2.4.26 reduction of order

Table 2.497: reduction of order

#

ODE

CAS classification

Solved?

264

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -9 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

265

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

266

\[ {}x^{2} y^{\prime \prime }-x \left (x +2\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

267

\[ {}\left (x +1\right ) y^{\prime \prime }-\left (x +2\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

268

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y = 0 \]

[_Gegenbauer]

269

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[_Gegenbauer]

270

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

303

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-54 y = 0 \]

[[_3rd_order, _missing_x]]

304

\[ {}3 y^{\prime \prime \prime }-2 y^{\prime \prime }+12 y^{\prime }-8 y = 0 \]

[[_3rd_order, _missing_x]]

305

\[ {}6 y^{\prime \prime \prime \prime }+5 y^{\prime \prime \prime }+25 y^{\prime \prime }+20 y^{\prime }+4 y = 0 \]

[[_high_order, _missing_x]]

306

\[ {}9 y^{\prime \prime \prime }+11 y^{\prime \prime }+4 y^{\prime }-14 y = 0 \]

[[_3rd_order, _missing_x]]

308

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+100 y^{\prime }-500 y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

928

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -9 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

929

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

930

\[ {}x^{2} y^{\prime \prime }-x \left (x +2\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

931

\[ {}\left (x +1\right ) y^{\prime \prime }-\left (x +2\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

932

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y = 0 \]

[_Gegenbauer]

933

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[_Gegenbauer]

934

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1319

\[ {}t^{2} y^{\prime \prime }-4 y^{\prime } t +6 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1320

\[ {}t^{2} y^{\prime \prime }+2 y^{\prime } t -2 y = 0 \]

[[_Emden, _Fowler]]

1321

\[ {}t^{2} y^{\prime \prime }+3 y^{\prime } t +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1322

\[ {}t^{2} y^{\prime \prime }-t \left (t +2\right ) y^{\prime }+\left (t +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1323

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1324

\[ {}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1325

\[ {}x^{2} y^{\prime \prime }-\left (x -\frac {3}{16}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1326

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1757

\[ {}\left (2 x +1\right ) y^{\prime \prime }-2 y^{\prime }-\left (2 x +3\right ) y = \left (2 x +1\right )^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1758

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = \frac {4}{x^{2}} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1759

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = x \]

[[_2nd_order, _with_linear_symmetries]]

1760

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \frac {1}{1+{\mathrm e}^{-x}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1761

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 7 x^{{3}/{2}} {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1762

\[ {}4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 4 \sqrt {x}\, {\mathrm e}^{x} \left (1+4 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1763

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = \sec \left (x \right ) {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1764

\[ {}y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+2\right ) y = 8 \,{\mathrm e}^{-x \left (x +2\right )} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1765

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = -6 x -4 \]

[[_2nd_order, _with_linear_symmetries]]

1766

\[ {}x^{2} y^{\prime \prime }+2 x \left (x -1\right ) y^{\prime }+\left (x^{2}-2 x +2\right ) y = x^{3} {\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1767

\[ {}x^{2} y^{\prime \prime }-x \left (2 x -1\right ) y^{\prime }+\left (x^{2}-x -1\right ) y = x^{2} {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1768

\[ {}\left (-2 x +1\right ) y^{\prime \prime }+2 y^{\prime }+\left (2 x -3\right ) y = \left (4 x^{2}-4 x +1\right ) {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1769

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 4 x^{4} \]

[[_2nd_order, _with_linear_symmetries]]

1770

\[ {}2 x y^{\prime \prime }+\left (1+4 x \right ) y^{\prime }+\left (2 x +1\right ) y = 3 \sqrt {x}\, {\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1771

\[ {}x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (x +1\right ) y = -{\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1772

\[ {}4 x^{2} y^{\prime \prime }-4 x \left (x +1\right ) y^{\prime }+\left (2 x +3\right ) y = 4 x^{{5}/{2}} {\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1773

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +8 y = 4 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1774

\[ {}x y^{\prime \prime }+\left (2-2 x \right ) y^{\prime }+\left (x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1775

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1776

\[ {}x^{2} \ln \left (x \right )^{2} y^{\prime \prime }-2 x \ln \left (x \right ) y^{\prime }+\left (2+\ln \left (x \right )\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1777

\[ {}4 x y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1778

\[ {}x y^{\prime \prime }-\left (2 x +2\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1779

\[ {}x^{2} y^{\prime \prime }-\left (2 a -1\right ) x y^{\prime }+a^{2} y = 0 \]

[[_Emden, _Fowler]]

1780

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1781

\[ {}x y^{\prime \prime }-\left (1+4 x \right ) y^{\prime }+\left (4 x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1782

\[ {}4 x^{2} \sin \left (x \right ) y^{\prime \prime }-4 x \left (\cos \left (x \right ) x +\sin \left (x \right )\right ) y^{\prime }+\left (2 \cos \left (x \right ) x +3 \sin \left (x \right )\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1783

\[ {}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (-16 x^{2}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1784

\[ {}\left (2 x +1\right ) x y^{\prime \prime }-2 \left (2 x^{2}-1\right ) y^{\prime }-4 \left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1785

\[ {}\left (x^{2}-2 x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }+\left (2 x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1786

\[ {}x y^{\prime \prime }-\left (1+4 x \right ) y^{\prime }+\left (4 x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1787

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 4 x^{4} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1788

\[ {}\left (3 x -1\right ) y^{\prime \prime }-\left (2+3 x \right ) y^{\prime }-\left (6 x -8\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1789

\[ {}\left (x +1\right )^{2} y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }-\left (x^{2}+2 x -1\right ) y = \left (x +1\right )^{3} {\mathrm e}^{x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1790

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y = x^{2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1791

\[ {}\left (x^{2}-4\right ) y^{\prime \prime }+4 y^{\prime } x +2 y = x +2 \]
i.c.

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2573

\[ {}y^{\prime \prime }-\frac {2 \left (1+t \right ) y^{\prime }}{t^{2}+2 t -1}+\frac {2 y}{t^{2}+2 t -1} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2574

\[ {}y^{\prime \prime }-4 y^{\prime } t +\left (4 t^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2575

\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } t +2 y = 0 \]

[_Gegenbauer]

2576

\[ {}\left (t^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } t +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2577

\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } t +6 y = 0 \]

[_Gegenbauer]

2578

\[ {}\left (2 t +1\right ) y^{\prime \prime }-4 \left (1+t \right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2579

\[ {}t^{2} y^{\prime \prime }+y^{\prime } t +\left (t^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2580

\[ {}t y^{\prime \prime }-\left (1+3 t \right ) y^{\prime }+3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2592

\[ {}y^{\prime \prime }+p \left (t \right ) y^{\prime }+q \left (t \right ) y = 1+t \]

[[_2nd_order, _linear, _nonhomogeneous]]

2717

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+y^{\prime \prime }+2 y^{\prime }-2 y = 0 \]

[[_high_order, _missing_x]]

3783

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

3784

\[ {}x y^{\prime \prime }+\left (-2 x +1\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3785

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3786

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[_Gegenbauer]

3787

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}+4 x^{2} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

3788

\[ {}4 x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3789

\[ {}y^{\prime \prime }+y = \csc \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3790

\[ {}x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+2 y = 8 x^{2} {\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

3791

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 8 x^{4} \]

[[_2nd_order, _with_linear_symmetries]]

3792

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 15 \,{\mathrm e}^{3 x} \sqrt {x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3793

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 4 \,{\mathrm e}^{2 x} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3794

\[ {}4 x^{2} y^{\prime \prime }+y = \sqrt {x}\, \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6202

\[ {}x^{2} \left (2-x \right ) y^{\prime \prime }+2 y^{\prime } x -2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6203

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6204

\[ {}x y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6205

\[ {}3 x y^{\prime \prime }-2 \left (3 x -1\right ) y^{\prime }+\left (3 x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6206

\[ {}x^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

6207

\[ {}x \left (x +1\right ) y^{\prime \prime }-\left (x -1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7455

\[ {}x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y = 0 \]

[[_Emden, _Fowler]]

7456

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_Emden, _Fowler]]

7457

\[ {}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7458

\[ {}x y^{\prime \prime }-\left (x +1\right ) y^{\prime }+y = 0 \]

[_Laguerre]

7459

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[_Gegenbauer]

7460

\[ {}y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7462

\[ {}x^{2} y^{\prime \prime }-2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

7463

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_Emden, _Fowler]]

7783

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

7784

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

7785

\[ {}x y^{\prime \prime }+3 y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

7786

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7787

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[_Gegenbauer]

7788

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7789

\[ {}y^{\prime \prime }-\frac {x y^{\prime }}{x -1}+\frac {y}{x -1} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7790

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y = 0 \]

[[_Emden, _Fowler]]

7791

\[ {}x^{2} y^{\prime \prime }-x \left (x +2\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7793

\[ {}x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7841

\[ {}y^{\prime \prime }-y = 3 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

7842

\[ {}y^{\prime \prime }+y = -8 \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7843

\[ {}y^{\prime \prime }+y^{\prime }+y = x^{2}+2 x +2 \]

[[_2nd_order, _with_linear_symmetries]]

7844

\[ {}y^{\prime \prime }+y^{\prime } = \frac {x -1}{x} \]

[[_2nd_order, _missing_y]]

12950

\[ {}x^{\prime \prime }+t x^{\prime }+x = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

12951

\[ {}x^{\prime \prime }-t x^{\prime }+x = 0 \]

[_Hermite]

12952

\[ {}x^{\prime \prime }-2 a x^{\prime }+a^{2} x = 0 \]

[[_2nd_order, _missing_x]]

12953

\[ {}x^{\prime \prime }-\frac {\left (t +2\right ) x^{\prime }}{t}+\frac {\left (t +2\right ) x}{t^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12954

\[ {}t^{2} x^{\prime \prime }+t x^{\prime }+\left (t^{2}-\frac {1}{4}\right ) x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13177

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler]]

13178

\[ {}\left (x +1\right )^{2} y^{\prime \prime }-3 \left (x +1\right ) y^{\prime }+3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13179

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[_Gegenbauer]

13180

\[ {}\left (x^{2}-x +1\right ) y^{\prime \prime }-\left (x^{2}+x \right ) y^{\prime }+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13181

\[ {}\left (2 x +1\right ) y^{\prime \prime }-4 \left (x +1\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13182

\[ {}\left (x^{3}-x^{2}\right ) y^{\prime \prime }-\left (x^{3}+2 x^{2}-2 x \right ) y^{\prime }+\left (2 x^{2}+2 x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13562

\[ {}t^{2} y^{\prime \prime }-\left (t^{2}+2 t \right ) y^{\prime }+\left (t +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13563

\[ {}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13564

\[ {}\left (t \cos \left (t \right )-\sin \left (t \right )\right ) x^{\prime \prime }-x^{\prime } t \sin \left (t \right )-x \sin \left (t \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13565

\[ {}\left (-t^{2}+t \right ) x^{\prime \prime }+\left (-t^{2}+2\right ) x^{\prime }+\left (2-t \right ) x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13566

\[ {}y^{\prime \prime }-y^{\prime } x +y = 0 \]

[_Hermite]

13567

\[ {}\tan \left (t \right ) x^{\prime \prime }-3 x^{\prime }+\left (\tan \left (t \right )+3 \cot \left (t \right )\right ) x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13573

\[ {}\left (\tan \left (x \right )^{2}-1\right ) y^{\prime \prime }-4 \tan \left (x \right )^{3} y^{\prime }+2 y \sec \left (x \right )^{4} = \left (\tan \left (x \right )^{2}-1\right ) \left (1-2 \sin \left (x \right )^{2}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13710

\[ {}x^{3} y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13908

\[ {}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13909

\[ {}x y^{\prime \prime }+2 y^{\prime }+y x = 0 \]

[_Lienard]

15050

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

[[_2nd_order, _missing_x]]

15051

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

15052

\[ {}x^{2} y^{\prime \prime }-6 y^{\prime } x +12 y = 0 \]

[[_Emden, _Fowler]]

15053

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15054

\[ {}4 x^{2} y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

15055

\[ {}y^{\prime \prime }-\left (4+\frac {2}{x}\right ) y^{\prime }+\left (4+\frac {4}{x}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15056

\[ {}\left (x +1\right ) y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15057

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}-4 x^{2} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15058

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

15059

\[ {}x y^{\prime \prime }+\left (2 x +2\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

15060

\[ {}\sin \left (x \right )^{2} y^{\prime \prime }-2 \cos \left (x \right ) \sin \left (x \right ) y^{\prime }+\left (1+\cos \left (x \right )^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15061

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15062

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15063

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15064

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 9 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

15065

\[ {}y^{\prime \prime }-6 y^{\prime }+8 y = {\mathrm e}^{4 x} \]

[[_2nd_order, _with_linear_symmetries]]

15066

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = \sqrt {x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15067

\[ {}x^{2} y^{\prime \prime }-20 y = 27 x^{5} \]

[[_2nd_order, _with_linear_symmetries]]

15068

\[ {}x y^{\prime \prime }+\left (2 x +2\right ) y^{\prime }+2 y = 8 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15069

\[ {}\left (x +1\right ) y^{\prime \prime }+y^{\prime } x -y = \left (x +1\right )^{2} \]

[[_2nd_order, _with_linear_symmetries]]

15968

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

[[_2nd_order, _missing_x]]

15969

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = 0 \]

[[_2nd_order, _missing_x]]

15970

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15971

\[ {}y^{\prime \prime }+10 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

15972

\[ {}y^{\prime \prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15973

\[ {}y^{\prime \prime }+49 y = 0 \]

[[_2nd_order, _missing_x]]

15974

\[ {}t^{2} y^{\prime \prime }+4 y^{\prime } t -4 y = 0 \]

[[_Emden, _Fowler]]

15975

\[ {}t^{2} y^{\prime \prime }+6 y^{\prime } t +6 y = 0 \]

[[_Emden, _Fowler]]

15976

\[ {}t^{2} y^{\prime \prime }+y^{\prime } t +\left (t^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15977

\[ {}t^{2} y^{\prime \prime }+3 y^{\prime } t +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

15980

\[ {}4 t^{2} y^{\prime \prime }+4 y^{\prime } t +\left (36 t^{2}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15981

\[ {}t y^{\prime \prime }+2 y^{\prime }+16 t y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15982

\[ {}y^{\prime \prime }+b \left (t \right ) y^{\prime }+c \left (t \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15983

\[ {}y^{\prime \prime }+b \left (t \right ) y^{\prime }+c \left (t \right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

16137

\[ {}t^{2} y^{\prime \prime }-4 y^{\prime } t +\left (t^{2}+6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

16139

\[ {}t y^{\prime \prime }+2 y^{\prime }+t y = 0 \]

[_Lienard]

16141

\[ {}4 t^{2} y^{\prime \prime }+4 y^{\prime } t +\left (16 t^{2}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

16339

\[ {}\left (1+t \right )^{2} y^{\prime \prime }-2 \left (1+t \right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16340

\[ {}t y^{\prime \prime }+2 y^{\prime }+t y = 0 \]

[_Lienard]

16916

\[ {}x^{2} \left (\ln \left (x \right )-1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

16917

\[ {}y^{\prime \prime }+\left (\tan \left (x \right )-2 \cot \left (x \right )\right ) y^{\prime }+2 \cot \left (x \right )^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

16918

\[ {}y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+\cos \left (x \right )^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

16919

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x -y = 1 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

16920

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x -3 y = 5 x^{4} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

16921

\[ {}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = \left (x -1\right )^{2} {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

16922

\[ {}y^{\prime \prime }+y^{\prime }+{\mathrm e}^{-2 x} y = {\mathrm e}^{-3 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16923

\[ {}\left (x^{4}-x^{3}\right ) y^{\prime \prime }+\left (2 x^{3}-2 x^{2}-x \right ) y^{\prime }-y = \frac {\left (x -1\right )^{2}}{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16924

\[ {}y^{\prime \prime }-y^{\prime }+{\mathrm e}^{2 x} y = x \,{\mathrm e}^{2 x}-1 \]

[[_2nd_order, _with_linear_symmetries]]

16925

\[ {}x \left (x -1\right ) y^{\prime \prime }-\left (2 x -1\right ) y^{\prime }+2 y = x^{2} \left (2 x -3\right ) \]

[[_2nd_order, _with_linear_symmetries]]

17350

\[ {}a y^{\prime \prime }+b y^{\prime }+c y = 0 \]

[[_2nd_order, _missing_x]]

17351

\[ {}t^{2} y^{\prime \prime }-4 y^{\prime } t +6 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

17352

\[ {}t^{2} y^{\prime \prime }+2 y^{\prime } t -2 y = 0 \]

[[_Emden, _Fowler]]

17353

\[ {}t^{2} y^{\prime \prime }+3 y^{\prime } t +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

17354

\[ {}t^{2} y^{\prime \prime }-t \left (t +2\right ) y^{\prime }+\left (t +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

17355

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

17356

\[ {}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

17357

\[ {}x^{2} y^{\prime \prime }-\left (x -\frac {3}{16}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

17358

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

17359

\[ {}x y^{\prime \prime }-\left (x +n \right ) y^{\prime }+n y = 0 \]

[_Laguerre]

17360

\[ {}y^{\prime \prime }+a \left (y^{\prime } x +y\right ) = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

17488

\[ {}t y^{\prime \prime }-\left (1+t \right ) y^{\prime }-y = t^{2} {\mathrm e}^{2 t} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

17489

\[ {}\left (-t +1\right ) y^{\prime \prime }+y^{\prime } t -y = 2 \left (t -1\right )^{2} {\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

18050

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

18051

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

18052

\[ {}x y^{\prime \prime }+3 y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

18053

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18054

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[_Gegenbauer]

18055

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

18056

\[ {}y^{\prime \prime }-\frac {x y^{\prime }}{x -1}+\frac {y}{x -1} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

18057

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y = 0 \]

[[_Emden, _Fowler]]

18058

\[ {}x^{2} y^{\prime \prime }-x \left (x +2\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

18060

\[ {}x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

18799

\[ {}\left (x -3\right ) y^{\prime \prime }-\left (4 x -9\right ) y^{\prime }+3 \left (x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

18802

\[ {}x y^{\prime \prime }-\left (2 x -1\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

18804

\[ {}\left (\sin \left (x \right ) x +\cos \left (x \right )\right ) y^{\prime \prime }-x \cos \left (x \right ) y^{\prime }+y \cos \left (x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

18806

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x -a^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

19221

\[ {}x^{2} y^{\prime \prime }-\left (x^{2}+2 x \right ) y^{\prime }+\left (x +2\right ) y = x^{3} {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

19222

\[ {}y^{\prime \prime }-a x y^{\prime }+a^{2} \left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19223

\[ {}\left (2 x^{3}-a \right ) y^{\prime \prime }-6 x^{2} y^{\prime }+6 y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19275

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -9 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

19277

\[ {}x y^{\prime \prime } \left (\cos \left (x \right ) x -2 \sin \left (x \right )\right )+\left (x^{2}+2\right ) y^{\prime } \sin \left (x \right )-2 y \left (\sin \left (x \right ) x +\cos \left (x \right )\right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]