2.1.14 Problem 14
Internal
problem
ID
[9085]
Book
:
Second
order
enumerated
odes
Section
:
section
1
Problem
number
:
14
Date
solved
:
Sunday, March 30, 2025 at 02:06:35 PM
CAS
classification
:
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]
Solved as second order missing x ode
Time used: 0.219 (sec)
Solve
\begin{align*} y^{\prime \prime }+{y^{\prime }}^{2}&=0 \end{align*}
This is missing independent variable second order ode. Solved by reduction of order by using substitution which makes the dependent variable \(y\) an independent variable. Using
\begin{align*} y' &= p \end{align*}
Then
\begin{align*} y'' &= \frac {dp}{dx}\\ &= \frac {dp}{dy}\frac {dy}{dx}\\ &= p \frac {dp}{dy} \end{align*}
Hence the ode becomes
\begin{align*} p \left (y \right ) \left (\frac {d}{d y}p \left (y \right )\right )+p \left (y \right )^{2} = 0 \end{align*}
Which is now solved as first order ode for \(p(y)\).
Integrating gives
\begin{align*} \int -\frac {1}{p}d p &= dy\\ -\ln \left (p \right )&= y +c_1 \end{align*}
Singular solutions are found by solving
\begin{align*} -p&= 0 \end{align*}
for \(p\). This is because we had to divide by this in the above step. This gives the following singular solution(s), which also have to satisfy the given ODE.
\begin{align*} p = 0 \end{align*}
For solution (1) found earlier, since \(p=y^{\prime }\) then we now have a new first order ode to solve which is
\begin{align*} -\ln \left (y^{\prime }\right ) = y+c_1 \end{align*}
Integrating gives
\begin{align*} \int {\mathrm e}^{y +c_1}d y &= dx\\ {\mathrm e}^{y +c_1}&= x +c_2 \end{align*}
For solution (2) found earlier, since \(p=y^{\prime }\) then we now have a new first order ode to solve which is
\begin{align*} y^{\prime } = 0 \end{align*}
Since the ode has the form \(y^{\prime }=f(x)\), then we only need to integrate \(f(x)\).
\begin{align*} \int {dy} &= \int {0\, dx} + c_3 \\ y &= c_3 \end{align*}
Will add steps showing solving for IC soon.
Solving for \(y\) from the above solution(s) gives (after possible removing of solutions that do not verify)
\begin{align*} y&=c_3\\ y&=-c_1 +\ln \left (x +c_2 \right ) \end{align*}
Summary of solutions found
\begin{align*}
y &= c_3 \\
y &= -c_1 +\ln \left (x +c_2 \right ) \\
\end{align*}
Solved as second order missing y ode
Time used: 0.158 (sec)
Solve
\begin{align*} y^{\prime \prime }+{y^{\prime }}^{2}&=0 \end{align*}
This is second order ode with missing dependent variable \(y\). Let
\begin{align*} u(x) &= y^{\prime } \end{align*}
Then
\begin{align*} u'(x) &= y^{\prime \prime } \end{align*}
Hence the ode becomes
\begin{align*} u^{\prime }\left (x \right )+u \left (x \right )^{2} = 0 \end{align*}
Which is now solved for \(u(x)\) as first order ode.
Integrating gives
\begin{align*} \int -\frac {1}{u^{2}}d u &= dx\\ \frac {1}{u}&= x +c_1 \end{align*}
Singular solutions are found by solving
\begin{align*} -u^{2}&= 0 \end{align*}
for \(u\). This is because we had to divide by this in the above step. This gives the following singular solution(s), which also have to satisfy the given ODE.
\begin{align*} u = 0 \end{align*}
In summary, these are the solution found for \(u(x)\)
\begin{align*}
\frac {1}{u} &= x +c_1 \\
u &= 0 \\
\end{align*}
For solution \(\frac {1}{u} = x +c_1\), since \(u=y^{\prime }\left (x \right )\) then we now have a new first order ode to solve which is
\begin{align*} \frac {1}{y^{\prime }\left (x \right )} = x +c_1 \end{align*}
Since the ode has the form \(y^{\prime }=f(x)\), then we only need to integrate \(f(x)\).
\begin{align*} \int {dy} &= \int {\frac {1}{x +c_1}\, dx}\\ y &= \ln \left (x +c_1 \right ) + c_2 \end{align*}
For solution \(u \left (x \right ) = 0\), since \(u=y^{\prime }\) then we now have a new first order ode to solve which is
\begin{align*} y^{\prime } = 0 \end{align*}
Since the ode has the form \(y^{\prime }=f(x)\), then we only need to integrate \(f(x)\).
\begin{align*} \int {dy} &= \int {0\, dx} + c_3 \\ y &= c_3 \end{align*}
In summary, these are the solution found for \((y)\)
\begin{align*}
y &= \ln \left (x +c_1 \right )+c_2 \\
y &= c_3 \\
\end{align*}
Will add steps showing solving for IC soon.
Summary of solutions found
\begin{align*}
y &= c_3 \\
y &= \ln \left (x +c_1 \right )+c_2 \\
\end{align*}
✓ Maple. Time used: 0.019 (sec). Leaf size: 10
ode:=diff(diff(y(x),x),x)+diff(y(x),x)^2 = 0;
dsolve(ode,y(x), singsol=all);
\[
y = \ln \left (c_1 x +c_2 \right )
\]
Maple trace
Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
<- 2nd_order Liouville successful
Maple step by step
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \frac {d}{d x}\frac {d}{d x}y \left (x \right )+\left (\frac {d}{d x}y \left (x \right )\right )^{2}=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & \frac {d}{d x}\frac {d}{d x}y \left (x \right ) \\ \bullet & {} & \textrm {Make substitution}\hspace {3pt} u =\frac {d}{d x}y \left (x \right )\hspace {3pt}\textrm {to reduce order of ODE}\hspace {3pt} \\ {} & {} & \frac {d}{d x}u \left (x \right )+u \left (x \right )^{2}=0 \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d x}u \left (x \right )=-u \left (x \right )^{2} \\ \bullet & {} & \textrm {Separate variables}\hspace {3pt} \\ {} & {} & \frac {\frac {d}{d x}u \left (x \right )}{u \left (x \right )^{2}}=-1 \\ \bullet & {} & \textrm {Integrate both sides with respect to}\hspace {3pt} x \\ {} & {} & \int \frac {\frac {d}{d x}u \left (x \right )}{u \left (x \right )^{2}}d x =\int \left (-1\right )d x +\mathit {C1} \\ \bullet & {} & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & -\frac {1}{u \left (x \right )}=-x +\mathit {C1} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} u \left (x \right ) \\ {} & {} & u \left (x \right )=-\frac {1}{-x +\mathit {C1}} \\ \bullet & {} & \textrm {Simplify}\hspace {3pt} \\ {} & {} & u \left (x \right )=\frac {1}{-\mathit {C1} +x} \\ \bullet & {} & \textrm {Redefine the integration constant(s)}\hspace {3pt} \\ {} & {} & u \left (x \right )=\frac {1}{\mathit {C1} +x} \\ \bullet & {} & \textrm {Solve 1st ODE for}\hspace {3pt} u \left (x \right ) \\ {} & {} & u \left (x \right )=\frac {1}{\mathit {C1} +x} \\ \bullet & {} & \textrm {Make substitution}\hspace {3pt} u =\frac {d}{d x}y \left (x \right ) \\ {} & {} & \frac {d}{d x}y \left (x \right )=\frac {1}{\mathit {C1} +x} \\ \bullet & {} & \textrm {Integrate both sides to solve for}\hspace {3pt} y \left (x \right ) \\ {} & {} & \int \left (\frac {d}{d x}y \left (x \right )\right )d x =\int \frac {1}{\mathit {C1} +x}d x +\mathit {C2} \\ \bullet & {} & \textrm {Compute integrals}\hspace {3pt} \\ {} & {} & y \left (x \right )=\ln \left (\mathit {C1} +x \right )+\mathit {C2} \end {array} \]
✓ Mathematica. Time used: 0.191 (sec). Leaf size: 15
ode=D[y[x],{x,2}]+(D[y[x],x])^2==0;
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\[
y(x)\to \log (x-c_1)+c_2
\]
✓ Sympy. Time used: 0.513 (sec). Leaf size: 8
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq(Derivative(y(x), x)**2 + Derivative(y(x), (x, 2)),0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
\[
y{\left (x \right )} = C_{1} + \log {\left (C_{2} + x \right )}
\]