2 \\ -1 & 2\le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13748

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0\le t <\pi \\ -t & \pi \le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13749

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 8 t & 0\le t <\frac {\pi }{2} \\ 8 \pi & \frac {\pi }{2}\le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13750

\[ {}y^{\prime \prime }+4 \pi ^{2} y = 3 \delta \left (t -\frac {1}{3}\right )-\delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13751

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 3 \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13752

\[ {}y^{\prime \prime }+4 y^{\prime }+29 y = 5 \delta \left (t -\pi \right )-5 \delta \left (t -2 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13753

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 1-\delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13754

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = {\mathrm e}^{-\frac {t}{2}} \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13755

\[ {}y^{\prime \prime }-7 y^{\prime }+6 y = \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13756

\[ {}10 Q^{\prime }+100 Q = \operatorname {Heaviside}\left (t -1\right )-\operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_linear, ‘class A‘]]

13757

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }+4 y^{\prime }+4 y = 8 \]
i.c.

[[_3rd_order, _missing_x]]

13758

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 4 t \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

13759

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+4 y^{\prime }-4 y = 8 \,{\mathrm e}^{2 t}-5 \,{\mathrm e}^{t} \]
i.c.

[[_3rd_order, _linear, _nonhomogeneous]]

13760

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+y^{\prime }-y = -t^{2}+2 t -10 \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

13761

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 12 \operatorname {Heaviside}\left (t \right )-12 \operatorname {Heaviside}\left (t -1\right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

13762

\[ {}y^{\prime \prime \prime \prime }-16 y = 32 \operatorname {Heaviside}\left (t \right )-32 \operatorname {Heaviside}\left (t -\pi \right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

14197

\[ {}y^{\prime }-y = 0 \]

[_quadrature]

14198

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

14199

\[ {}y^{\prime }+2 y = 4 \]

[_quadrature]

14200

\[ {}y^{\prime \prime }-9 y = 2 \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14201

\[ {}y^{\prime \prime }+9 y = 2 \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14202

\[ {}y^{\prime \prime }+y^{\prime }-2 y = x \,{\mathrm e}^{x}-3 x^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

14203

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+y^{\prime \prime } = x \,{\mathrm e}^{x}-3 x^{2} \]

[[_high_order, _missing_y]]

14204

\[ {}y^{\prime } = {\mathrm e}^{x} \]
i.c.

[_quadrature]

14205

\[ {}y^{\prime }-y = 2 \,{\mathrm e}^{x} \]
i.c.

[[_linear, ‘class A‘]]

14206

\[ {}y^{\prime \prime }-9 y = x +2 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14207

\[ {}y^{\prime \prime }+9 y = x +2 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14208

\[ {}y^{\prime \prime }-y^{\prime }+6 y = -2 \sin \left (3 x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14209

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = -x^{2}+1 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14210

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime } = x +\cos \left (x \right ) \]
i.c.

[[_3rd_order, _missing_y]]

14211

\[ {}y^{\prime }-2 y = 6 \]
i.c.

[_quadrature]

14212

\[ {}y^{\prime }+y = {\mathrm e}^{x} \]
i.c.

[[_linear, ‘class A‘]]

14213

\[ {}y^{\prime \prime }+9 y = 1 \]
i.c.

[[_2nd_order, _missing_x]]

14214

\[ {}y^{\prime \prime }+9 y = 18 \,{\mathrm e}^{3 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14215

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14216

\[ {}y^{\prime \prime }-y^{\prime }-2 y = x^{2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14217

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14218

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+4 y^{\prime }-4 y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

14219

\[ {}y^{\prime }+2 y = \left \{\begin {array}{cc} 2 & 0\le x <1 \\ 1 & 1\le x \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

14220

\[ {}y^{\prime \prime }-y^{\prime }-2 y = \left \{\begin {array}{cc} 1 & 2\le x <4 \\ 0 & \operatorname {otherwise} \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14221

\[ {}y^{\prime \prime }-2 y^{\prime } = \left \{\begin {array}{cc} 0 & 0\le x <1 \\ \left (x -1\right )^{2} & 1\le x \end {array}\right . \]
i.c.

[[_2nd_order, _missing_y]]

14222

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \left \{\begin {array}{cc} 0 & 0\le x <1 \\ x^{2}-2 x +3 & 1\le x \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14223

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 0 & 0\le x <\pi \\ -\sin \left (3 x \right ) & \pi \le x \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14224

\[ {}y^{\prime \prime }-4 y = \left \{\begin {array}{cc} x & 0\le x <1 \\ 1 & 1\le x \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14225

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = \left \{\begin {array}{cc} x & 0\le x <1 \\ 1 & 1\le x \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14226

\[ {}y^{\prime }+3 y = \delta \left (-2+x \right ) \]
i.c.

[[_linear, ‘class A‘]]

14227

\[ {}y^{\prime }-3 y = \delta \left (x -1\right )+2 \operatorname {Heaviside}\left (-2+x \right ) \]
i.c.

[[_linear, ‘class A‘]]

14228

\[ {}y^{\prime \prime }+9 y = \delta \left (x -\pi \right )+\delta \left (x -3 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14229

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 \delta \left (x -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14230

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = \cos \left (x \right )+2 \delta \left (x -\pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14231

\[ {}y^{\prime \prime }+4 y = \cos \left (x \right ) \delta \left (x -\pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14232

\[ {}y^{\prime \prime }+a^{2} y = \delta \left (x -\pi \right ) f \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14635

\[ {}y^{\prime \prime }+4 y = 8 \]
i.c.

[[_2nd_order, _missing_x]]

14636

\[ {}y^{\prime \prime }-4 y = {\mathrm e}^{2 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14637

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 2 \,{\mathrm e}^{t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14638

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = 13 \operatorname {Heaviside}\left (-4+t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14639

\[ {}y^{\prime \prime }+4 y = \cos \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14640

\[ {}y^{\prime \prime }+3 y = \operatorname {Heaviside}\left (-4+t \right ) \cos \left (-20+5 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14641

\[ {}y^{\prime \prime }+4 y^{\prime }+9 y = 20 \operatorname {Heaviside}\left (t -2\right ) \sin \left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14642

\[ {}y^{\prime \prime }+3 y = \left \{\begin {array}{cc} t & 0\le t <1 \\ 1 & 1\le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14643

\[ {}y^{\prime \prime }+3 y = 5 \delta \left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14644

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = \delta \left (t -3\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14645

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = -2 \delta \left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14646

\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = \delta \left (t -1\right )-3 \delta \left (-4+t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14647

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = {\mathrm e}^{-2 t} \sin \left (4 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14648

\[ {}y^{\prime \prime }+y^{\prime }+5 y = \operatorname {Heaviside}\left (t -2\right ) \sin \left (4 t -8\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14649

\[ {}y^{\prime \prime }+y^{\prime }+8 y = \left (1-\operatorname {Heaviside}\left (-4+t \right )\right ) \cos \left (-4+t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14650

\[ {}y^{\prime \prime }+y^{\prime }+3 y = \left (1-\operatorname {Heaviside}\left (t -2\right )\right ) {\mathrm e}^{-\frac {t}{10}+\frac {1}{5}} \sin \left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14651

\[ {}y^{\prime \prime }+16 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14652

\[ {}y^{\prime \prime }+4 y = \sin \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14653

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14654

\[ {}y^{\prime \prime }+16 y = t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

15261

\[ {}y^{\prime }+4 y = 0 \]
i.c.

[_quadrature]

15262

\[ {}y^{\prime }-2 y = t^{3} \]
i.c.

[[_linear, ‘class A‘]]

15263

\[ {}y^{\prime }+3 y = \operatorname {Heaviside}\left (-4+t \right ) \]
i.c.

[[_linear, ‘class A‘]]

15264

\[ {}y^{\prime \prime }-4 y = t^{3} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

15265

\[ {}y^{\prime \prime }+4 y = 20 \,{\mathrm e}^{4 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

15266

\[ {}y^{\prime \prime }+4 y = \sin \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

15267

\[ {}y^{\prime \prime }+4 y = 3 \operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

15268

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = {\mathrm e}^{4 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

15269

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = t^{2} {\mathrm e}^{4 t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

15270

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 7 \]
i.c.

[[_2nd_order, _missing_x]]

15271

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = {\mathrm e}^{2 t} \sin \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

15272

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = 4 t +2 \,{\mathrm e}^{2 t} \sin \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

15273

\[ {}y^{\prime \prime \prime }-27 y = {\mathrm e}^{-3 t} \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

15274

\[ {}t y^{\prime \prime }+y^{\prime }+t y = 0 \]
i.c.

[_Lienard]

15275

\[ {}y^{\prime \prime }-9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15276

\[ {}y^{\prime \prime }+9 y = 27 t^{3} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

15277

\[ {}y^{\prime \prime }+8 y^{\prime }+7 y = 165 \,{\mathrm e}^{4 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

15278

\[ {}y^{\prime \prime }-8 y^{\prime }+17 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15279

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{3 t} t^{2} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

15280

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15281

\[ {}y^{\prime \prime }+8 y^{\prime }+17 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15282

\[ {}y^{\prime \prime } = {\mathrm e}^{t} \sin \left (t \right ) \]
i.c.

[[_2nd_order, _quadrature]]

15283

\[ {}y^{\prime \prime }-4 y^{\prime }+40 y = 122 \,{\mathrm e}^{-3 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

15284

\[ {}y^{\prime \prime }-9 y = 24 \,{\mathrm e}^{-3 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

15285

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = {\mathrm e}^{2 t} \sin \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

15286

\[ {}y^{\prime \prime }+4 y = 1 \]
i.c.

[[_2nd_order, _missing_x]]

15287

\[ {}y^{\prime \prime }+4 y = t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

15288

\[ {}y^{\prime \prime }+4 y = {\mathrm e}^{3 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

15289

\[ {}y^{\prime \prime }+4 y = \sin \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

15290

\[ {}y^{\prime \prime }+4 y = \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

15291

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 1 \]
i.c.

[[_2nd_order, _missing_x]]

15292

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

15293

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{3 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

15294

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{-3 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

15295

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

15296

\[ {}y^{\prime } = \operatorname {Heaviside}\left (t -3\right ) \]
i.c.

[_quadrature]

15297

\[ {}y^{\prime } = \operatorname {Heaviside}\left (t -3\right ) \]
i.c.

[_quadrature]

15298

\[ {}y^{\prime \prime } = \operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_2nd_order, _quadrature]]

15299

\[ {}y^{\prime \prime } = \operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_2nd_order, _quadrature]]

15300

\[ {}y^{\prime \prime }+9 y = \operatorname {Heaviside}\left (t -10\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

15301

\[ {}y^{\prime } = \left \{\begin {array}{cc} 0 & t <1 \\ 1 & 1<t <3 \\ 0 & 3<t \end {array}\right . \]
i.c.

[_quadrature]

15302

\[ {}y^{\prime \prime } = \left \{\begin {array}{cc} 0 & t <1 \\ 1 & 1<t <3 \\ 0 & 3<t \end {array}\right . \]
i.c.

[[_2nd_order, _quadrature]]

15303

\[ {}y^{\prime \prime }+9 y = \left \{\begin {array}{cc} 0 & t <1 \\ 1 & 1<t <3 \\ 0 & 3<t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

15304

\[ {}y^{\prime } = 3 \delta \left (t -2\right ) \]
i.c.

[_quadrature]

15305

\[ {}y^{\prime } = \delta \left (t -2\right )-\delta \left (-4+t \right ) \]
i.c.

[_quadrature]

15306

\[ {}y^{\prime \prime } = \delta \left (t -3\right ) \]
i.c.

[[_2nd_order, _quadrature]]

15307

\[ {}y^{\prime \prime } = \delta \left (t -1\right )-\delta \left (-4+t \right ) \]
i.c.

[[_2nd_order, _quadrature]]

15308

\[ {}y^{\prime }+2 y = 4 \delta \left (t -1\right ) \]
i.c.

[[_linear, ‘class A‘]]

15309

\[ {}y^{\prime \prime }+y = \delta \left (t \right )+\delta \left (t -\pi \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15310

\[ {}y^{\prime \prime }+y = -2 \delta \left (t -\frac {\pi }{2}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

15311

\[ {}y^{\prime }+3 y = \delta \left (t -2\right ) \]
i.c.

[[_linear, ‘class A‘]]

15312

\[ {}y^{\prime \prime }+3 y^{\prime } = \delta \left (t \right ) \]

[[_2nd_order, _missing_y]]

15313

\[ {}y^{\prime \prime }+3 y^{\prime } = \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _missing_y]]

15314

\[ {}y^{\prime \prime }+16 y = \delta \left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

15315

\[ {}y^{\prime \prime }-16 y = \delta \left (t -10\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

15316

\[ {}y^{\prime \prime }+y = \delta \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

15317

\[ {}y^{\prime \prime }+4 y^{\prime }-12 y = \delta \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

15318

\[ {}y^{\prime \prime }+4 y^{\prime }-12 y = \delta \left (t -3\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

15319

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = \delta \left (-4+t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

15320

\[ {}y^{\prime \prime }-12 y^{\prime }+45 y = \delta \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

15321

\[ {}y^{\prime \prime \prime }+9 y^{\prime } = \delta \left (t -1\right ) \]
i.c.

[[_3rd_order, _missing_y]]

15322

\[ {}y^{\prime \prime \prime \prime }-16 y = \delta \left (t \right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

16959

\[ {}x^{\prime }+3 x = {\mathrm e}^{-2 t} \]
i.c.

[[_linear, ‘class A‘]]

16960

\[ {}x^{\prime }-3 x = 3 t^{3}+3 t^{2}+2 t +1 \]
i.c.

[[_linear, ‘class A‘]]

16961

\[ {}x^{\prime }-x = \cos \left (t \right )-\sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

16962

\[ {}2 x^{\prime }+6 x = t \,{\mathrm e}^{-3 t} \]
i.c.

[[_linear, ‘class A‘]]

16963

\[ {}x^{\prime }+x = 2 \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

16964

\[ {}x^{\prime \prime } = 0 \]
i.c.

[[_2nd_order, _quadrature]]

16965

\[ {}x^{\prime \prime } = 1 \]
i.c.

[[_2nd_order, _quadrature]]

16966

\[ {}x^{\prime \prime } = \cos \left (t \right ) \]
i.c.

[[_2nd_order, _quadrature]]

16967

\[ {}x^{\prime \prime }+x^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16968

\[ {}x^{\prime \prime }+x^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16969

\[ {}x^{\prime \prime }-x^{\prime } = 1 \]
i.c.

[[_2nd_order, _missing_x]]

16970

\[ {}x^{\prime \prime }+x = t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

16971

\[ {}x^{\prime \prime }+6 x^{\prime } = 12 t +2 \]
i.c.

[[_2nd_order, _missing_y]]

16972

\[ {}x^{\prime \prime }-2 x^{\prime }+2 x = 2 \]
i.c.

[[_2nd_order, _missing_x]]

16973

\[ {}x^{\prime \prime }+4 x^{\prime }+4 x = 4 \]
i.c.

[[_2nd_order, _missing_x]]

16974

\[ {}2 x^{\prime \prime }-2 x^{\prime } = \left (t +1\right ) {\mathrm e}^{t} \]
i.c.

[[_2nd_order, _missing_y]]

16975

\[ {}x^{\prime \prime }+x = 2 \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17388

\[ {}y^{\prime \prime }+2 y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17389

\[ {}9 y^{\prime \prime }+12 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17390

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17391

\[ {}6 y^{\prime \prime }+5 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17392

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = t^{2} {\mathrm e}^{t}+7 \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17393

\[ {}y^{\prime \prime }-5 y^{\prime }-6 y = t^{2}+7 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

17394

\[ {}y^{\prime \prime }+4 y = 3 \,{\mathrm e}^{-2 t} \sin \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17395

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = t \cos \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17396

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

17397

\[ {}y^{\prime \prime \prime \prime }-6 y = t \,{\mathrm e}^{-t} \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

17398

\[ {}y^{\prime \prime }+16 y = \left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17399

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17400

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} t & 0\le t <1 \\ 1 & 1\le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17401

\[ {}y^{\prime \prime }-4 y^{\prime }-12 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17402

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

17403

\[ {}y^{\prime \prime }-8 y^{\prime }+25 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17404

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17405

\[ {}y^{\prime \prime }-2 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17406

\[ {}y^{\prime \prime }+4 y^{\prime }+29 y = {\mathrm e}^{-2 t} \sin \left (5 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17407

\[ {}y^{\prime \prime }+w^{2} y = \cos \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17408

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17409

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

17410

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 18 \,{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

17411

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = 0 \]
i.c.

[[_high_order, _missing_x]]

17412

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]
i.c.

[[_high_order, _missing_x]]

17413

\[ {}y^{\prime \prime \prime \prime }-9 y = 0 \]
i.c.

[[_high_order, _missing_x]]

17414

\[ {}\left [\begin {array}{c} y_{1}^{\prime }\left (t \right )=-5 y_{1} \left (t \right )+y_{2} \left (t \right ) \\ y_{2}^{\prime }\left (t \right )=-9 y_{1} \left (t \right )+5 y_{2} \left (t \right ) \end {array}\right ] \]
i.c.

system_of_ODEs

17415

\[ {}\left [\begin {array}{c} y_{1}^{\prime }\left (t \right )=5 y_{1} \left (t \right )-2 y_{2} \left (t \right ) \\ y_{2}^{\prime }\left (t \right )=6 y_{1} \left (t \right )-2 y_{2} \left (t \right ) \end {array}\right ] \]
i.c.

system_of_ODEs

17416

\[ {}\left [\begin {array}{c} y_{1}^{\prime }\left (t \right )=4 y_{1} \left (t \right )-4 y_{2} \left (t \right ) \\ y_{2}^{\prime }\left (t \right )=5 y_{1} \left (t \right )-4 y_{2} \left (t \right ) \end {array}\right ] \]
i.c.

system_of_ODEs

17417

\[ {}\left [\begin {array}{c} y_{1}^{\prime }\left (t \right )=6 y_{2} \left (t \right ) \\ y_{2}^{\prime }\left (t \right )=-6 y_{1} \left (t \right ) \end {array}\right ] \]
i.c.

system_of_ODEs

17418

\[ {}\left [\begin {array}{c} y_{1}^{\prime }\left (t \right )=-4 y_{1} \left (t \right )-y_{2} \left (t \right ) \\ y_{2}^{\prime }\left (t \right )=y_{1} \left (t \right )-2 y_{2} \left (t \right ) \end {array}\right ] \]
i.c.

system_of_ODEs

17419

\[ {}\left [\begin {array}{c} y_{1}^{\prime }\left (t \right )=2 y_{1} \left (t \right )-64 y_{2} \left (t \right ) \\ y_{2}^{\prime }\left (t \right )=y_{1} \left (t \right )-14 y_{2} \left (t \right ) \end {array}\right ] \]
i.c.

system_of_ODEs

17420

\[ {}\left [\begin {array}{c} y_{1}^{\prime }\left (t \right )=-4 y_{1} \left (t \right )-y_{2} \left (t \right )+2 \,{\mathrm e}^{t} \\ y_{2}^{\prime }\left (t \right )=y_{1} \left (t \right )-2 y_{2} \left (t \right )+\sin \left (2 t \right ) \end {array}\right ] \]
i.c.

system_of_ODEs

17421

\[ {}\left [\begin {array}{c} y_{1}^{\prime }\left (t \right )=5 y_{1} \left (t \right )-y_{2} \left (t \right )+{\mathrm e}^{-t} \\ y_{2}^{\prime }\left (t \right )=y_{1} \left (t \right )+3 y_{2} \left (t \right )+2 \,{\mathrm e}^{t} \end {array}\right ] \]
i.c.

system_of_ODEs

17422

\[ {}\left [\begin {array}{c} y_{1}^{\prime }\left (t \right )=-y_{1} \left (t \right )-5 y_{2} \left (t \right )+3 \\ y_{2}^{\prime }\left (t \right )=y_{1} \left (t \right )+3 y_{2} \left (t \right )+5 \cos \left (t \right ) \end {array}\right ] \]
i.c.

system_of_ODEs

17423

\[ {}\left [\begin {array}{c} y_{1}^{\prime }\left (t \right )=-2 y_{1} \left (t \right )+y_{2} \left (t \right ) \\ y_{2}^{\prime }\left (t \right )=y_{1} \left (t \right )-2 y_{2} \left (t \right )+\sin \left (t \right ) \end {array}\right ] \]
i.c.

system_of_ODEs

17424

\[ {}\left [\begin {array}{c} y_{1}^{\prime }\left (t \right )=y_{2} \left (t \right )-y_{3} \left (t \right ) \\ y_{2}^{\prime }\left (t \right )=y_{1} \left (t \right )+y_{3} \left (t \right )-{\mathrm e}^{-t} \\ y_{3}^{\prime }\left (t \right )=y_{1} \left (t \right )+y_{2} \left (t \right )+{\mathrm e}^{t} \end {array}\right ] \]
i.c.

system_of_ODEs

17425

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} 1 & 0\le t <\frac {\pi }{2} \\ 0 & \frac {\pi }{2}\le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17426

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \left \{\begin {array}{cc} 0 & 0\le t <\pi \\ 1 & \pi \le t \le 2 \pi \\ 0 & t \le 2 \pi \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17427

\[ {}y^{\prime \prime }+4 y = \sin \left (t \right )-\operatorname {Heaviside}\left (t -2 \pi \right ) \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17428

\[ {}y^{\prime \prime }+4 y = \sin \left (t \right )-\sin \left (t \right ) \operatorname {Heaviside}\left (t -\pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17429

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0\le t <10 \\ 0 & 10\le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17430

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17431

\[ {}y^{\prime \prime }+y = \operatorname {Heaviside}\left (t -3 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17432

\[ {}y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = t -\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right ) \left (t -\frac {\pi }{2}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17433

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} \frac {t}{2} & 0\le t <6 \\ 3 & 6\le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17434

\[ {}y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = \left \{\begin {array}{cc} \sin \left (t \right ) & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17435

\[ {}y^{\prime \prime }+4 y = \operatorname {Heaviside}\left (t -\pi \right )-\operatorname {Heaviside}\left (t -3 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17436

\[ {}y^{\prime \prime \prime \prime }-y = \operatorname {Heaviside}\left (t -1\right )-\operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

17437

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 1-\operatorname {Heaviside}\left (t -\pi \right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

17438

\[ {}u^{\prime \prime }+\frac {u^{\prime }}{4}+u = \frac {\left (\left \{\begin {array}{cc} 1 & \frac {3}{2}\le t <\frac {5}{2} \\ 0 & \operatorname {otherwise} \end {array}\right .\right )}{2} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17439

\[ {}u^{\prime \prime }+\frac {u^{\prime }}{4}+u = \left \{\begin {array}{cc} 1 & \frac {3}{2}\le t <\frac {5}{2} \\ 0 & \operatorname {otherwise} \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17440

\[ {}u^{\prime \prime }+\frac {u^{\prime }}{4}+u = 2 \left (\left \{\begin {array}{cc} 1 & \frac {3}{2}\le t <\frac {5}{2} \\ 0 & \operatorname {otherwise} \end {array}\right .\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17441

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \delta \left (t -\pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17442

\[ {}y^{\prime \prime }+4 y = \delta \left (t -\pi \right )-\delta \left (t -2 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17443

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \delta \left (t -\pi \right )+\operatorname {Heaviside}\left (t -10\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17444

\[ {}y^{\prime \prime }-y = -20 \delta \left (t -3\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17445

\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = \sin \left (t \right )+\delta \left (t -3 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17446

\[ {}y^{\prime \prime }+4 y = \delta \left (t -4 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17447

\[ {}y^{\prime \prime }+y = \delta \left (t -2 \pi \right ) \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17448

\[ {}y^{\prime \prime }+4 y = 2 \delta \left (t -\frac {\pi }{4}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17449

\[ {}y^{\prime \prime }+y = \operatorname {Heaviside}\left (t -\frac {\pi }{2}\right )+3 \delta \left (t -\frac {3 \pi }{2}\right )-\operatorname {Heaviside}\left (t -2 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17450

\[ {}2 y^{\prime \prime }+y^{\prime }+6 y = \delta \left (t -\frac {\pi }{6}\right ) \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17451

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \cos \left (t \right )+\delta \left (t -\frac {\pi }{2}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17452

\[ {}y^{\prime \prime \prime \prime }-y = \delta \left (t -1\right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

17453

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{2}+y = \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17454

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{4}+y = \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17455

\[ {}y^{\prime \prime }+y = \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17456

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{5}+y = k \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17457

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{10}+y = k \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17458

\[ {}y^{\prime \prime }+w^{2} y = g \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17459

\[ {}y^{\prime \prime }+6 y^{\prime }+25 y = \sin \left (\alpha t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17460

\[ {}4 y^{\prime \prime }+4 y^{\prime }+17 y = g \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17461

\[ {}y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = 1-\operatorname {Heaviside}\left (t -\pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17462

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = g \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17463

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left (\alpha t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17464

\[ {}y^{\prime \prime \prime \prime }-16 y = g \left (t \right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

17465

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime }+16 y = g \left (t \right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

17466

\[ {}\frac {7 y^{\prime \prime }}{5}+y = \operatorname {Heaviside}\left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17467

\[ {}\frac {8 y^{\prime \prime }}{5}+y = \operatorname {Heaviside}\left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17539

\[ {}\left [\begin {array}{c} x_{1}^{\prime }\left (t \right )=-4 x_{1} \left (t \right )-x_{2} \left (t \right ) \\ x_{2}^{\prime }\left (t \right )=x_{1} \left (t \right )-2 x_{2} \left (t \right ) \end {array}\right ] \]

system_of_ODEs

17540

\[ {}\left [\begin {array}{c} x_{1}^{\prime }\left (t \right )=5 x_{1} \left (t \right )-x_{2} \left (t \right ) \\ x_{2}^{\prime }\left (t \right )=x_{1} \left (t \right )+3 x_{2} \left (t \right ) \end {array}\right ] \]

system_of_ODEs

17541

\[ {}\left [\begin {array}{c} x_{1}^{\prime }\left (t \right )=-x_{1} \left (t \right )-5 x_{2} \left (t \right ) \\ x_{2}^{\prime }\left (t \right )=x_{1} \left (t \right )+3 x_{2} \left (t \right ) \end {array}\right ] \]

system_of_ODEs

17542

\[ {}\left [\begin {array}{c} x_{1}^{\prime }\left (t \right )=x_{2} \left (t \right )-x_{3} \left (t \right ) \\ x_{2}^{\prime }\left (t \right )=x_{1} \left (t \right )+x_{3} \left (t \right ) \\ x_{3}^{\prime }\left (t \right )=x_{1} \left (t \right )+x_{2} \left (t \right ) \end {array}\right ] \]

system_of_ODEs

18128

\[ {}y^{\prime }+y = 3 \,{\mathrm e}^{2 x} \]
i.c.

[[_linear, ‘class A‘]]

18129

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

18130

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 2 \]
i.c.

[[_2nd_order, _missing_x]]

18131

\[ {}y^{\prime \prime }+y^{\prime } = 3 x^{2} \]
i.c.

[[_2nd_order, _missing_y]]

18132

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 3 \,{\mathrm e}^{-x} \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

18133

\[ {}y^{\prime \prime }-2 a y^{\prime }+a^{2} y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

18134

\[ {}x y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }-\left (4 x +9\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

18135

\[ {}x y^{\prime \prime }+\left (2 x +3\right ) y^{\prime }+\left (x +3\right ) y = 3 \,{\mathrm e}^{-x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

18136

\[ {}y^{\prime \prime }+x^{2} y = 0 \]
i.c.

[[_Emden, _Fowler]]

18137

\[ {}y^{\prime \prime }+a^{2} y = f \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

18138

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 4 \,{\mathrm e}^{3 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

18139

\[ {}y^{\prime \prime }+y^{\prime }-6 y = t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

18140

\[ {}y^{\prime \prime }-y^{\prime } = t^{2} \]
i.c.

[[_2nd_order, _missing_y]]

18141

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = f \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]