2.4.6 second order ode missing x

Table 2.457: second order ode missing x

#

ODE

CAS classification

Solved?

148

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

151

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

153

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = y y^{\prime } \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

155

\[ {}y^{\prime \prime } = 2 y {y^{\prime }}^{3} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

156

\[ {}y^{3} y^{\prime \prime } = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

157

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

158

\[ {}y y^{\prime \prime } = 3 {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

170

\[ {}r y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

[[_2nd_order, _missing_x]]

233

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

2820

\[ {}z^{\prime \prime }+z^{3} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2821

\[ {}z^{\prime \prime }+z+z^{5} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2822

\[ {}z^{\prime \prime }+{\mathrm e}^{z^{2}} = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2823

\[ {}z^{\prime \prime }+\frac {z}{1+z^{2}} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2824

\[ {}z^{\prime \prime }+z-2 z^{3} = 0 \]

[[_2nd_order, _missing_x], _Duffing, [_2nd_order, _reducible, _mu_x_y1]]

3247

\[ {}y^{3} y^{\prime \prime }+4 = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

3248

\[ {}x^{\prime \prime } = \frac {k^{2}}{x^{2}} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

3252

\[ {}y^{\prime \prime } = {y^{\prime }}^{3}+y^{\prime } \]

[[_2nd_order, _missing_x]]

3256

\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

3258

\[ {}y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

[[_2nd_order, _missing_x]]

3259

\[ {}y^{\prime \prime } = {y^{\prime }}^{2}+y^{\prime } \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

3260

\[ {}y^{\prime \prime } = y y^{\prime } \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

3262

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

3263

\[ {}y^{\prime \prime }+2 {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

3264

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

3265

\[ {}y y^{\prime \prime }+1 = {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

3267

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = y y^{\prime } \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

3268

\[ {}2 y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

3269

\[ {}y^{\prime \prime }+2 {y^{\prime }}^{2} = 2 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

3270

\[ {}y^{\prime \prime }+y^{\prime } = {y^{\prime }}^{3} \]

[[_2nd_order, _missing_x]]

3271

\[ {}\left (y+1\right ) y^{\prime \prime } = 3 {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

3273

\[ {}2 y^{\prime \prime } = {\mathrm e}^{y} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

3274

\[ {}y^{\prime \prime } = y^{3} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

3276

\[ {}y y^{\prime \prime }-y^{2} y^{\prime } = {y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmetries], [_2nd_order, _reducible, _mu_xy]]

3278

\[ {}y y^{\prime \prime } = y^{3}+{y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_x]]

3279

\[ {}\left (1+{y^{\prime }}^{2}\right )^{2} = y^{2} y^{\prime \prime } \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

3281

\[ {}2 y y^{\prime \prime } = y^{3}+2 {y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_x]]

3283

\[ {}y y^{\prime \prime } = 2 {y^{\prime }}^{2}+y^{2} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

3483

\[ {}y^{\prime \prime }+{y^{\prime }}^{2}+y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

4407

\[ {}y y^{\prime \prime }-y y^{\prime } = {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

4432

\[ {}y y^{\prime \prime }-y^{2} y^{\prime }-{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmetries], [_2nd_order, _reducible, _mu_xy]]

4436

\[ {}\left (y^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{3}+y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

5995

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

5996

\[ {}y^{3} y^{\prime \prime } = k \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

5997

\[ {}y y^{\prime \prime } = {y^{\prime }}^{2}-1 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

6000

\[ {}\left (y+1\right ) y^{\prime \prime } = 3 {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

6001

\[ {}r^{\prime \prime } = -\frac {k}{r^{2}} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

6002

\[ {}y^{\prime \prime } = \frac {3 k y^{2}}{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

6003

\[ {}y^{\prime \prime } = 2 k y^{3} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

6004

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2}-y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

6005

\[ {}r^{\prime \prime } = \frac {h^{2}}{r^{3}}-\frac {k}{r^{2}} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

6006

\[ {}y y^{\prime \prime }+{y^{\prime }}^{3}-{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

6007

\[ {}y y^{\prime \prime }-3 {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

6010

\[ {}\left (y+1\right ) y^{\prime \prime } = 3 {y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

6011

\[ {}y^{\prime \prime } = y^{\prime } {\mathrm e}^{y} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

6012

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

6013

\[ {}2 y^{\prime \prime } = {\mathrm e}^{y} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

6030

\[ {}\left (1+{y^{\prime }}^{2}\right )^{3} = a^{2} {y^{\prime \prime }}^{2} \]

[[_2nd_order, _missing_x]]

6183

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

6184

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

6185

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

6186

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

6188

\[ {}2 y y^{\prime \prime } = {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

6190

\[ {}{y^{\prime \prime }}^{2} = k^{2} \left (1+{y^{\prime }}^{2}\right ) \]

[[_2nd_order, _missing_x]]

6191

\[ {}k = \frac {y^{\prime \prime }}{\left (y^{\prime }+1\right )^{{3}/{2}}} \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear]]

6235

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2}+4 = 0 \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

6699

\[ {}y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

6700

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 2 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

6701

\[ {}y y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

6773

\[ {}y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

6777

\[ {}y y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

6778

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

6779

\[ {}y y^{\prime \prime } = {y^{\prime }}^{2} \left (1-y^{\prime } \cos \left (y\right )+y y^{\prime } \sin \left (y\right )\right ) \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]]

6782

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{2} \ln \left (y\right ) \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

6787

\[ {}2 \left (y+1\right ) y^{\prime \prime }+2 {y^{\prime }}^{2}+y^{2}+2 y = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

6881

\[ {}y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

[[_2nd_order, _missing_x]]

6882

\[ {}R^{\prime \prime } = -\frac {k}{R^{2}} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

7311

\[ {}x x^{\prime \prime }-{x^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

7343

\[ {}y y^{\prime \prime }-y^{2} y^{\prime }-{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmetries], [_2nd_order, _reducible, _mu_xy]]

7539

\[ {}y y^{\prime \prime }+4 {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

7541

\[ {}y^{\prime \prime } = y y^{\prime } \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

7544

\[ {}y^{\prime \prime } = -\frac {1}{2 {y^{\prime }}^{2}} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_poly_yn]]

7545

\[ {}y^{\prime \prime }+\sin \left (y\right ) = 0 \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

7546

\[ {}y^{\prime \prime }+\sin \left (y\right ) = 0 \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

7683

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

7687

\[ {}2 y y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

7688

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

7691

\[ {}y y^{\prime \prime } = y^{2} y^{\prime }+{y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmetries], [_2nd_order, _reducible, _mu_xy]]

7692

\[ {}y^{\prime \prime } = y^{\prime } {\mathrm e}^{y} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

7693

\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

7694

\[ {}y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

7711

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

7713

\[ {}y y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

7849

\[ {}y^{\prime \prime }+\sin \left (y\right ) = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

8270

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

8271

\[ {}y^{2} y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

8272

\[ {}\left (y+1\right ) y^{\prime \prime } = {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

8273

\[ {}2 a y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]]

8276

\[ {}y^{\prime \prime } = 2 y {y^{\prime }}^{3} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

8277

\[ {}y y^{\prime \prime }+{y^{\prime }}^{3}-{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

8279

\[ {}y y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

8283

\[ {}y^{\prime \prime } = -{\mathrm e}^{-2 y} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

8284

\[ {}y^{\prime \prime } = -{\mathrm e}^{-2 y} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

8288

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

8292

\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

8293

\[ {}y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

[[_2nd_order, _missing_x]]

8294

\[ {}y y^{\prime \prime } = {y^{\prime }}^{2} \left (1-y^{\prime } \sin \left (y\right )-y y^{\prime } \cos \left (y\right )\right ) \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]]

8295

\[ {}\left (y^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{3}+y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

8296

\[ {}\left (y y^{\prime \prime }+1+{y^{\prime }}^{2}\right )^{2} = \left (1+{y^{\prime }}^{2}\right )^{3} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

8305

\[ {}3 y y^{\prime } y^{\prime \prime } = {y^{\prime }}^{3}-1 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

8306

\[ {}4 y {y^{\prime }}^{2} y^{\prime \prime } = {y^{\prime }}^{4}+3 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

8552

\[ {}y y^{\prime \prime } = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

8557

\[ {}3 y y^{\prime \prime }+y = 5 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

8558

\[ {}a y y^{\prime \prime }+b y = c \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

8559

\[ {}a y^{2} y^{\prime \prime }+b y^{2} = c \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

8662

\[ {}y^{\prime \prime }+\sin \left (y\right ) {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

8740

\[ {}y^{\prime \prime } = A y^{{2}/{3}} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

8761

\[ {}y^{\prime \prime }+{\mathrm e}^{y} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

8851

\[ {}{y^{\prime \prime }}^{2} = 0 \]

[[_2nd_order, _quadrature]]

8852

\[ {}{y^{\prime \prime }}^{n} = 0 \]

[[_2nd_order, _quadrature]]

8854

\[ {}a {y^{\prime \prime }}^{2} = 0 \]

[[_2nd_order, _quadrature]]

8855

\[ {}a {y^{\prime \prime }}^{n} = 0 \]

[[_2nd_order, _quadrature]]

8860

\[ {}{y^{\prime \prime }}^{3} = 0 \]

[[_2nd_order, _quadrature]]

8862

\[ {}{y^{\prime \prime }}^{2}+y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

8863

\[ {}y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

8865

\[ {}{y^{\prime \prime }}^{2}+y^{\prime } = 1 \]

[[_2nd_order, _missing_x]]

8866

\[ {}y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

8872

\[ {}y^{\prime \prime }+{y^{\prime }}^{2}+y = 0 \]

[[_2nd_order, _missing_x]]

8894

\[ {}y {y^{\prime \prime }}^{2}+y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

8895

\[ {}y {y^{\prime \prime }}^{2}+{y^{\prime }}^{3} = 0 \]

[[_2nd_order, _missing_x]]

8896

\[ {}y^{2} {y^{\prime \prime }}^{2}+y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

8897

\[ {}y {y^{\prime \prime }}^{4}+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x]]

8898

\[ {}y^{3} {y^{\prime \prime }}^{2}+y y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

8899

\[ {}y y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

8900

\[ {}y {y^{\prime \prime }}^{3}+y^{3} y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

8901

\[ {}y {y^{\prime \prime }}^{3}+y^{3} {y^{\prime }}^{5} = 0 \]

[[_2nd_order, _missing_x]]

8906

\[ {}y^{\prime \prime } y^{\prime }+y^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

8907

\[ {}y^{\prime \prime } y^{\prime }+y^{n} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

11368

\[ {}y^{\prime \prime }-y^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

11369

\[ {}y^{\prime \prime }-6 y^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

11371

\[ {}y^{\prime \prime }-6 y^{2}+4 y = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

11374

\[ {}y^{\prime \prime }-a y^{3} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

11377

\[ {}y^{\prime \prime }+d +b y^{2}+c y+a y^{3} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

11379

\[ {}y^{\prime \prime }+6 a^{10} y^{11}-y = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

11381

\[ {}y^{\prime \prime }-{\mathrm e}^{y} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

11384

\[ {}y^{\prime \prime }+a \sin \left (y\right ) = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

11397

\[ {}y^{\prime \prime }+y y^{\prime }-y^{3} = 0 \]

[[_2nd_order, _missing_x]]

11409

\[ {}y^{\prime \prime }-2 a y y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

11410

\[ {}y^{\prime \prime }+a y y^{\prime }+b y^{3} = 0 \]

[[_2nd_order, _missing_x]]

11412

\[ {}y^{\prime \prime }+a {y^{\prime }}^{2}+b y = 0 \]

[[_2nd_order, _missing_x]]

11415

\[ {}y^{\prime \prime }+a {y^{\prime }}^{2}+b \sin \left (y\right ) = 0 \]

[[_2nd_order, _missing_x]]

11417

\[ {}y^{\prime \prime }+a y {y^{\prime }}^{2}+b y = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

11423

\[ {}y^{\prime \prime }+a y \left (1+{y^{\prime }}^{2}\right )^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

11427

\[ {}y^{\prime \prime } = a \sqrt {1+{y^{\prime }}^{2}} \]

[[_2nd_order, _missing_x]]

11428

\[ {}y^{\prime \prime } = a \sqrt {1+{y^{\prime }}^{2}}+b \]

[[_2nd_order, _missing_x]]

11429

\[ {}y^{\prime \prime } = a \sqrt {{y^{\prime }}^{2}+b y^{2}} \]

[[_2nd_order, _missing_x]]

11430

\[ {}y^{\prime \prime } = a \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

[[_2nd_order, _missing_x]]

11432

\[ {}y^{\prime \prime }-a y \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

11434

\[ {}y^{\prime \prime }+y^{3} y^{\prime }-y y^{\prime } \sqrt {y^{4}+4 y^{\prime }} = 0 \]

[[_2nd_order, _missing_x]]

11438

\[ {}8 y^{\prime \prime }+9 {y^{\prime }}^{4} = 0 \]

[[_2nd_order, _missing_x]]

11471

\[ {}y y^{\prime \prime }-a = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

11474

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2}-a = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

11476

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2}-y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

11477

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}+1 = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

11478

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}-1 = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

11480

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}-y^{2} \ln \left (y\right ) = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

11484

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}+a y y^{\prime }+b y^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

11491

\[ {}y y^{\prime \prime }-3 {y^{\prime }}^{2}+3 y y^{\prime }-y^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

11492

\[ {}y y^{\prime \prime }-a {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

11493

\[ {}y y^{\prime \prime }+a \left (1+{y^{\prime }}^{2}\right ) = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

11494

\[ {}y y^{\prime \prime }+a {y^{\prime }}^{2}+b y^{3} = 0 \]

[[_2nd_order, _missing_x]]

11497

\[ {}y y^{\prime \prime }+a {y^{\prime }}^{2}+b y^{2} y^{\prime }+c y^{4} = 0 \]

[[_2nd_order, _missing_x]]

11504

\[ {}2 y y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

11505

\[ {}2 y y^{\prime \prime }-{y^{\prime }}^{2}+a = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

11507

\[ {}2 y y^{\prime \prime }-{y^{\prime }}^{2}-8 y^{3} = 0 \]

[[_2nd_order, _missing_x]]

11508

\[ {}2 y y^{\prime \prime }-{y^{\prime }}^{2}-8 y^{3}-4 y^{2} = 0 \]

[[_2nd_order, _missing_x]]

11510

\[ {}2 y y^{\prime \prime }-{y^{\prime }}^{2}+\left (a y+b \right ) y^{2} = 0 \]

[[_2nd_order, _missing_x]]

11513

\[ {}2 y y^{\prime \prime }-{y^{\prime }}^{2}-3 y^{4} = 0 \]

[[_2nd_order, _missing_x]]

11517

\[ {}2 y y^{\prime \prime }-3 {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

11518

\[ {}2 y y^{\prime \prime }-3 {y^{\prime }}^{2}-4 y^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

11520

\[ {}2 y y^{\prime \prime }-6 {y^{\prime }}^{2}+\left (1+a y^{3}\right ) y^{2} = 0 \]

[[_2nd_order, _missing_x]]

11521

\[ {}2 y y^{\prime \prime }-{y^{\prime }}^{2} \left (1+{y^{\prime }}^{2}\right ) = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

11522

\[ {}2 \left (y-a \right ) y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

11524

\[ {}3 y y^{\prime \prime }-5 {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

11525

\[ {}4 y y^{\prime \prime }-3 {y^{\prime }}^{2}+4 y = 0 \]

[[_2nd_order, _missing_x]]

11526

\[ {}4 y y^{\prime \prime }-3 {y^{\prime }}^{2}-12 y^{3} = 0 \]

[[_2nd_order, _missing_x]]

11527

\[ {}4 y y^{\prime \prime }-3 {y^{\prime }}^{2}+a y^{3}+b y^{2}+c y = 0 \]

[[_2nd_order, _missing_x]]

11529

\[ {}4 y y^{\prime \prime }-5 {y^{\prime }}^{2}+a y^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

11530

\[ {}12 y y^{\prime \prime }-15 {y^{\prime }}^{2}+8 y^{3} = 0 \]

[[_2nd_order, _missing_x]]

11531

\[ {}n y y^{\prime \prime }-\left (n -1\right ) {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

11532

\[ {}a y y^{\prime \prime }+b {y^{\prime }}^{2}+\operatorname {c4} y^{4}+\operatorname {c3} y^{3}+\operatorname {c2} y^{2}+\operatorname {c1} y+\operatorname {c0} = 0 \]

[[_2nd_order, _missing_x]]

11535

\[ {}\left (a y+b \right ) y^{\prime \prime }+c {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

11555

\[ {}y^{2} y^{\prime \prime }-a = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

11558

\[ {}\left (y^{2}+1\right ) y^{\prime \prime }+\left (1-2 y\right ) {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

11559

\[ {}\left (y^{2}+1\right ) y^{\prime \prime }-3 y {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

11570

\[ {}a y \left (y-1\right ) y^{\prime \prime }-\left (a -1\right ) \left (2 y-1\right ) {y^{\prime }}^{2}+f y \left (y-1\right ) y^{\prime } = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

11571

\[ {}a b y \left (y-1\right ) y^{\prime \prime }-\left (\left (2 a b -a -b \right ) y+\left (1-a \right ) b \right ) {y^{\prime }}^{2}+f y \left (y-1\right ) y^{\prime } = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

11576

\[ {}y^{3} y^{\prime \prime }-a = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

11577

\[ {}y \left (y^{2}+1\right ) y^{\prime \prime }+\left (1-3 y^{2}\right ) {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

11580

\[ {}2 \left (y-a \right ) \left (y-b \right ) \left (y-c \right ) y^{\prime \prime }-\left (\left (y-a \right )^{2} \left (y-b \right ) \left (y-c \right )+\left (y-b \right ) \left (y-c \right )\right ) {y^{\prime }}^{2}+\left (y-a \right )^{2} \left (y-b \right )^{2} \left (y-c \right )^{2} \left (A_{0} +\frac {B_{0}}{\left (y-a \right )^{2}}+\frac {C_{1}}{\left (y-b \right )^{2}}+\frac {D_{0}}{\left (y-c \right )^{2}}\right ) = 0 \]

[[_2nd_order, _missing_x]]

11581

\[ {}\left (4 y^{3}-a y-b \right ) y^{\prime \prime }-\left (6 y^{2}-\frac {a}{2}\right ) {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

11582

\[ {}\left (4 y^{3}-a y-b \right ) \left (y^{\prime \prime }+f y^{\prime }\right )-\left (6 y^{2}-\frac {a}{2}\right ) {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

11585

\[ {}\left (-1+y^{2}\right ) \left (a^{2} y^{2}-1\right ) y^{\prime \prime }+b \sqrt {\left (1-y^{2}\right ) \left (1-a^{2} y^{2}\right )}\, {y^{\prime }}^{2}+\left (1+a^{2}-2 a^{2} y^{2}\right ) y {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

11587

\[ {}\sqrt {y}\, y^{\prime \prime }-a = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

11589

\[ {}y \left (1-\ln \left (y\right )\right ) y^{\prime \prime }+\left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

11590

\[ {}\left (b +a \sin \left (y\right )^{2}\right ) y^{\prime \prime }+a {y^{\prime }}^{2} \cos \left (y\right ) \sin \left (y\right )+A y \left (c +a \sin \left (y\right )^{2}\right ) = 0 \]

[[_2nd_order, _missing_x]]

11599

\[ {}\left ({y^{\prime }}^{2}+y^{2}\right ) y^{\prime \prime }+y^{3} = 0 \]

[[_2nd_order, _missing_x]]

11610

\[ {}\left (a^{2} y^{2}-b^{2}\right ) {y^{\prime \prime }}^{2}-2 a^{2} y {y^{\prime }}^{2} y^{\prime \prime }+\left (a^{2} {y^{\prime }}^{2}-1\right ) {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x]]

12771

\[ {}y y^{\prime \prime }-y^{2} y^{\prime }-{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmetries], [_2nd_order, _reducible, _mu_xy]]

12772

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}+1 = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

12773

\[ {}2 y^{\prime \prime } = {\mathrm e}^{y} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

12774

\[ {}y y^{\prime \prime }+2 y^{\prime }-{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

12790

\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

12792

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

12795

\[ {}y \left (1-\ln \left (y\right )\right ) y^{\prime \prime }+\left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

12798

\[ {}y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

13684

\[ {}y^{\prime \prime }+\frac {2 {y^{\prime }}^{2}}{1-y} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

13687

\[ {}x^{3} x^{\prime \prime }+1 = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

13694

\[ {}y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

13695

\[ {}y^{\prime \prime } = 3 \sqrt {y} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

13699

\[ {}y y^{\prime } y^{\prime \prime } = {y^{\prime }}^{3}+{y^{\prime \prime }}^{2} \]

[[_2nd_order, _missing_x]]

13706

\[ {}m x^{\prime \prime } = f \left (x^{\prime }\right ) \]

[[_2nd_order, _missing_x]]

13720

\[ {}y^{\prime \prime } = 2 y^{3} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

13721

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{\prime } \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

13756

\[ {}y y^{\prime \prime } = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

13787

\[ {}\left (1-y\right ) y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

14004

\[ {}y^{\prime \prime } = \frac {1}{2 y^{\prime }} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_poly_yn]]

14007

\[ {}y^{\prime \prime } = \frac {a}{y^{3}} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

14009

\[ {}y y^{\prime \prime }+{y^{\prime }}^{3}-{y^{\prime }}^{2} = 0 \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

14012

\[ {}y^{\prime \prime } = \frac {1}{2 y^{\prime }} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_poly_yn]]

14053

\[ {}y y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

14082

\[ {}x^{\prime \prime }+x-x^{3} = 0 \]

[[_2nd_order, _missing_x], _Duffing, [_2nd_order, _reducible, _mu_x_y1]]

14083

\[ {}x^{\prime \prime }+x+x^{3} = 0 \]

[[_2nd_order, _missing_x], _Duffing, [_2nd_order, _reducible, _mu_x_y1]]

14086

\[ {}x^{\prime \prime } = \left (2 \cos \left (x\right )-1\right ) \sin \left (x\right ) \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

14267

\[ {}2 y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

14994

\[ {}y^{\prime \prime } y^{\prime } = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]]

14995

\[ {}y y^{\prime \prime } = -{y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

14998

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{\prime } \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

15000

\[ {}\left (y-3\right ) y^{\prime \prime } = 2 {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

15006

\[ {}y y^{\prime \prime } = {y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

15007

\[ {}3 y y^{\prime \prime } = 2 {y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

15008

\[ {}\sin \left (y\right ) y^{\prime \prime }+\cos \left (y\right ) {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

15010

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 2 y y^{\prime } \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

15011

\[ {}y^{2} y^{\prime \prime }+y^{\prime \prime }+2 y {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

15013

\[ {}y^{\prime \prime } y^{\prime } = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]]

15016

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{\prime } \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

15017

\[ {}y y^{\prime \prime } = 2 {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

15018

\[ {}\left (y-3\right ) y^{\prime \prime } = {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

15020

\[ {}y^{\prime \prime } = y^{\prime } \left (y^{\prime }-2\right ) \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

15029

\[ {}3 y y^{\prime \prime } = 2 {y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

15030

\[ {}y y^{\prime \prime }+2 {y^{\prime }}^{2} = 3 y y^{\prime } \]
i.c.

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

15031

\[ {}y^{\prime \prime } = -y^{\prime } {\mathrm e}^{-y} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

15036

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

15037

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

15038

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

15039

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

15046

\[ {}\left (y+1\right ) y^{\prime \prime } = {y^{\prime }}^{3} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

15328

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

16183

\[ {}2 y y^{\prime \prime }+y^{2} = {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

16686

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

16691

\[ {}y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

[[_2nd_order, _missing_x]]

16692

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

16707

\[ {}y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

[[_2nd_order, _missing_x]]

16708

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

16709

\[ {}y^{\prime \prime } = \sqrt {1-{y^{\prime }}^{2}} \]

[[_2nd_order, _missing_x]]

16710

\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

16711

\[ {}y^{\prime \prime } = \sqrt {y^{\prime }+1} \]

[[_2nd_order, _missing_x]]

16712

\[ {}y^{\prime \prime } = y^{\prime } \ln \left (y^{\prime }\right ) \]
i.c.

[[_2nd_order, _missing_x]]

16714

\[ {}y^{\prime \prime } = y^{\prime } \left (y^{\prime }+1\right ) \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

16715

\[ {}3 y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

[[_2nd_order, _missing_x]]

16717

\[ {}y y^{\prime \prime } = {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

16718

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

16719

\[ {}3 y^{\prime \prime } y^{\prime } = 2 y \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

16720

\[ {}2 y^{\prime \prime } = 3 y^{2} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

16721

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

16722

\[ {}y y^{\prime \prime } = {y^{\prime }}^{2}+y^{\prime } \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

16723

\[ {}y y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

16724

\[ {}2 y y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

16725

\[ {}y^{3} y^{\prime \prime } = -1 \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

16726

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{2} y^{\prime } \]

[[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmetries], [_2nd_order, _reducible, _mu_xy]]

16727

\[ {}y^{\prime \prime } = {\mathrm e}^{2 y} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

16728

\[ {}2 y y^{\prime \prime }-3 {y^{\prime }}^{2} = 4 y^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

16951

\[ {}x^{\prime \prime }+{x^{\prime }}^{2}+x = 0 \]

[[_2nd_order, _missing_x]]

16953

\[ {}x^{\prime \prime }-x \,{\mathrm e}^{x^{\prime }} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

16955

\[ {}x^{\prime \prime }+x {x^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

16956

\[ {}x^{\prime \prime }+\left (2+x\right ) x^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

16962

\[ {}y y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

17344

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

17749

\[ {}y^{\prime \prime } = \frac {1}{\sqrt {y}} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

17752

\[ {}2 \left (2 a -y\right ) y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

17754

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = y^{2} \ln \left (y\right ) \]

[[_2nd_order, _missing_x]]

17755

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

17763

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}-{y^{\prime }}^{4} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

17766

\[ {}y \left (1-\ln \left (y\right )\right ) y^{\prime \prime }+\left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

17965

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

17969

\[ {}2 y y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

17970

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

17973

\[ {}y y^{\prime \prime } = y^{2} y^{\prime }+{y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmetries], [_2nd_order, _reducible, _mu_xy]]

17974

\[ {}y^{\prime \prime } = y^{\prime } {\mathrm e}^{y} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

17975

\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

17976

\[ {}y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

17977

\[ {}y y^{\prime \prime } = {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

17983

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2}-2 y y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

18017

\[ {}y^{2} y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

18025

\[ {}y^{\prime \prime } = 2 y {y^{\prime }}^{3} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

18048

\[ {}y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

18345

\[ {}y^{\prime \prime } = \frac {m \sqrt {1+{y^{\prime }}^{2}}}{k} \]

[[_2nd_order, _missing_x]]

18346

\[ {}\phi ^{\prime \prime } = \frac {4 \pi n c}{\sqrt {v_{0}^{2}+\frac {2 e \left (\phi -V_{0} \right )}{m}}} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

18374

\[ {}y^{\prime \prime } = c \left (1+{y^{\prime }}^{2}\right ) \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

18375

\[ {}y^{\prime \prime } = c \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

[[_2nd_order, _missing_x]]

18378

\[ {}1+{y^{\prime }}^{2}+\frac {m y^{\prime \prime }}{\sqrt {1+{y^{\prime }}^{2}}} = 0 \]

[[_2nd_order, _missing_x]]

18387

\[ {}y^{\prime \prime }-2 y y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

18388

\[ {}y^{\prime \prime }-{y^{\prime }}^{2}-y {y^{\prime }}^{3} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

18389

\[ {}\left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} = r y^{\prime \prime } \]

[[_2nd_order, _missing_x]]

18479

\[ {}y^{\prime \prime } = \frac {1}{y^{2}} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

18480

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

18481

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

18736

\[ {}y^{\prime \prime } = \frac {1}{\sqrt {a y}} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

18737

\[ {}y^{\prime \prime }+\frac {a^{2}}{y^{2}} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

18738

\[ {}y^{\prime \prime }-\frac {a^{2}}{y^{2}} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

18740

\[ {}y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

[[_2nd_order, _missing_x]]

18743

\[ {}y^{\prime \prime }-a {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

18744

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

18745

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{2} \ln \left (y\right ) \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

18746

\[ {}y^{\prime \prime }+2 y^{\prime }+4 {y^{\prime }}^{3} = 0 \]

[[_2nd_order, _missing_x]]

18751

\[ {}a y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

[[_2nd_order, _missing_x]]

18765

\[ {}{y^{\prime }}^{2}-y y^{\prime \prime } = n \sqrt {{y^{\prime }}^{2}+a^{2} {y^{\prime \prime }}^{2}} \]

[[_2nd_order, _missing_x]]

18767

\[ {}y^{\prime \prime }+y^{\prime }+{y^{\prime }}^{3} = 0 \]

[[_2nd_order, _missing_x]]

18772

\[ {}y \left (1-\ln \left (y\right )\right ) y^{\prime \prime }+\left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

18778

\[ {}y^{3} y^{\prime \prime } = a \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

18780

\[ {}y^{\prime \prime } = a^{2}+k^{2} {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

18786

\[ {}a^{2} {y^{\prime \prime }}^{2} = 1+{y^{\prime }}^{2} \]

[[_2nd_order, _missing_x]]

18812

\[ {}y y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

19153

\[ {}y^{3} y^{\prime \prime } = a \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

19155

\[ {}y^{\prime \prime }+\frac {a^{2}}{y} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

19156

\[ {}y^{\prime \prime } = y^{3}-y \]

[[_2nd_order, _missing_x], _Duffing, [_2nd_order, _reducible, _mu_x_y1]]

19157

\[ {}y^{\prime \prime } = {\mathrm e}^{2 y} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

19159

\[ {}y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

[[_2nd_order, _missing_x]]

19171

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

19172

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

19173

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}+y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

19174

\[ {}y^{\prime \prime }+2 y^{\prime }+4 {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

19175

\[ {}y^{\prime \prime } = a {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

19176

\[ {}y y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

19177

\[ {}y y^{\prime \prime }+\sqrt {{y^{\prime }}^{2}+a^{2} {y^{\prime \prime }}^{2}} = {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x]]

19181

\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

19182

\[ {}a y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

[[_2nd_order, _missing_x]]

19183

\[ {}y^{\prime \prime } = a^{2}+k^{2} {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

19184

\[ {}a^{2} {y^{\prime \prime }}^{2} = 1+{y^{\prime }}^{2} \]

[[_2nd_order, _missing_x]]

19185

\[ {}y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

19199

\[ {}y^{\prime \prime } = {\mathrm e}^{y} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

19204

\[ {}y^{\prime \prime } = \frac {1}{\sqrt {a y}} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

19206

\[ {}-a y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

[[_2nd_order, _missing_x]]

19207

\[ {}\sin \left (y\right )^{3} y^{\prime \prime } = \cos \left (y\right ) \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

19211

\[ {}y y^{\prime \prime }+\sqrt {{y^{\prime }}^{2}+a^{2} {y^{\prime \prime }}^{2}} = {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x]]

19383

\[ {}y^{\prime \prime }+y^{\prime }+{y^{\prime }}^{3} = 0 \]

[[_2nd_order, _missing_x]]

19385

\[ {}y \left (1-\ln \left (y\right )\right ) y^{\prime \prime }+\left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

19386

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{2} \ln \left (y\right ) \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]