Chapter 1
Lookup tables for all problems in current book

1.1 section 1
1.2 section 2

1.1 section 1

Table 1.1: Lookup table

ID

problem

ODE

8748

1

\(y^{\prime \prime } = 0\)

8749

2

\({y^{\prime \prime }}^{2} = 0\)

8750

3

\({y^{\prime \prime }}^{n} = 0\)

8751

4

\(a y^{\prime \prime } = 0\)

8752

5

\(a {y^{\prime \prime }}^{2} = 0\)

8753

6

\(a {y^{\prime \prime }}^{n} = 0\)

8754

7

\(y^{\prime \prime } = 1\)

8755

8

\({y^{\prime \prime }}^{2} = 1\)

8756

9

\(y^{\prime \prime } = x\)

8757

10

\({y^{\prime \prime }}^{2} = x\)

8758

11

\({y^{\prime \prime }}^{3} = 0\)

8759

12

\(y^{\prime \prime }+y^{\prime } = 0\)

8760

13

\({y^{\prime \prime }}^{2}+y^{\prime } = 0\)

8761

14

\(y^{\prime \prime }+{y^{\prime }}^{2} = 0\)

8762

15

\(y^{\prime \prime }+y^{\prime } = 1\)

8763

16

\({y^{\prime \prime }}^{2}+y^{\prime } = 1\)

8764

17

\(y^{\prime \prime }+{y^{\prime }}^{2} = 1\)

8765

18

\(y^{\prime \prime }+y^{\prime } = x\)

8766

19

\({y^{\prime \prime }}^{2}+y^{\prime } = x\)

8767

20

\(y^{\prime \prime }+{y^{\prime }}^{2} = x\)

8768

21

\(y^{\prime \prime }+y^{\prime }+y = 0\)

8769

22

\({y^{\prime \prime }}^{2}+y^{\prime }+y = 0\)

8770

23

\(y^{\prime \prime }+{y^{\prime }}^{2}+y = 0\)

8771

24

\(y^{\prime \prime }+y^{\prime }+y = 1\)

8772

25

\(y^{\prime \prime }+y^{\prime }+y = x\)

8773

26

\(y^{\prime \prime }+y^{\prime }+y = 1+x\)

8774

27

\(y^{\prime \prime }+y^{\prime }+y = x^{2}+x +1\)

8775

28

\(y^{\prime \prime }+y^{\prime }+y = x^{3}+x^{2}+x +1\)

8776

29

\(y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right )\)

8777

30

\(y^{\prime \prime }+y^{\prime }+y = \cos \left (x \right )\)

8778

31

\(y^{\prime \prime }+y^{\prime } = 1\)

8779

32

\(y^{\prime \prime }+y^{\prime } = x\)

8780

33

\(y^{\prime \prime }+y^{\prime } = 1+x\)

8781

34

\(y^{\prime \prime }+y^{\prime } = x^{2}+x +1\)

8782

35

\(y^{\prime \prime }+y^{\prime } = x^{3}+x^{2}+x +1\)

8783

36

\(y^{\prime \prime }+y^{\prime } = \sin \left (x \right )\)

8784

37

\(y^{\prime \prime }+y^{\prime } = \cos \left (x \right )\)

8785

38

\(y^{\prime \prime }+y = 1\)

8786

39

\(y^{\prime \prime }+y = x\)

8787

40

\(y^{\prime \prime }+y = 1+x\)

8788

41

\(y^{\prime \prime }+y = x^{2}+x +1\)

8789

42

\(y^{\prime \prime }+y = x^{3}+x^{2}+x +1\)

8790

43

\(y^{\prime \prime }+y = \sin \left (x \right )\)

8791

44

\(y^{\prime \prime }+y = \cos \left (x \right )\)

8792

45

\(y {y^{\prime \prime }}^{2}+y^{\prime } = 0\)

8793

46

\(y {y^{\prime \prime }}^{2}+{y^{\prime }}^{3} = 0\)

8794

47

\(y^{2} {y^{\prime \prime }}^{2}+y^{\prime } = 0\)

8795

48

\(y {y^{\prime \prime }}^{4}+{y^{\prime }}^{2} = 0\)

8796

49

\(y^{3} {y^{\prime \prime }}^{2}+y y^{\prime } = 0\)

8797

50

\(y y^{\prime \prime }+{y^{\prime }}^{3} = 0\)

8798

51

\(y {y^{\prime \prime }}^{3}+y^{3} y^{\prime } = 0\)

8799

52

\(y {y^{\prime \prime }}^{3}+y^{3} {y^{\prime }}^{5} = 0\)

1.2 section 2

Table 1.3: Lookup table

ID

problem

ODE

8800

1

\(y^{\prime \prime }+x y^{\prime }+y {y^{\prime }}^{2} = 0\)

8801

2

\(y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+y {y^{\prime }}^{2} = 0\)

8802

3

\(y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y^{2} {y^{\prime }}^{2} = 0\)

8803

4

\(y^{\prime \prime }+\left (\sin \left (x \right )+2 x \right ) y^{\prime }+\cos \left (y\right ) y {y^{\prime }}^{2} = 0\)

8804

5

\(y^{\prime \prime } y^{\prime }+y^{2} = 0\)

8805

6

\(y^{\prime \prime } y^{\prime }+y^{n} = 0\)

8806

8

\(y^{\prime } = \left (x +y\right )^{4}\)

8807

9

\(y^{\prime \prime }+\left (x +3\right ) y^{\prime }+\left (3+y^{2}\right ) {y^{\prime }}^{2} = 0\)

8808

10

\(y^{\prime \prime }+x y^{\prime }+y {y^{\prime }}^{2} = 0\)

8809

11

\(y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+{y^{\prime }}^{2} = 0\)

8810

12

\(3 y^{\prime \prime }+\cos \left (x \right ) y^{\prime }+\sin \left (y\right ) {y^{\prime }}^{2} = 0\)

8811

13

\(10 y^{\prime \prime }+x^{2} y^{\prime }+\frac {3 {y^{\prime }}^{2}}{y} = 0\)

8812

14

\(10 y^{\prime \prime }+\left ({\mathrm e}^{x}+3 x \right ) y^{\prime }+\frac {3 \,{\mathrm e}^{y} {y^{\prime }}^{2}}{\sin \left (y\right )} = 0\)

8813

15

\(y^{\prime \prime }-\frac {2 y}{x^{2}} = x \,{\mathrm e}^{-\sqrt {x}}\)

8814

16

\(y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}} = x\)

8815

17

\(y^{\prime \prime }+\frac {2 y^{\prime }}{x}+\frac {a^{2} y}{x^{4}} = 0\)

8816

18

\(\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }-c^{2} y = 0\)

8817

19

\(x^{6} y^{\prime \prime }+3 x^{5} y^{\prime }+a^{2} y = \frac {1}{x^{2}}\)

8818

20

\(x^{2} y^{\prime \prime }-3 x y^{\prime }+3 y = 2 x^{3}-x^{2}\)

8819

21

\(y^{\prime \prime }+\cot \left (x \right ) y^{\prime }+4 y \csc \left (x \right )^{2} = 0\)

8820

22

\(\left (x^{2}+1\right ) y^{\prime \prime }+\left (1+x \right ) y^{\prime }+y = 4 \cos \left (\ln \left (1+x \right )\right )\)

8821

23

\(y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+\cos \left (x \right )^{2} y = 0\)

8822

24

\(x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 8 x^{3} \sin \left (x \right )^{2}\)

8823

25

\(x y^{\prime \prime }-y^{\prime }+4 x^{3} y = x^{5}\)

8824

25

\(\cos \left (x \right ) y^{\prime \prime }+\sin \left (x \right ) y^{\prime }-2 y \cos \left (x \right )^{3} = 2 \cos \left (x \right )^{5}\)

8825

26

\(y^{\prime \prime }+\left (1-\frac {1}{x}\right ) y^{\prime }+4 x^{2} y \,{\mathrm e}^{-2 x} = 4 \left (x^{3}+x^{2}\right ) {\mathrm e}^{-3 x}\)

8826

27

\(y^{\prime \prime }-x^{2} y^{\prime }+y x = x^{m +1}\)

8827

28

\(y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}} = 0\)

8828

29

\(\cos \left (x \right )^{2} y^{\prime \prime }-2 \cos \left (x \right ) \sin \left (x \right ) y^{\prime }+\cos \left (x \right )^{2} y = 0\)

8829

30

\(y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-1\right ) y = -3 \,{\mathrm e}^{x^{2}} \sin \left (x \right )\)

8830

31

\(y^{\prime \prime }-2 b x y^{\prime }+b^{2} x^{2} y = x\)

8831

32

\(y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-3\right ) y = {\mathrm e}^{x^{2}}\)

8832

33

\(y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }+5 y = {\mathrm e}^{x^{2}} \sec \left (x \right )\)

8833

34

\(x^{2} y^{\prime \prime }-2 x y^{\prime }+2 \left (x^{2}+1\right ) y = 0\)

8834

35

\(4 x^{2} y^{\prime \prime }+4 x^{5} y^{\prime }+\left (x^{8}+6 x^{4}+4\right ) y = 0\)

8835

36

\(x^{2} y^{\prime \prime }+\left (-y+x y^{\prime }\right )^{2} = 0\)

8836

37

\(x y^{\prime \prime }+2 y^{\prime }-y x = 0\)

8837

38

\(x y^{\prime \prime }+2 y^{\prime }+y x = 0\)

8838

39

\(y^{\prime }+y \cot \left (x \right ) = 2 \cos \left (x \right )\)

8839

40

\(2 x y^{2}-y+\left (y^{2}+x +y\right ) y^{\prime } = 0\)

8840

41

\(y^{\prime } = x -y^{2}\)

8841

42

\(y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-3 y^{\prime \prime }+5 y^{\prime }-2 y = x \,{\mathrm e}^{x}+3 \,{\mathrm e}^{-2 x}\)

8842

43

\(x^{2} y^{\prime \prime }-x \left (6+x \right ) y^{\prime }+10 y = 0\)

8843

44

\(x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-5\right ) y = 0\)

8844

45

\(x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-5\right ) y = 0\)

8845

46

\(x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0\)

8846

47

\(y^{\prime \prime \prime }-y x = 0\)

8847

48

\(y^{\prime } = y^{{1}/{3}}\)

8848

49

\([x^{\prime }\left (t \right ) = 3 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )]\)