2.4.22 second order adjoint

Table 2.495: second order adjoint

#

ODE

ODE classification

Solved?

8954

\[ {}\frac {x y^{\prime \prime }}{1-x}+x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11411

\[ {}y^{\prime \prime } = -\frac {\cos \left (x \right ) y^{\prime }}{\sin \left (x \right )}-\frac {\left (-17 \sin \left (x \right )^{2}-1\right ) y}{4 \sin \left (x \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

12558

\[ {}x^{2} y^{\prime \prime }+\left (a \,x^{2}+b x \right ) y^{\prime }-b y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12651

\[ {}\left (a \,x^{2}+b \right )^{2} y^{\prime \prime }+\left (a \,x^{2}+b \right ) \left (c \,x^{2}+d \right ) y^{\prime }+2 \left (-a d +b c \right ) x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12685

\[ {}\left (a \,x^{n}+b \right )^{m +1} y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime }-a n m \,x^{n -1} y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

17040

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 4 \,{\mathrm e}^{-x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

17045

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = {\mathrm e}^{-x} \left (9 x^{2}+5 x -12\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17091

\[ {}4 x y^{\prime \prime }+2 y^{\prime }+y = 1 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]