Internal
problem
ID
[9151]
Book
:
Second
order
enumerated
odes
Section
:
section
2
Problem
number
:
28
Date
solved
:
Friday, February 21, 2025 at 09:21:42 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Solve
Time used: 0.106 (sec)
Writing the ode as
Comparing (1) and (2) shows that
Applying the Liouville transformation on the dependent variable gives
Then (2) becomes
Where \(r\) is given by
Substituting the values of \(A,B,C\) from (3) in the above and simplifying gives
Comparing the above to (5) shows that
Therefore eq. (4) becomes
Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty \). The following table summarizes these cases.
Case |
Allowed pole order for \(r\) |
Allowed value for \(\mathcal {O}(\infty )\) |
1 |
\(\left \{ 0,1,2,4,6,8,\cdots \right \} \) |
\(\left \{ \cdots ,-6,-4,-2,0,2,3,4,5,6,\cdots \right \} \) |
2 |
Need to have at least one pole that is either order \(2\) or odd order greater than \(2\). Any other pole order is allowed as long as the above condition is satisfied. Hence the following set of pole orders are all allowed. \(\{1,2\}\),\(\{1,3\}\),\(\{2\}\),\(\{3\}\),\(\{3,4\}\),\(\{1,2,5\}\). |
no condition |
3 |
\(\left \{ 1,2\right \} \) |
\(\left \{ 2,3,4,5,6,7,\cdots \right \} \) |
The order of \(r\) at \(\infty \) is the degree of \(t\) minus the degree of \(s\). Therefore
The poles of \(r\) in eq. (7) and the order of each pole are determined by solving for the roots of \(t=x^{2}\). There is a pole at \(x=0\) of order \(2\). Since there is no odd order pole larger than \(2\) and the order at \(\infty \) is \(2\) then the necessary conditions for case one are met. Since there is a pole of order \(2\) then necessary conditions for case two are met. Since pole order is not larger than \(2\) and the order at \(\infty \) is \(2\) then the necessary conditions for case three are met. Therefore
Attempting to find a solution using case \(n=1\).
Looking at poles of order 2. The partial fractions decomposition of \(r\) is
For the pole at \(x=0\) let \(b\) be the coefficient of \(\frac {1}{ x^{2}}\) in the partial fractions decomposition of \(r\) given above. Therefore \(b=2\). Hence
Since the order of \(r\) at \(\infty \) is 2 then \([\sqrt r]_\infty =0\). Let \(b\) be the coefficient of \(\frac {1}{x^{2}}\) in the Laurent series expansion of \(r\) at \(\infty \). which can be found by dividing the leading coefficient of \(s\) by the leading coefficient of \(t\) from
Since the \(\text {gcd}(s,t)=1\). This gives \(b=2\). Hence
The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty \) where \(r\) is
pole \(c\) location | pole order | \([\sqrt r]_c\) | \(\alpha _c^{+}\) | \(\alpha _c^{-}\) |
\(0\) | \(2\) | \(0\) | \(2\) | \(-1\) |
Order of \(r\) at \(\infty \) | \([\sqrt r]_\infty \) | \(\alpha _\infty ^{+}\) | \(\alpha _\infty ^{-}\) |
\(2\) | \(0\) | \(2\) | \(-1\) |
Now that the all \([\sqrt r]_c\) and its associated \(\alpha _c^{\pm }\) have been determined for all the poles in the set \(\Gamma \) and \([\sqrt r]_\infty \) and its associated \(\alpha _\infty ^{\pm }\) have also been found, the next step is to determine possible non negative integer \(d\) from these using
Where \(s(c)\) is either \(+\) or \(-\) and \(s(\infty )\) is the sign of \(\alpha _\infty ^{\pm }\). This is done by trial over all set of families \(s=(s(c))_{c \in \Gamma \cup {\infty }}\) until such \(d\) is found to work in finding candidate \(\omega \). Trying \(\alpha _\infty ^{-} = -1\) then
Since \(d\) an integer and \(d \geq 0\) then it can be used to find \(\omega \) using
The above gives
Now that \(\omega \) is determined, the next step is find a corresponding minimal polynomial \(p(x)\) of degree \(d=0\) to solve the ode. The polynomial \(p(x)\) needs to satisfy the equation
Let
Substituting the above in eq. (1A) gives
The equation is satisfied since both sides are zero. Therefore the first solution to the ode \(z'' = r z\) is
The first solution to the original ode in \(y\) is found from
Which simplifies to
The second solution \(y_2\) to the original ode is found using reduction of order
Substituting gives
Therefore the solution is
Will add steps showing solving for IC soon.
Summary of solutions found
Time used: 0.892 (sec)
In normal form the ode
Becomes
Where
The Lagrange adjoint ode is given by
Which is solved for \(\xi (x)\). Writing the ode as
Comparing (1) and (2) shows that
Applying the Liouville transformation on the dependent variable gives
Then (2) becomes
Where \(r\) is given by
Substituting the values of \(A,B,C\) from (3) in the above and simplifying gives
Comparing the above to (5) shows that
Therefore eq. (4) becomes
Equation (7) is now solved. After finding \(z(x)\) then \(\xi \) is found using the inverse transformation
The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty \). The following table summarizes these cases.
Case |
Allowed pole order for \(r\) |
Allowed value for \(\mathcal {O}(\infty )\) |
1 |
\(\left \{ 0,1,2,4,6,8,\cdots \right \} \) |
\(\left \{ \cdots ,-6,-4,-2,0,2,3,4,5,6,\cdots \right \} \) |
2 |
Need to have at least one pole that is either order \(2\) or odd order greater than \(2\). Any other pole order is allowed as long as the above condition is satisfied. Hence the following set of pole orders are all allowed. \(\{1,2\}\),\(\{1,3\}\),\(\{2\}\),\(\{3\}\),\(\{3,4\}\),\(\{1,2,5\}\). |
no condition |
3 |
\(\left \{ 1,2\right \} \) |
\(\left \{ 2,3,4,5,6,7,\cdots \right \} \) |
The order of \(r\) at \(\infty \) is the degree of \(t\) minus the degree of \(s\). Therefore
The poles of \(r\) in eq. (7) and the order of each pole are determined by solving for the roots of \(t=x^{2}\). There is a pole at \(x=0\) of order \(2\). Since there is no odd order pole larger than \(2\) and the order at \(\infty \) is \(2\) then the necessary conditions for case one are met. Since there is a pole of order \(2\) then necessary conditions for case two are met. Since pole order is not larger than \(2\) and the order at \(\infty \) is \(2\) then the necessary conditions for case three are met. Therefore
Attempting to find a solution using case \(n=1\).
Looking at poles of order 2. The partial fractions decomposition of \(r\) is
For the pole at \(x=0\) let \(b\) be the coefficient of \(\frac {1}{ x^{2}}\) in the partial fractions decomposition of \(r\) given above. Therefore \(b=2\). Hence
Since the order of \(r\) at \(\infty \) is 2 then \([\sqrt r]_\infty =0\). Let \(b\) be the coefficient of \(\frac {1}{x^{2}}\) in the Laurent series expansion of \(r\) at \(\infty \). which can be found by dividing the leading coefficient of \(s\) by the leading coefficient of \(t\) from
Since the \(\text {gcd}(s,t)=1\). This gives \(b=2\). Hence
The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty \) where \(r\) is
pole \(c\) location | pole order | \([\sqrt r]_c\) | \(\alpha _c^{+}\) | \(\alpha _c^{-}\) |
\(0\) | \(2\) | \(0\) | \(2\) | \(-1\) |
Order of \(r\) at \(\infty \) | \([\sqrt r]_\infty \) | \(\alpha _\infty ^{+}\) | \(\alpha _\infty ^{-}\) |
\(2\) | \(0\) | \(2\) | \(-1\) |
Now that the all \([\sqrt r]_c\) and its associated \(\alpha _c^{\pm }\) have been determined for all the poles in the set \(\Gamma \) and \([\sqrt r]_\infty \) and its associated \(\alpha _\infty ^{\pm }\) have also been found, the next step is to determine possible non negative integer \(d\) from these using
Where \(s(c)\) is either \(+\) or \(-\) and \(s(\infty )\) is the sign of \(\alpha _\infty ^{\pm }\). This is done by trial over all set of families \(s=(s(c))_{c \in \Gamma \cup {\infty }}\) until such \(d\) is found to work in finding candidate \(\omega \). Trying \(\alpha _\infty ^{-} = -1\) then
Since \(d\) an integer and \(d \geq 0\) then it can be used to find \(\omega \) using
The above gives
Now that \(\omega \) is determined, the next step is find a corresponding minimal polynomial \(p(x)\) of degree \(d=0\) to solve the ode. The polynomial \(p(x)\) needs to satisfy the equation
Let
Substituting the above in eq. (1A) gives
The equation is satisfied since both sides are zero. Therefore the first solution to the ode \(z'' = r z\) is
The first solution to the original ode in \(\xi \) is found from
Which simplifies to
The second solution \(\xi _2\) to the original ode is found using reduction of order
Substituting gives
Therefore the solution is
Will add steps showing solving for IC soon.
The original ode now reduces to first order ode
Or
Which is now a first order ode. This is now solved for \(y\). In canonical form a linear first order is
Comparing the above to the given ode shows that
The integrating factor \(\mu \) is
The ode becomes
Integrating gives
Dividing throughout by the integrating factor \(\frac {x \,{\mathrm e}^{-\sqrt {x}}}{c_2 \,x^{3}+3 c_1}\) gives the final solution
Hence, the solution found using Lagrange adjoint equation method is
The constants can be merged to give
Will add steps showing solving for IC soon.
Summary of solutions found
`Methods for second order ODEs: --- Trying classification methods --- trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm A Liouvillian solution exists Reducible group (found an exponential solution) <- Kovacics algorithm successful`
Solving time : 0.005
(sec)
Leaf size : 19
dsolve(diff(diff(y(x),x),x)-1/x^(1/2)*diff(y(x),x)+1/4/x^2*(x+x^(1/2)-8)*y(x) = 0,y(x),singsol=all)
Solving time : 0.039
(sec)
Leaf size : 30
DSolve[{D[y[x],{x,2}]-1/x^(1/2)*D[y[x],x]+y[x]/(4*x^2)*(-8+x^(1/2)+x)==0,{}},y[x],x,IncludeSingularSolutions->True]
Solving time : 0.000
(sec)
Leaf size : 0
Python version: 3.13.1 (main, Dec 4 2024, 18:05:56) [GCC 14.2.1 20240910] Sympy version 1.13.3
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), (x, 2)) + (sqrt(x) + x - 8)*y(x)/(4*x**2) - Derivative(y(x), x)/sqrt(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -sqrt(x)*Derivative(y(x), (x, 2)) + Derivative(y(x), x) - y(x)/(4*x) - y(x)/(4*sqrt(x)) + 2*y(x)/x**(3/2) cannot be solved by the factorable group method