2.2.20 Problem 21

Solved as second order ode using change of variable on x method 2
Solved as second order ode using change of variable on x method 1
Maple step by step solution
Maple trace
Maple dsolve solution
Mathematica DSolve solution
Sympy solution

Internal problem ID [9143]
Book : Second order enumerated odes
Section : section 2
Problem number : 21
Date solved : Friday, February 21, 2025 at 09:20:52 PM
CAS classification : [[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]

Solve

\begin{align*} y^{\prime \prime }+\cot \left (x \right ) y^{\prime }+4 y \csc \left (x \right )^{2}&=0 \end{align*}

Solved as second order ode using change of variable on x method 2

Time used: 0.496 (sec)

In normal form the ode

\begin{align*} y^{\prime \prime }+\cot \left (x \right ) y^{\prime }+4 y \csc \left (x \right )^{2}&=0 \tag {1} \end{align*}

Becomes

\begin{align*} y^{\prime \prime }+p \left (x \right ) y^{\prime }+q \left (x \right ) y&=0 \tag {2} \end{align*}

Where

\begin{align*} p \left (x \right )&=\cot \left (x \right )\\ q \left (x \right )&=4 \csc \left (x \right )^{2} \end{align*}

Applying change of variables \(\tau = g \left (x \right )\) to (2) gives

\begin{align*} \frac {d^{2}}{d \tau ^{2}}y \left (\tau \right )+p_{1} \left (\frac {d}{d \tau }y \left (\tau \right )\right )+q_{1} y \left (\tau \right )&=0 \tag {3} \end{align*}

Where \(\tau \) is the new independent variable, and

\begin{align*} p_{1} \left (\tau \right ) &=\frac {\tau ^{\prime \prime }\left (x \right )+p \left (x \right ) \tau ^{\prime }\left (x \right )}{{\tau ^{\prime }\left (x \right )}^{2}}\tag {4} \\ q_{1} \left (\tau \right ) &=\frac {q \left (x \right )}{{\tau ^{\prime }\left (x \right )}^{2}}\tag {5} \end{align*}

Let \(p_{1} = 0\). Eq (4) simplifies to

\begin{align*} \tau ^{\prime \prime }\left (x \right )+p \left (x \right ) \tau ^{\prime }\left (x \right )&=0 \end{align*}

This ode is solved resulting in

\begin{align*} \tau &= \int {\mathrm e}^{-\int p \left (x \right )d x}d x\\ &= \int {\mathrm e}^{-\int \cot \left (x \right )d x}d x\\ &= \int e^{-\ln \left (\sin \left (x \right )\right )} \,dx\\ &= \int \csc \left (x \right )d x\\ &= -\ln \left (\csc \left (x \right )+\cot \left (x \right )\right )\tag {6} \end{align*}

Using (6) to evaluate \(q_{1}\) from (5) gives

\begin{align*} q_{1} \left (\tau \right ) &= \frac {q \left (x \right )}{{\tau ^{\prime }\left (x \right )}^{2}}\\ &= \frac {4 \csc \left (x \right )^{2}}{\csc \left (x \right )^{2}}\\ &= 4\tag {7} \end{align*}

Substituting the above in (3) and noting that now \(p_{1} = 0\) results in

\begin{align*} \frac {d^{2}}{d \tau ^{2}}y \left (\tau \right )+q_{1} y \left (\tau \right )&=0 \\ \frac {d^{2}}{d \tau ^{2}}y \left (\tau \right )+4 y \left (\tau \right )&=0 \end{align*}

The above ode is now solved for \(y \left (\tau \right )\).This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

\[ A y''(\tau ) + B y'(\tau ) + C y(\tau ) = 0 \]

Where in the above \(A=1, B=0, C=4\). Let the solution be \(y \left (\tau \right )=e^{\lambda \tau }\). Substituting this into the ODE gives

\[ \lambda ^{2} {\mathrm e}^{\tau \lambda }+4 \,{\mathrm e}^{\tau \lambda } = 0 \tag {1} \]

Since exponential function is never zero, then dividing Eq(2) throughout by \(e^{\lambda \tau }\) gives

\[ \lambda ^{2}+4 = 0 \tag {2} \]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

\[ \lambda _{1,2} = \frac {-B}{2 A} \pm \frac {1}{2 A} \sqrt {B^2 - 4 A C} \]

Substituting \(A=1, B=0, C=4\) into the above gives

\begin{align*} \lambda _{1,2} &= \frac {0}{(2) \left (1\right )} \pm \frac {1}{(2) \left (1\right )} \sqrt {0^2 - (4) \left (1\right )\left (4\right )}\\ &= \pm 2 i \end{align*}

Hence

\begin{align*} \lambda _1 &= + 2 i\\ \lambda _2 &= - 2 i \end{align*}

Which simplifies to

\begin{align*} \lambda _1 &= 2 i \\ \lambda _2 &= -2 i \\ \end{align*}

Since roots are complex conjugate of each others, then let the roots be

\[ \lambda _{1,2} = \alpha \pm i \beta \]

Where \(\alpha =0\) and \(\beta =2\). Therefore the final solution, when using Euler relation, can be written as

\[ y \left (\tau \right ) = e^{\alpha \tau } \left ( c_1 \cos (\beta \tau ) + c_2 \sin (\beta \tau ) \right ) \]

Which becomes

\[ y \left (\tau \right ) = e^{0}\left (c_1 \cos \left (2 \tau \right )+c_2 \sin \left (2 \tau \right )\right ) \]

Or

\[ y \left (\tau \right ) = c_1 \cos \left (2 \tau \right )+c_2 \sin \left (2 \tau \right ) \]

Will add steps showing solving for IC soon.

The above solution is now transformed back to \(y\) using (6) which results in

\[ y = c_1 \cos \left (2 \ln \left (\csc \left (x \right )+\cot \left (x \right )\right )\right )-c_2 \sin \left (2 \ln \left (\csc \left (x \right )+\cot \left (x \right )\right )\right ) \]

Will add steps showing solving for IC soon.

Summary of solutions found

\begin{align*} y &= c_1 \cos \left (2 \ln \left (\csc \left (x \right )+\cot \left (x \right )\right )\right )-c_2 \sin \left (2 \ln \left (\csc \left (x \right )+\cot \left (x \right )\right )\right ) \\ \end{align*}

Solved as second order ode using change of variable on x method 1

Time used: 0.362 (sec)

In normal form the ode

\begin{align*} y^{\prime \prime }+\cot \left (x \right ) y^{\prime }+4 y \csc \left (x \right )^{2}&=0 \tag {1} \end{align*}

Becomes

\begin{align*} y^{\prime \prime }+p \left (x \right ) y^{\prime }+q \left (x \right ) y&=0 \tag {2} \end{align*}

Where

\begin{align*} p \left (x \right )&=\cot \left (x \right )\\ q \left (x \right )&=4 \csc \left (x \right )^{2} \end{align*}

Applying change of variables \(\tau = g \left (x \right )\) to (2) results

\begin{align*} \frac {d^{2}}{d \tau ^{2}}y \left (\tau \right )+p_{1} \left (\frac {d}{d \tau }y \left (\tau \right )\right )+q_{1} y \left (\tau \right )&=0 \tag {3} \end{align*}

Where \(\tau \) is the new independent variable, and

\begin{align*} p_{1} \left (\tau \right ) &=\frac {\tau ^{\prime \prime }\left (x \right )+p \left (x \right ) \tau ^{\prime }\left (x \right )}{{\tau ^{\prime }\left (x \right )}^{2}}\tag {4} \\ q_{1} \left (\tau \right ) &=\frac {q \left (x \right )}{{\tau ^{\prime }\left (x \right )}^{2}}\tag {5} \end{align*}

Let \(q_1=c^2\) where \(c\) is some constant. Therefore from (5)

\begin{align*} \tau ' &= \frac {1}{c}\sqrt {q}\\ &= \frac {2 \sqrt {\csc \left (x \right )^{2}}}{c}\tag {6} \\ \tau '' &= -\frac {2 \csc \left (x \right )^{2} \cot \left (x \right )}{c \sqrt {\csc \left (x \right )^{2}}} \end{align*}

Substituting the above into (4) results in

\begin{align*} p_{1} \left (\tau \right ) &=\frac {\tau ^{\prime \prime }\left (x \right )+p \left (x \right ) \tau ^{\prime }\left (x \right )}{{\tau ^{\prime }\left (x \right )}^{2}}\\ &=\frac {-\frac {2 \csc \left (x \right )^{2} \cot \left (x \right )}{c \sqrt {\csc \left (x \right )^{2}}}+\cot \left (x \right )\frac {2 \sqrt {\csc \left (x \right )^{2}}}{c}}{\left (\frac {2 \sqrt {\csc \left (x \right )^{2}}}{c}\right )^2} \\ &=0 \end{align*}

Therefore ode (3) now becomes

\begin{align*} y \left (\tau \right )'' + p_1 y \left (\tau \right )' + q_1 y \left (\tau \right ) &= 0 \\ \frac {d^{2}}{d \tau ^{2}}y \left (\tau \right )+c^{2} y \left (\tau \right ) &= 0 \tag {7} \end{align*}

The above ode is now solved for \(y \left (\tau \right )\). Since the ode is now constant coefficients, it can be easily solved to give

\begin{align*} y \left (\tau \right ) &= c_1 \cos \left (c \tau \right )+c_2 \sin \left (c \tau \right ) \end{align*}

Now from (6)

\begin{align*} \tau &= \int \frac {1}{c} \sqrt q \,dx \\ &= \frac {\int 2 \sqrt {\csc \left (x \right )^{2}}d x}{c}\\ &= \frac {2 \ln \left (\csc \left (x \right )-\cot \left (x \right )\right )}{c} \end{align*}

Substituting the above into the solution obtained gives

\[ y = c_1 \cos \left (2 \ln \left (\csc \left (x \right )-\cot \left (x \right )\right )\right )+c_2 \sin \left (2 \ln \left (\csc \left (x \right )-\cot \left (x \right )\right )\right ) \]

Will add steps showing solving for IC soon.

Summary of solutions found

\begin{align*} y &= c_1 \cos \left (2 \ln \left (\csc \left (x \right )-\cot \left (x \right )\right )\right )+c_2 \sin \left (2 \ln \left (\csc \left (x \right )-\cot \left (x \right )\right )\right ) \\ \end{align*}

Maple step by step solution

Maple trace
`Methods for second order ODEs: 
--- Trying classification methods --- 
trying a symmetry of the form [xi=0, eta=F(x)] 
<- linear_1 successful`
 
Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 23

dsolve(diff(diff(y(x),x),x)+cot(x)*diff(y(x),x)+4*y(x)*csc(x)^2 = 0,y(x),singsol=all)
 
\[ y = c_{1} \left (\csc \left (x \right )+\cot \left (x \right )\right )^{-2 i}+c_{2} \left (\csc \left (x \right )+\cot \left (x \right )\right )^{2 i} \]
Mathematica DSolve solution

Solving time : 0.048 (sec)
Leaf size : 25

DSolve[{D[y[x],{x,2}]+Cot[x]*D[y[x],x]+4*y[x]*Csc[x]^2==0,{}},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_1 \cos (2 \text {arctanh}(\cos (x)))-c_2 \sin (2 \text {arctanh}(\cos (x))) \]
Sympy solution

Solving time : 0.000 (sec)
Leaf size : 0

Python version: 3.13.1 (main, Dec  4 2024, 18:05:56) [GCC 14.2.1 20240910] 
Sympy version 1.13.3
 
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*y(x)/sin(x)**2 + Derivative(y(x), (x, 2)) + Derivative(y(x), x)/tan(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE 4*y(x)*tan(x)/sin(x)**2 + tan(x)*Derivative(y(x), (x, 2)) + Derivative(y(x), x) cannot be solved by the factorable group method