# |
ODE |
CAS classification |
Solved? |
\[
{}x^{\prime \prime } = 50
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}x^{\prime \prime } = -20
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}x^{\prime \prime } = 3 t
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}x^{\prime \prime } = 2 t +1
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}x^{\prime \prime } = 4 \left (3+t \right )^{2}
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}x^{\prime \prime } = \frac {1}{\sqrt {t +4}}
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}x^{\prime \prime } = \frac {1}{\left (1+t \right )^{3}}
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}x^{\prime \prime } = 50 \sin \left (5 t \right )
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}x y^{\prime \prime } = y^{\prime }
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime }+y^{\prime } = 4 x
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } = {y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+3 y^{\prime } x = 2
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } = \left (x +y^{\prime }\right )^{2}
\] |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}r y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}}
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }+3 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}2 y^{\prime \prime }-3 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }+3 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}2 y^{\prime \prime }-3 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime } = 1+t^{2}+{\mathrm e}^{-2 t}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } = 0
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}2 y^{\prime \prime }+y^{\prime } = 8 \sin \left (2 x \right )+{\mathrm e}^{-x}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime } = x^{3} \sin \left (2 x \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime } = x \,{\mathrm e}^{2 x} \sin \left (x \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime } = x^{2} {\mathrm e}^{-x} \sin \left (x \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } = \cos \left (t \right )
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}x y^{\prime \prime } = x^{2}+1
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}\left (1-x \right ) y^{\prime \prime } = y^{\prime }
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+2 x \left (y^{\prime }+1\right ) = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } = {y^{\prime }}^{3}+y^{\prime }
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x y^{\prime \prime }+x = y^{\prime }
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{\prime \prime }+t x^{\prime } = t^{3}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime } = y^{\prime } x +1
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } = 1+{y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x = 1
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}}
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } = {y^{\prime }}^{2}+y^{\prime }
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
|
\[
{}y^{\prime \prime }+2 {y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime }+2 {y^{\prime }}^{2} = 2
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = {y^{\prime }}^{3}
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } = \sec \left (x \right ) \tan \left (x \right )
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime } = {y^{\prime }}^{2} \cos \left (x \right )
\] |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
|
\[
{}y^{\prime \prime } = {y^{\prime }}^{2} \sin \left (x \right )
\] |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
|
\[
{}\left (1-{\mathrm e}^{x}\right ) y^{\prime \prime } = {\mathrm e}^{x} y^{\prime }
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+{y^{\prime }}^{2}+y^{\prime } = 0
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime } = x \,{\mathrm e}^{x}
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime } = x^{n}
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime } = \cos \left (x \right )
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime } = x \,{\mathrm e}^{x}
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime }+\frac {y^{\prime }}{x} = 9 x
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }+3 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } = 0
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}x y^{\prime \prime } = x +y^{\prime }
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime } = {\mathrm e}^{x} \left (x^{2}+10\right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = \frac {1}{1+{\mathrm e}^{x}}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } = 0
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime } = 2 \,{\mathrm e}^{2 x} \sin \left (x \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = x^{2}+2 x
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = x +\sin \left (2 x \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x = 1
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime }-y^{\prime } = x^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+2 x \left (y^{\prime }+1\right ) = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x = 1
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime }-y^{\prime } = x^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}\left (1+{y^{\prime }}^{2}\right )^{3} = a^{2} {y^{\prime \prime }}^{2}
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime } = 10
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }+y^{\prime } = 2 x
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime } = 9 x \,{\mathrm e}^{-x}-6 x^{2}+4 \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime } x = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime } = {y^{\prime }}^{3}+y^{\prime }
\] |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
|
\[
{}{y^{\prime \prime }}^{2} = k^{2} \left (1+{y^{\prime }}^{2}\right )
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}k = \frac {y^{\prime \prime }}{\left (y^{\prime }+1\right )^{{3}/{2}}}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear]] |
✓ |
|
\[
{}x y^{\prime \prime }+y^{\prime } = 4 x
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } = 9 x^{2}+2 x -1
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime }-7 y^{\prime } = -3
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-y^{\prime } x = x^{3} {\mathrm e}^{x}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime } = 5
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x = \frac {2}{x^{3}}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime }-y^{\prime } = -\frac {2}{x}-\ln \left (x \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}}
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x y^{\prime \prime }+2 y^{\prime } = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } = f \left (x \right )
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}u^{\prime \prime }-\cot \left (\theta \right ) u^{\prime } = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } = x +2
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime } = 1+3 x
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime } = 0
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = 1
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+{\mathrm e}^{x} y^{\prime } = {\mathrm e}^{x}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime }-2 y^{\prime } = x^{3}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } = 1+{y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime } = -\frac {1}{2 {y^{\prime }}^{2}}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_poly_yn]] |
✓ |
|
\[
{}\frac {y^{\prime \prime }}{y^{\prime }} = x^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } y^{\prime } = x \left (x +1\right )
\] |
[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime } = 2 y^{\prime } x +{y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime }+y^{\prime } = 4 x
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}\left (x^{2}+2 y^{\prime }\right ) y^{\prime \prime }+2 y^{\prime } x = 0
\] |
[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]] |
✓ |
|
\[
{}y^{\prime \prime } = 1+{y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime }+{y^{\prime }}^{2} = 1
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}x y^{\prime \prime } = y^{\prime }-2 {y^{\prime }}^{3}
\] |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
|
\[
{}x y^{\prime \prime }-3 y^{\prime } = 5 x
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime } = 12 x -10
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = 10 x^{4}+2
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } = \tan \left (x \right )
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime } = \ln \left (x \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}t y^{\prime \prime }-y^{\prime } = 2 t^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } = x {y^{\prime }}^{3}
\] |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+{y^{\prime }}^{2}-2 y^{\prime } x = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+{y^{\prime }}^{2}-2 y^{\prime } x = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}2 a y^{\prime \prime }+{y^{\prime }}^{3} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
|
\[
{}x y^{\prime \prime } = y^{\prime }+x^{5}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime }+y^{\prime }+x = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } \cos \left (x \right ) = y^{\prime }
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } = x {y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
|
\[
{}y^{\prime \prime } = x {y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime }-x^{2} y^{\prime } = -x^{2}+3
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } = {y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime } = {\mathrm e}^{x} {y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}2 y^{\prime \prime } = {y^{\prime }}^{3} \sin \left (2 x \right )
\] |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+{y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
|
\[
{}y^{\prime \prime } = 1+{y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}}
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime } = y^{\prime } \left (2 x -y^{\prime }\right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime } = y^{\prime } \left (3 x -2 y^{\prime }\right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime } = y^{\prime } \left (2-3 y^{\prime } x \right )
\] |
[[_2nd_order, _missing_y], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}x^{4} y^{\prime \prime } = y^{\prime } \left (y^{\prime }+x^{3}\right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } = 2 x +\left (x^{2}-y^{\prime }\right )^{2}
\] |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}{y^{\prime \prime }}^{2}-2 y^{\prime \prime }+{y^{\prime }}^{2}-2 y^{\prime } x +x^{2} = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}{y^{\prime \prime }}^{2}-x y^{\prime \prime }+y^{\prime } = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}{y^{\prime \prime }}^{3} = 12 y^{\prime } \left (x y^{\prime \prime }-2 y^{\prime }\right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}t y^{\prime \prime }+4 y^{\prime } = t^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}\left (t^{2}+9\right ) y^{\prime \prime }+2 y^{\prime } t = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}t y^{\prime \prime }+y^{\prime } = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }-2 y^{\prime } = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } = 0
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime } = 1
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime } = f \left (t \right )
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime } = k
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime } = 4 \sin \left (x \right )-4
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y y^{\prime \prime } = 0
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{2} y^{\prime \prime } = 0
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}a y y^{\prime \prime }+b y = 0
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+1+x {y^{\prime }}^{2} = 1
\] |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{3} = 0
\] |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
|
\[
{}y^{\prime \prime } = 0
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}{y^{\prime \prime }}^{2} = 0
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}{y^{\prime \prime }}^{n} = 0
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}a y^{\prime \prime } = 0
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}a {y^{\prime \prime }}^{2} = 0
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}a {y^{\prime \prime }}^{n} = 0
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime } = 1
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}{y^{\prime \prime }}^{2} = 1
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime } = x
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}{y^{\prime \prime }}^{2} = x
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}{y^{\prime \prime }}^{3} = 0
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}{y^{\prime \prime }}^{2}+y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+{y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = 1
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}{y^{\prime \prime }}^{2}+y^{\prime } = 1
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+{y^{\prime }}^{2} = 1
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = x
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}{y^{\prime \prime }}^{2}+y^{\prime } = x
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+{y^{\prime }}^{2} = x
\] |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = 1
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = x
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = x +1
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = x^{2}+x +1
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = x^{3}+x^{2}+x +1
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = \sin \left (x \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = \cos \left (x \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+{y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_y], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime } = 0
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}x y^{\prime \prime }+y^{\prime } = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+2 y^{\prime } x = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}\left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime } x +2 = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}\left (x^{2}-1\right ) y^{\prime \prime }+2 y^{\prime } x = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}\left (x^{2}-1\right ) y^{\prime \prime }+2 y^{\prime } x -a = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x \left (x -1\right ) y^{\prime \prime }+\left (\left (a +1\right ) x +b \right ) y^{\prime } = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x \left (x -1\right ) y^{\prime \prime }+\left (\left (\operatorname {a1} +\operatorname {b1} +1\right ) x -\operatorname {d1} \right ) y^{\prime }+\operatorname {a1} \operatorname {b1} \operatorname {d1} = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}\left (a^{2} x^{2}-1\right ) y^{\prime \prime }+2 a^{2} x y^{\prime } = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{2} \left (x +1\right ) y^{\prime \prime }+2 x \left (2+3 x \right ) y^{\prime } = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } = a \sqrt {1+{y^{\prime }}^{2}}
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } = a \sqrt {1+{y^{\prime }}^{2}}+b
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } = a \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}}
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 a x \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} = 0
\] |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
|
\[
{}8 y^{\prime \prime }+9 {y^{\prime }}^{4} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 x y^{\prime \prime }+{y^{\prime }}^{3}+y^{\prime } = 0
\] |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
|
\[
{}a^{2} {y^{\prime \prime }}^{2}-2 a x y^{\prime \prime }+y^{\prime } = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+a \,x^{n} y^{\prime } = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c x \left (-c \,x^{2}+a x +b +1\right ) = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime } = {\mathrm e}^{2 x}+1
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } x = x
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } = x \,{\mathrm e}^{x}
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}\left (y^{\prime }-x y^{\prime \prime }\right )^{2} = 1+{y^{\prime \prime }}^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+2 \cot \left (x \right ) y^{\prime }+2 \tan \left (x \right ) {y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } = 1+{y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x = 2
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+\frac {y^{\prime }}{x} = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime \prime }-\frac {y^{\prime }}{x}+x^{2} = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{\prime \prime } = -3 \sqrt {t}
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}x^{\prime }+t x^{\prime \prime } = 1
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}\frac {x^{\prime }+t x^{\prime \prime }}{t} = -2
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{\prime \prime }+x^{\prime } = 3 t
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{\prime \prime }-2 x^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }-2 x^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }-x^{\prime } = 6+{\mathrm e}^{2 t}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{\prime \prime }-2 x^{\prime } = 4
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}t^{2} x^{\prime \prime }+t x^{\prime } = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{\prime \prime }+t^{2} x^{\prime } = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{\prime \prime }+\frac {x^{\prime }}{t} = a
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }-4 x^{\prime } = t^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{\prime \prime }-4 x^{\prime } = \tan \left (t \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
|
\[
{}y^{\prime \prime }+{y^{\prime }}^{2} = 1
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}u^{\prime \prime }+\frac {2 u^{\prime }}{r} = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}m x^{\prime \prime } = f \left (x^{\prime }\right )
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}{y^{\prime \prime }}^{3}+y^{\prime \prime }+1 = x
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}x y^{\prime \prime } = y^{\prime } \ln \left (\frac {y^{\prime }}{x}\right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+\frac {2 y^{\prime }}{x} = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } = \frac {1}{2 y^{\prime }}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_poly_yn]] |
✓ |
|
\[
{}x y^{\prime \prime }-y^{\prime } = x^{2} {\mathrm e}^{x}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+\tan \left (x \right ) y^{\prime } = \sin \left (2 x \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}{y^{\prime \prime }}^{2}+{y^{\prime }}^{2} = a^{2}
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } = \frac {1}{2 y^{\prime }}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_poly_yn]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime } = 2-6 x
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-y^{\prime } x = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x \left (x -3\right ) y^{\prime \prime }+3 y^{\prime } = x^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x \left (x -3\right ) y^{\prime \prime }+3 y^{\prime } = x^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime } = 3 t +2
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime } = 3 t +2
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } = \frac {x +1}{x -1}
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime } = 1
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+3 y^{\prime } x = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } = \sin \left (2 x \right )
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime }-3 = x
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}x y^{\prime \prime }+2 = \sqrt {x}
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}x y^{\prime \prime }+4 y^{\prime } = 18 x^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime } = 2 y^{\prime }
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } = y^{\prime }
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime } = 8 \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime } = y^{\prime }-2 x^{2} y^{\prime }
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } = 4 x \sqrt {y^{\prime }}
\] |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
|
\[
{}y^{\prime \prime } y^{\prime } = 1
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]] |
✓ |
|
\[
{}x y^{\prime \prime } = {y^{\prime }}^{2}-y^{\prime }
\] |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
|
\[
{}x y^{\prime \prime }-{y^{\prime }}^{2} = 6 x^{5}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } = 2 y^{\prime }-6
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime } = 9 \,{\mathrm e}^{-3 x}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } = y^{\prime }
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } = 4 x \sqrt {y^{\prime }}
\] |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
|
\[
{}y^{\prime \prime } y^{\prime } = 1
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]] |
✓ |
|
\[
{}x y^{\prime \prime } = {y^{\prime }}^{2}-y^{\prime }
\] |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
|
\[
{}x y^{\prime \prime }-y^{\prime } = 6 x^{5}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime } = 9 \,{\mathrm e}^{-3 x}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } = y^{\prime } \left (y^{\prime }-2\right )
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}x y^{\prime \prime }+4 y^{\prime } = 18 x^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime } = 2 y^{\prime }
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } = y^{\prime }
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime } = 8 \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime }+2 y^{\prime } = 6
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}2 x y^{\prime } y^{\prime \prime } = {y^{\prime }}^{2}-1
\] |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]] |
✓ |
|
\[
{}y^{\prime \prime } = -2 x {y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
|
\[
{}y^{\prime \prime } = -2 x {y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
|
\[
{}y^{\prime \prime } = -2 x {y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
|
\[
{}y^{\prime \prime } = -2 x {y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime } = {\mathrm e}^{\frac {x}{2}}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime } = 26 \cos \left (\frac {x}{3}\right )-12 \sin \left (\frac {x}{3}\right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } = 6 x \,{\mathrm e}^{x} \sin \left (x \right )
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime } = 20
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime } = x^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}2 x y^{\prime \prime }+y^{\prime } = \sqrt {x}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } = {y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}2 y^{\prime \prime }-7 y^{\prime }+3 = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x y^{\prime \prime } = 3 y^{\prime }
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x y^{\prime \prime }-y^{\prime } = -3 x {y^{\prime }}^{3}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } = 0
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}3 y^{\prime \prime }-y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime } = 3-4 t
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } = 3 t^{4}-2 t
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime } = 52 \sin \left (3 t \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime } = 8 \,{\mathrm e}^{4 t}-4 \,{\mathrm e}^{-4 t}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime } = t^{2}-{\mathrm e}^{3 t}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime } = -24 t -6-4 t \,{\mathrm e}^{-4 t}+{\mathrm e}^{-4 t}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime } = t^{2}-{\mathrm e}^{3 t}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } = t^{2}+{\mathrm e}^{t}+\sin \left (t \right )
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime } = 18
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime } = -{\mathrm e}^{3 t}-2 t
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime } = -3 t -4 t^{2} {\mathrm e}^{2 t}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime } = 2 t^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime } = -24 t -6-4 t \,{\mathrm e}^{-4 t}+{\mathrm e}^{-4 t}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime } = {\mathrm e}^{-3 t}-{\mathrm e}^{3 t}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+16 y^{\prime } = t
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime } = 5 t^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime } = -3 \sin \left (t \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime } = \frac {1}{1+{\mathrm e}^{2 t}}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } = {y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}\left (x -1\right ) y^{\prime \prime } = 1
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}}
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } \left (x +2\right )^{5} = 1
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime } = x \,{\mathrm e}^{x}
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime } = 2 x \ln \left (x \right )
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}x y^{\prime \prime } = y^{\prime }
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime }+y^{\prime } = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime } = \left (2 x^{2}+1\right ) y^{\prime }
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime } = y^{\prime }+x^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x \ln \left (x \right ) y^{\prime \prime } = y^{\prime }
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}2 y^{\prime \prime } = \frac {y^{\prime }}{x}+\frac {x^{2}}{y^{\prime }}
\] |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_poly_yn]] |
✓ |
|
\[
{}y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}}
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } = {y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime } = \sqrt {1-{y^{\prime }}^{2}}
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } = 1+{y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime } = \sqrt {y^{\prime }+1}
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } = y^{\prime } \ln \left (y^{\prime }\right )
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+2 = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } = y^{\prime } \left (y^{\prime }+1\right )
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}3 y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}}
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime } = 3
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-7 y^{\prime } = \left (x -1\right )^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime } = {\mathrm e}^{x}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+7 y^{\prime } = {\mathrm e}^{-7 x}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}4 y^{\prime \prime }-3 y^{\prime } = x \,{\mathrm e}^{\frac {3 x}{4}}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime } = x \,{\mathrm e}^{4 x}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime } = -2
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+8 y^{\prime } = 8 x
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}7 y^{\prime \prime }-y^{\prime } = 14 x
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime } = 3 x \,{\mathrm e}^{-3 x}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime } = {\mathrm e}^{x} \sin \left (x \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime } = 4 \,{\mathrm e}^{x} \left (\sin \left (x \right )+\cos \left (x \right )\right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}4 y^{\prime \prime }+8 y^{\prime } = \sin \left (x \right ) x
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime } = x +{\mathrm e}^{-4 x}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime } = 2 \cos \left (4 x \right )^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime } = 18 x -10 \cos \left (x \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = \cos \left (x \right )^{2}+{\mathrm e}^{x}+x^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = x^{2}-{\mathrm e}^{-x}+{\mathrm e}^{x}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime } = 1+{\mathrm e}^{x}+\cos \left (x \right )+\sin \left (x \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+1 = 3 \sin \left (2 x \right )+\cos \left (x \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = {\mathrm e}^{-x}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime } = -5 \,{\mathrm e}^{-x} \left (\sin \left (x \right )+\cos \left (x \right )\right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime }+y^{\prime } = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = \frac {1}{1+{\mathrm e}^{x}}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = {\mathrm e}^{2 x} \cos \left ({\mathrm e}^{x}\right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime }-\left (2 x^{2}+1\right ) y^{\prime } = 4 x^{3} {\mathrm e}^{x^{2}}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime } = 1
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x \ln \left (x \right ) y^{\prime \prime }-y^{\prime } = \ln \left (x \right )^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime }+\left (2 x -1\right ) y^{\prime } = -4 x^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+\tan \left (x \right ) y^{\prime } = \cos \left (x \right ) \cot \left (x \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x = \frac {1}{x^{2}+1}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+\alpha y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x y^{\prime \prime }+y^{\prime } = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime } = 3+4 \sin \left (2 t \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime } = 2 t^{4}+t^{2} {\mathrm e}^{-3 t}+\sin \left (3 t \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } = \sin \left (x \right )
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}a^{2} y^{\prime \prime } = 2 x \sqrt {1+{y^{\prime }}^{2}}
\] |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
|
\[
{}{y^{\prime \prime }}^{2}+2 x y^{\prime \prime }-y^{\prime } = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}{y^{\prime \prime }}^{2}-2 x y^{\prime \prime }-y^{\prime } = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime } = {y^{\prime }}^{3}+y^{\prime }
\] |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime } = 2 y^{\prime } x +{y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime }+y^{\prime } = 4 x
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}\left (x^{2}+2 y^{\prime }\right ) y^{\prime \prime }+2 y^{\prime } x = 0
\] |
|
✓ |
|
\[
{}y^{\prime \prime } = 1+{y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime }+{y^{\prime }}^{2} = 1
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime }+2 x {y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x = 1
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime } = y^{\prime } \left (3 x -2 y^{\prime }\right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+{y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
|
\[
{}x y^{\prime \prime }-y^{\prime } = 3 x^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime }+y^{\prime } = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime } = 6
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } = {\mathrm e}^{x}
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime } = 4
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime } = 6 \,{\mathrm e}^{x}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+{y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime } = 12 x -10
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = 10 x^{4}+2
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{\prime \prime }+3 x^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } = \frac {m \sqrt {1+{y^{\prime }}^{2}}}{k}
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } = c \left (1+{y^{\prime }}^{2}\right )
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime } = c \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}}
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}1+{y^{\prime }}^{2}+\frac {m y^{\prime \prime }}{\sqrt {1+{y^{\prime }}^{2}}} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}v^{\prime \prime }+\frac {2 v^{\prime }}{r} = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}\left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} = r y^{\prime \prime }
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}e y^{\prime \prime } = \frac {P \left (\frac {L}{2}-x \right )}{2}
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}e y^{\prime \prime } = \frac {w \left (\frac {L^{2}}{4}-x^{2}\right )}{2}
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}e y^{\prime \prime } = -\frac {\left (w L +P \right ) x}{2}-\frac {w \,x^{2}}{2}
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}e y^{\prime \prime } = -P \left (L -x \right )
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}e y^{\prime \prime } = -P L +\left (w L +P \right ) x -\frac {w \left (L^{2}+x^{2}\right )}{2}
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}x y^{\prime \prime }+2 y^{\prime } = 2 x
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } = \cos \left (x \right )
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime } = \ln \left (x \right )
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }-1-{y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
|
\[
{}x y^{\prime \prime }+3 y^{\prime } = 3 x
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x = y^{\prime \prime }+y^{\prime }
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}V^{\prime \prime }+\frac {2 V^{\prime }}{r} = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}V^{\prime \prime }+\frac {V^{\prime }}{r} = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}v^{\prime \prime }+\frac {2 v^{\prime }}{r} = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } = x^{2} \sin \left (x \right )
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}}
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
|
\[
{}y^{\prime \prime }-a {y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+4 {y^{\prime }}^{3} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}a^{2} y^{\prime \prime } y^{\prime } = x
\] |
[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]] |
✓ |
|
\[
{}a y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}}
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x y^{\prime \prime }+y^{\prime } = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x \left (a^{2}-x^{2}\right )} = \frac {x^{2}}{a \left (a^{2}-x^{2}\right )}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+{y^{\prime }}^{3} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x = 2
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } = \frac {a}{x}
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = {\mathrm e}^{x}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}a y^{\prime \prime } = y^{\prime }
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } = a^{2}+k^{2} {y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}a^{2} {y^{\prime \prime }}^{2} = 1+{y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+\frac {2 y^{\prime }}{r} = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+2 y^{\prime } x = \ln \left (x \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}\left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime } = \left (2 x +3\right ) \left (2 x +4\right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } = x +\sin \left (x \right )
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime } = x \,{\mathrm e}^{x}
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime } \cos \left (x \right )^{2} = 1
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime } = \frac {a}{x}
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime } \sqrt {a^{2}+x^{2}} = x
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime } = \ln \left (x \right )
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime } = y^{\prime } x
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}}
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = {\mathrm e}^{x}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+\frac {y^{\prime }}{x} = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x \left (a^{2}-x^{2}\right )} = \frac {x^{2}}{a \left (a^{2}-x^{2}\right )}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +a x = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x = a x
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime }+x {y^{\prime }}^{2}-y^{\prime } = 0
\] |
[[_2nd_order, _missing_y], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime }-x y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x}+\frac {x^{2}}{a} = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime }+y^{\prime } = x
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}\left (a^{2}-x^{2}\right ) y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x}+\frac {x^{2}}{a} = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+4 {y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime } = a {y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}a y^{\prime \prime } = y^{\prime }
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}a^{2} y^{\prime \prime } y^{\prime } = x
\] |
[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]] |
✓ |
|
\[
{}y^{\prime \prime } = 1+{y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}a y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}}
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } = a^{2}+k^{2} {y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}a^{2} {y^{\prime \prime }}^{2} = 1+{y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}-a y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}}
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}{\mathrm e}^{x} \left (x y^{\prime \prime }-y^{\prime }\right ) = x^{3}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x = 2
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } = x^{2} \sin \left (x \right )
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime } = \sec \left (x \right )^{2}
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+{y^{\prime }}^{3} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
|
\[
{}x y^{\prime \prime }+y^{\prime } = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|