# |
ODE |
CAS classification |
Solved? |
\[
{}y y^{\prime \prime }+{y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime } = {y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y y^{\prime \prime }+{y^{\prime }}^{2} = y y^{\prime }
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime } = 2 y {y^{\prime }}^{3}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
|
\[
{}y^{3} y^{\prime \prime } = 1
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y^{\prime \prime } = 2 y y^{\prime }
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y y^{\prime \prime } = 3 {y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}r y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}}
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y y^{\prime \prime }+{y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}z^{\prime \prime }+z^{3} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}z^{\prime \prime }+z+z^{5} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}z^{\prime \prime }+{\mathrm e}^{z^{2}} = 1
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}z^{\prime \prime }+\frac {z}{1+z^{2}} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}z^{\prime \prime }+z-2 z^{3} = 0
\] |
[[_2nd_order, _missing_x], _Duffing, [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y^{3} y^{\prime \prime }+4 = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}x^{\prime \prime } = \frac {k^{2}}{x^{2}}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y^{\prime \prime } = {y^{\prime }}^{3}+y^{\prime }
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } = 1+{y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}}
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } = {y^{\prime }}^{2}+y^{\prime }
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime } = y y^{\prime }
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime }+y y^{\prime } = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime }+2 {y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y y^{\prime \prime }+{y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y y^{\prime \prime }+1 = {y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y y^{\prime \prime }+{y^{\prime }}^{2} = y y^{\prime }
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}2 y y^{\prime \prime }-{y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime }+2 {y^{\prime }}^{2} = 2
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = {y^{\prime }}^{3}
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}\left (y+1\right ) y^{\prime \prime } = 3 {y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}2 y^{\prime \prime } = {\mathrm e}^{y}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y^{\prime \prime } = y^{3}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y y^{\prime \prime }-y^{2} y^{\prime } = {y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmetries], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y y^{\prime \prime } = y^{3}+{y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}\left (1+{y^{\prime }}^{2}\right )^{2} = y^{2} y^{\prime \prime }
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}2 y y^{\prime \prime } = y^{3}+2 {y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y y^{\prime \prime } = 2 {y^{\prime }}^{2}+y^{2}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime }+{y^{\prime }}^{2}+y^{\prime } = 0
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y y^{\prime \prime }-y y^{\prime } = {y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y y^{\prime \prime }-y^{2} y^{\prime }-{y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmetries], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}\left (y^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{3}+y^{\prime } = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y^{\prime \prime } = 2 y y^{\prime }
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{3} y^{\prime \prime } = k
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y y^{\prime \prime } = {y^{\prime }}^{2}-1
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}\left (y+1\right ) y^{\prime \prime } = 3 {y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}r^{\prime \prime } = -\frac {k}{r^{2}}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y^{\prime \prime } = \frac {3 k y^{2}}{2}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y^{\prime \prime } = 2 k y^{3}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y y^{\prime \prime }+{y^{\prime }}^{2}-y^{\prime } = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}r^{\prime \prime } = \frac {h^{2}}{r^{3}}-\frac {k}{r^{2}}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y y^{\prime \prime }+{y^{\prime }}^{3}-{y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
|
\[
{}y y^{\prime \prime }-3 {y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}\left (y+1\right ) y^{\prime \prime } = 3 {y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime } = y^{\prime } {\mathrm e}^{y}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime } = 2 y y^{\prime }
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}2 y^{\prime \prime } = {\mathrm e}^{y}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}\left (1+{y^{\prime }}^{2}\right )^{3} = a^{2} {y^{\prime \prime }}^{2}
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y y^{\prime } = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime }+y y^{\prime } = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime }+y y^{\prime } = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime }+y y^{\prime } = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}2 y y^{\prime \prime } = {y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}{y^{\prime \prime }}^{2} = k^{2} \left (1+{y^{\prime }}^{2}\right )
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}k = \frac {y^{\prime \prime }}{\left (y^{\prime }+1\right )^{{3}/{2}}}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear]] |
✓ |
|
\[
{}y y^{\prime \prime }+{y^{\prime }}^{2}+4 = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y y^{\prime \prime }+{y^{\prime }}^{2} = 2
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y y^{\prime \prime }+{y^{\prime }}^{3} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
|
\[
{}y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y y^{\prime \prime }+{y^{\prime }}^{3} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
|
\[
{}y y^{\prime \prime }+{y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y y^{\prime \prime } = {y^{\prime }}^{2} \left (1-y^{\prime } \cos \left (y\right )+y y^{\prime } \sin \left (y\right )\right )
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
|
\[
{}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{2} \ln \left (y\right )
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}2 \left (y+1\right ) y^{\prime \prime }+2 {y^{\prime }}^{2}+y^{2}+2 y = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}}
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}R^{\prime \prime } = -\frac {k}{R^{2}}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}x x^{\prime \prime }-{x^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y y^{\prime \prime }-y^{2} y^{\prime }-{y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmetries], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y y^{\prime \prime }+4 {y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime } = y y^{\prime }
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime } = -\frac {1}{2 {y^{\prime }}^{2}}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_poly_yn]] |
✓ |
|
\[
{}y^{\prime \prime }+\sin \left (y\right ) = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y^{\prime \prime }+\sin \left (y\right ) = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y y^{\prime \prime }+{y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}2 y y^{\prime \prime } = 1+{y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y y^{\prime \prime }-{y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y y^{\prime \prime } = y^{2} y^{\prime }+{y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmetries], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime } = y^{\prime } {\mathrm e}^{y}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime } = 1+{y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime }+{y^{\prime }}^{2} = 1
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y y^{\prime \prime }-{y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y y^{\prime \prime }+y^{\prime } = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime }+\sin \left (y\right ) = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y y^{\prime \prime }+{y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{2} y^{\prime \prime }+{y^{\prime }}^{3} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
|
\[
{}\left (y+1\right ) y^{\prime \prime } = {y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}2 a y^{\prime \prime }+{y^{\prime }}^{3} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
|
\[
{}y^{\prime \prime } = 2 y {y^{\prime }}^{3}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
|
\[
{}y y^{\prime \prime }+{y^{\prime }}^{3}-{y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
|
\[
{}y y^{\prime \prime }+{y^{\prime }}^{3} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
|
\[
{}y^{\prime \prime } = -{\mathrm e}^{-2 y}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y^{\prime \prime } = -{\mathrm e}^{-2 y}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y^{\prime \prime } = {y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime } = 1+{y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}}
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y y^{\prime \prime } = {y^{\prime }}^{2} \left (1-y^{\prime } \sin \left (y\right )-y y^{\prime } \cos \left (y\right )\right )
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
|
\[
{}\left (y^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{3}+y^{\prime } = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}\left (y y^{\prime \prime }+1+{y^{\prime }}^{2}\right )^{2} = \left (1+{y^{\prime }}^{2}\right )^{3}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}3 y y^{\prime } y^{\prime \prime } = {y^{\prime }}^{3}-1
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}4 y {y^{\prime }}^{2} y^{\prime \prime } = {y^{\prime }}^{4}+3
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y y^{\prime \prime } = 1
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}3 y y^{\prime \prime }+y = 5
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}a y y^{\prime \prime }+b y = c
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}a y^{2} y^{\prime \prime }+b y^{2} = c
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y^{\prime \prime }+\sin \left (y\right ) {y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime } = A y^{{2}/{3}}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y^{\prime \prime }+{\mathrm e}^{y} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}{y^{\prime \prime }}^{2} = 0
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}{y^{\prime \prime }}^{n} = 0
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}a {y^{\prime \prime }}^{2} = 0
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}a {y^{\prime \prime }}^{n} = 0
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}{y^{\prime \prime }}^{3} = 0
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}{y^{\prime \prime }}^{2}+y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+{y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}{y^{\prime \prime }}^{2}+y^{\prime } = 1
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+{y^{\prime }}^{2} = 1
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime }+{y^{\prime }}^{2}+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y {y^{\prime \prime }}^{2}+y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y {y^{\prime \prime }}^{2}+{y^{\prime }}^{3} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{2} {y^{\prime \prime }}^{2}+y^{\prime } = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y {y^{\prime \prime }}^{4}+{y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{3} {y^{\prime \prime }}^{2}+y y^{\prime } = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y y^{\prime \prime }+{y^{\prime }}^{3} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
|
\[
{}y {y^{\prime \prime }}^{3}+y^{3} y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y {y^{\prime \prime }}^{3}+y^{3} {y^{\prime }}^{5} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } y^{\prime }+y^{2} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y^{\prime \prime } y^{\prime }+y^{n} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{2} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{2} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{2}+4 y = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y^{\prime \prime }-a y^{3} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y^{\prime \prime }+d +b y^{2}+c y+a y^{3} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y^{\prime \prime }+6 a^{10} y^{11}-y = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y^{\prime \prime }-{\mathrm e}^{y} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y^{\prime \prime }+a \sin \left (y\right ) = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y^{\prime \prime }+y y^{\prime }-y^{3} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 a y y^{\prime } = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime }+a y y^{\prime }+b y^{3} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+a {y^{\prime }}^{2}+b y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+a {y^{\prime }}^{2}+b \sin \left (y\right ) = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+a y {y^{\prime }}^{2}+b y = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y^{\prime \prime }+a y \left (1+{y^{\prime }}^{2}\right )^{2} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y^{\prime \prime } = a \sqrt {1+{y^{\prime }}^{2}}
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } = a \sqrt {1+{y^{\prime }}^{2}}+b
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } = a \sqrt {{y^{\prime }}^{2}+b y^{2}}
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } = a \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}}
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-a y \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{3} y^{\prime }-y y^{\prime } \sqrt {y^{4}+4 y^{\prime }} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}8 y^{\prime \prime }+9 {y^{\prime }}^{4} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y y^{\prime \prime }-a = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y y^{\prime \prime }+{y^{\prime }}^{2}-a = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y y^{\prime \prime }+{y^{\prime }}^{2}-y^{\prime } = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y y^{\prime \prime }-{y^{\prime }}^{2}+1 = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y y^{\prime \prime }-{y^{\prime }}^{2}-1 = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y y^{\prime \prime }-{y^{\prime }}^{2}-y^{2} \ln \left (y\right ) = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y y^{\prime \prime }-{y^{\prime }}^{2}+a y y^{\prime }+b y^{2} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y y^{\prime \prime }-3 {y^{\prime }}^{2}+3 y y^{\prime }-y^{2} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y y^{\prime \prime }-a {y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y y^{\prime \prime }+a \left (1+{y^{\prime }}^{2}\right ) = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y y^{\prime \prime }+a {y^{\prime }}^{2}+b y^{3} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y y^{\prime \prime }+a {y^{\prime }}^{2}+b y^{2} y^{\prime }+c y^{4} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}2 y y^{\prime \prime }-{y^{\prime }}^{2}+a = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}2 y y^{\prime \prime }-{y^{\prime }}^{2}-8 y^{3} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y y^{\prime \prime }-{y^{\prime }}^{2}-8 y^{3}-4 y^{2} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y y^{\prime \prime }-{y^{\prime }}^{2}+\left (a y+b \right ) y^{2} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y y^{\prime \prime }-{y^{\prime }}^{2}-3 y^{4} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y y^{\prime \prime }-3 {y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}2 y y^{\prime \prime }-3 {y^{\prime }}^{2}-4 y^{2} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}2 y y^{\prime \prime }-6 {y^{\prime }}^{2}+\left (1+a y^{3}\right ) y^{2} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y y^{\prime \prime }-{y^{\prime }}^{2} \left (1+{y^{\prime }}^{2}\right ) = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}2 \left (y-a \right ) y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}3 y y^{\prime \prime }-5 {y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}4 y y^{\prime \prime }-3 {y^{\prime }}^{2}+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y y^{\prime \prime }-3 {y^{\prime }}^{2}-12 y^{3} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y y^{\prime \prime }-3 {y^{\prime }}^{2}+a y^{3}+b y^{2}+c y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y y^{\prime \prime }-5 {y^{\prime }}^{2}+a y^{2} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}12 y y^{\prime \prime }-15 {y^{\prime }}^{2}+8 y^{3} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}n y y^{\prime \prime }-\left (n -1\right ) {y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}a y y^{\prime \prime }+b {y^{\prime }}^{2}+\operatorname {c4} y^{4}+\operatorname {c3} y^{3}+\operatorname {c2} y^{2}+\operatorname {c1} y+\operatorname {c0} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}\left (a y+b \right ) y^{\prime \prime }+c {y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{2} y^{\prime \prime }-a = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}\left (y^{2}+1\right ) y^{\prime \prime }+\left (1-2 y\right ) {y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}\left (y^{2}+1\right ) y^{\prime \prime }-3 y {y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}a y \left (y-1\right ) y^{\prime \prime }-\left (a -1\right ) \left (2 y-1\right ) {y^{\prime }}^{2}+f y \left (y-1\right ) y^{\prime } = 0
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}a b y \left (y-1\right ) y^{\prime \prime }-\left (\left (2 a b -a -b \right ) y+\left (1-a \right ) b \right ) {y^{\prime }}^{2}+f y \left (y-1\right ) y^{\prime } = 0
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{3} y^{\prime \prime }-a = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y \left (y^{2}+1\right ) y^{\prime \prime }+\left (1-3 y^{2}\right ) {y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}2 \left (y-a \right ) \left (y-b \right ) \left (y-c \right ) y^{\prime \prime }-\left (\left (y-a \right )^{2} \left (y-b \right ) \left (y-c \right )+\left (y-b \right ) \left (y-c \right )\right ) {y^{\prime }}^{2}+\left (y-a \right )^{2} \left (y-b \right )^{2} \left (y-c \right )^{2} \left (A_{0} +\frac {B_{0}}{\left (y-a \right )^{2}}+\frac {C_{1}}{\left (y-b \right )^{2}}+\frac {D_{0}}{\left (y-c \right )^{2}}\right ) = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}\left (4 y^{3}-a y-b \right ) y^{\prime \prime }-\left (6 y^{2}-\frac {a}{2}\right ) {y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}\left (4 y^{3}-a y-b \right ) \left (y^{\prime \prime }+f y^{\prime }\right )-\left (6 y^{2}-\frac {a}{2}\right ) {y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}\left (-1+y^{2}\right ) \left (a^{2} y^{2}-1\right ) y^{\prime \prime }+b \sqrt {\left (1-y^{2}\right ) \left (1-a^{2} y^{2}\right )}\, {y^{\prime }}^{2}+\left (1+a^{2}-2 a^{2} y^{2}\right ) y {y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}\sqrt {y}\, y^{\prime \prime }-a = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y \left (1-\ln \left (y\right )\right ) y^{\prime \prime }+\left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}\left (b +a \sin \left (y\right )^{2}\right ) y^{\prime \prime }+a {y^{\prime }}^{2} \cos \left (y\right ) \sin \left (y\right )+A y \left (c +a \sin \left (y\right )^{2}\right ) = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}\left ({y^{\prime }}^{2}+y^{2}\right ) y^{\prime \prime }+y^{3} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}\left (a^{2} y^{2}-b^{2}\right ) {y^{\prime \prime }}^{2}-2 a^{2} y {y^{\prime }}^{2} y^{\prime \prime }+\left (a^{2} {y^{\prime }}^{2}-1\right ) {y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y y^{\prime \prime }-y^{2} y^{\prime }-{y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmetries], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y y^{\prime \prime }-{y^{\prime }}^{2}+1 = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}2 y^{\prime \prime } = {\mathrm e}^{y}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y y^{\prime \prime }+2 y^{\prime }-{y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime } = 1+{y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime }+y y^{\prime } = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y \left (1-\ln \left (y\right )\right ) y^{\prime \prime }+\left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime }+\frac {2 {y^{\prime }}^{2}}{1-y} = 0
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}x^{3} x^{\prime \prime }+1 = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y^{\prime \prime }+{y^{\prime }}^{2} = 1
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime } = 3 \sqrt {y}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y y^{\prime } y^{\prime \prime } = {y^{\prime }}^{3}+{y^{\prime \prime }}^{2}
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}m x^{\prime \prime } = f \left (x^{\prime }\right )
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } = 2 y^{3}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{\prime }
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y y^{\prime \prime } = 1
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}\left (1-y\right ) y^{\prime \prime }-{y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime } = \frac {1}{2 y^{\prime }}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_poly_yn]] |
✓ |
|
\[
{}y^{\prime \prime } = \frac {a}{y^{3}}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y y^{\prime \prime }+{y^{\prime }}^{3}-{y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
|
\[
{}y^{\prime \prime } = \frac {1}{2 y^{\prime }}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_poly_yn]] |
✓ |
|
\[
{}y y^{\prime \prime } = 1+{y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}x^{\prime \prime }+x-x^{3} = 0
\] |
[[_2nd_order, _missing_x], _Duffing, [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}x^{\prime \prime }+x+x^{3} = 0
\] |
[[_2nd_order, _missing_x], _Duffing, [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}x^{\prime \prime } = \left (2 \cos \left (x\right )-1\right ) \sin \left (x\right )
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}2 y y^{\prime \prime }-{y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime } y^{\prime } = 1
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]] |
✓ |
|
\[
{}y y^{\prime \prime } = -{y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{\prime }
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}\left (y-3\right ) y^{\prime \prime } = 2 {y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y y^{\prime \prime } = {y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}3 y y^{\prime \prime } = 2 {y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}\sin \left (y\right ) y^{\prime \prime }+\cos \left (y\right ) {y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y y^{\prime \prime }+{y^{\prime }}^{2} = 2 y y^{\prime }
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{2} y^{\prime \prime }+y^{\prime \prime }+2 y {y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime } y^{\prime } = 1
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]] |
✓ |
|
\[
{}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{\prime }
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y y^{\prime \prime } = 2 {y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}\left (y-3\right ) y^{\prime \prime } = {y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime } = y^{\prime } \left (y^{\prime }-2\right )
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}3 y y^{\prime \prime } = 2 {y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y y^{\prime \prime }+2 {y^{\prime }}^{2} = 3 y y^{\prime }
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime } = -y^{\prime } {\mathrm e}^{-y}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime } = 2 y y^{\prime }
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime } = 2 y y^{\prime }
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime } = 2 y y^{\prime }
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime } = 2 y y^{\prime }
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}\left (y+1\right ) y^{\prime \prime } = {y^{\prime }}^{3}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
|
\[
{}y^{\prime \prime } = {y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}2 y y^{\prime \prime }+y^{2} = {y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime } = {y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}}
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y y^{\prime \prime }+{y^{\prime }}^{2} = 1
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}}
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } = {y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime } = \sqrt {1-{y^{\prime }}^{2}}
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } = 1+{y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime } = \sqrt {y^{\prime }+1}
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } = y^{\prime } \ln \left (y^{\prime }\right )
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } = y^{\prime } \left (y^{\prime }+1\right )
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}3 y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}}
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y y^{\prime \prime } = {y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime } = 2 y y^{\prime }
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}3 y^{\prime \prime } y^{\prime } = 2 y
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}2 y^{\prime \prime } = 3 y^{2}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y y^{\prime \prime }+{y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y y^{\prime \prime } = {y^{\prime }}^{2}+y^{\prime }
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y y^{\prime \prime } = 1+{y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}2 y y^{\prime \prime } = 1+{y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y^{3} y^{\prime \prime } = -1
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{2} y^{\prime }
\] |
[[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmetries], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime } = {\mathrm e}^{2 y}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}2 y y^{\prime \prime }-3 {y^{\prime }}^{2} = 4 y^{2}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}x^{\prime \prime }+{x^{\prime }}^{2}+x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }-x \,{\mathrm e}^{x^{\prime }} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}x^{\prime \prime }+x {x^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}x^{\prime \prime }+\left (2+x\right ) x^{\prime } = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y y^{\prime \prime }+1+{y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y y^{\prime \prime }+{y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime } = \frac {1}{\sqrt {y}}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}2 \left (2 a -y\right ) y^{\prime \prime } = 1+{y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y y^{\prime \prime }+{y^{\prime }}^{2} = y^{2} \ln \left (y\right )
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y y^{\prime \prime }-{y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y y^{\prime \prime }-{y^{\prime }}^{2}-{y^{\prime }}^{4} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y \left (1-\ln \left (y\right )\right ) y^{\prime \prime }+\left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y y^{\prime \prime }+{y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}2 y y^{\prime \prime } = 1+{y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y y^{\prime \prime }-{y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y y^{\prime \prime } = y^{2} y^{\prime }+{y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmetries], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime } = y^{\prime } {\mathrm e}^{y}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime } = 1+{y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime }+{y^{\prime }}^{2} = 1
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y y^{\prime \prime } = {y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y y^{\prime \prime }+{y^{\prime }}^{2}-2 y y^{\prime } = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{2} y^{\prime \prime }+{y^{\prime }}^{3} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
|
\[
{}y^{\prime \prime } = 2 y {y^{\prime }}^{3}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
|
\[
{}y^{\prime \prime }+{y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime } = \frac {m \sqrt {1+{y^{\prime }}^{2}}}{k}
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}\phi ^{\prime \prime } = \frac {4 \pi n c}{\sqrt {v_{0}^{2}+\frac {2 e \left (\phi -V_{0} \right )}{m}}}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y^{\prime \prime } = c \left (1+{y^{\prime }}^{2}\right )
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime } = c \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}}
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}1+{y^{\prime }}^{2}+\frac {m y^{\prime \prime }}{\sqrt {1+{y^{\prime }}^{2}}} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y y^{\prime } = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime }-{y^{\prime }}^{2}-y {y^{\prime }}^{3} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
|
\[
{}\left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} = r y^{\prime \prime }
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } = \frac {1}{y^{2}}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y y^{\prime \prime }-{y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y y^{\prime \prime }-{y^{\prime }}^{2} = 1
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y^{\prime \prime } = \frac {1}{\sqrt {a y}}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y^{\prime \prime }+\frac {a^{2}}{y^{2}} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y^{\prime \prime }-\frac {a^{2}}{y^{2}} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}}
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-a {y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y y^{\prime \prime }+{y^{\prime }}^{2} = 1
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{2} \ln \left (y\right )
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+4 {y^{\prime }}^{3} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}a y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}}
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}{y^{\prime }}^{2}-y y^{\prime \prime } = n \sqrt {{y^{\prime }}^{2}+a^{2} {y^{\prime \prime }}^{2}}
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+{y^{\prime }}^{3} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y \left (1-\ln \left (y\right )\right ) y^{\prime \prime }+\left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{3} y^{\prime \prime } = a
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y^{\prime \prime } = a^{2}+k^{2} {y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}a^{2} {y^{\prime \prime }}^{2} = 1+{y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y y^{\prime \prime }+1+{y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{3} y^{\prime \prime } = a
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y^{\prime \prime }+\frac {a^{2}}{y} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y^{\prime \prime } = y^{3}-y
\] |
[[_2nd_order, _missing_x], _Duffing, [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y^{\prime \prime } = {\mathrm e}^{2 y}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}}
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y y^{\prime } = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y y^{\prime \prime }+{y^{\prime }}^{2} = 1
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y y^{\prime \prime }-{y^{\prime }}^{2}+y^{\prime } = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+4 {y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime } = a {y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y y^{\prime \prime }+1+{y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y y^{\prime \prime }+\sqrt {{y^{\prime }}^{2}+a^{2} {y^{\prime \prime }}^{2}} = {y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } = 1+{y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}a y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}}
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } = a^{2}+k^{2} {y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}a^{2} {y^{\prime \prime }}^{2} = 1+{y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y^{\prime \prime } = {\mathrm e}^{y}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y^{\prime \prime } = \frac {1}{\sqrt {a y}}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}-a y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}}
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}\sin \left (y\right )^{3} y^{\prime \prime } = \cos \left (y\right )
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y y^{\prime \prime }+\sqrt {{y^{\prime }}^{2}+a^{2} {y^{\prime \prime }}^{2}} = {y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+{y^{\prime }}^{3} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y \left (1-\ln \left (y\right )\right ) y^{\prime \prime }+\left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|
\[
{}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{2} \ln \left (y\right )
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
|