2.4.8 second order integrable as is

Table 2.461: second order integrable as is

#

ODE

CAS classification

Solved?

11

\[ {}x^{\prime \prime } = 50 \]
i.c.

[[_2nd_order, _quadrature]]

12

\[ {}x^{\prime \prime } = -20 \]
i.c.

[[_2nd_order, _quadrature]]

13

\[ {}x^{\prime \prime } = 3 t \]
i.c.

[[_2nd_order, _quadrature]]

14

\[ {}x^{\prime \prime } = 2 t +1 \]
i.c.

[[_2nd_order, _quadrature]]

15

\[ {}x^{\prime \prime } = 4 \left (3+t \right )^{2} \]
i.c.

[[_2nd_order, _quadrature]]

16

\[ {}x^{\prime \prime } = \frac {1}{\sqrt {t +4}} \]
i.c.

[[_2nd_order, _quadrature]]

17

\[ {}x^{\prime \prime } = \frac {1}{\left (1+t \right )^{3}} \]
i.c.

[[_2nd_order, _quadrature]]

18

\[ {}x^{\prime \prime } = 50 \sin \left (5 t \right ) \]
i.c.

[[_2nd_order, _quadrature]]

147

\[ {}x y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_y]]

148

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

150

\[ {}x y^{\prime \prime }+y^{\prime } = 4 x \]

[[_2nd_order, _missing_y]]

153

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = y y^{\prime } \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

157

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

221

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

222

\[ {}y^{\prime \prime }-3 y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

233

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

236

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

237

\[ {}2 y^{\prime \prime }+3 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

244

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

272

\[ {}2 y^{\prime \prime }-3 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

376

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 72 x^{5} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

813

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

814

\[ {}y^{\prime \prime }-3 y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

825

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

826

\[ {}2 y^{\prime \prime }+3 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

833

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

846

\[ {}2 y^{\prime \prime }-3 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

902

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 72 x^{5} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1253

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

1260

\[ {}y^{\prime \prime }+3 y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1294

\[ {}t^{2} y^{\prime \prime }+4 y^{\prime } t +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1296

\[ {}t^{2} y^{\prime \prime }-4 y^{\prime } t -6 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1330

\[ {}t^{2} y^{\prime \prime }+3 y^{\prime } t +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1345

\[ {}t^{2} y^{\prime \prime }-2 y = 3 t^{2}-1 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1352

\[ {}t^{2} y^{\prime \prime }+7 y^{\prime } t +5 y = t \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1742

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

1746

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1754

\[ {}\left (x^{2}-4\right ) y^{\prime \prime }+4 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1811

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 2 x^{2}+2 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1828

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x -3 y = x^{{3}/{2}} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1837

\[ {}\left (x -1\right )^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = 2 x \]
i.c.

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1839

\[ {}\left (x +1\right ) \left (2 x +3\right ) y^{\prime \prime }+2 \left (x +2\right ) y^{\prime }-2 y = \left (2 x +3\right )^{2} \]
i.c.

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2362

\[ {}2 t^{2} y^{\prime \prime }+3 y^{\prime } t -y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

2400

\[ {}t^{2} y^{\prime \prime }+3 y^{\prime } t +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

2433

\[ {}2 t^{2} y^{\prime \prime }+3 y^{\prime } t -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

2435

\[ {}t^{2} y^{\prime \prime }+3 y^{\prime } t +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

2543

\[ {}2 t^{2} y^{\prime \prime }+3 y^{\prime } t -y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

2581

\[ {}t^{2} y^{\prime \prime }+3 y^{\prime } t +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

2591

\[ {}t^{2} y^{\prime \prime }-2 y = t^{2} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2607

\[ {}y^{\prime \prime }+2 y^{\prime } = 1+t^{2}+{\mathrm e}^{-2 t} \]

[[_2nd_order, _missing_y]]

2629

\[ {}2 t^{2} y^{\prime \prime }+3 y^{\prime } t -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

2631

\[ {}t^{2} y^{\prime \prime }+3 y^{\prime } t +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

3089

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

3141

\[ {}2 y^{\prime \prime }+y^{\prime } = 8 \sin \left (2 x \right )+{\mathrm e}^{-x} \]
i.c.

[[_2nd_order, _missing_y]]

3217

\[ {}y^{\prime \prime }+2 y^{\prime } = x^{3} \sin \left (2 x \right ) \]

[[_2nd_order, _missing_y]]

3218

\[ {}y^{\prime \prime }-y^{\prime } = x \,{\mathrm e}^{2 x} \sin \left (x \right ) \]

[[_2nd_order, _missing_y]]

3220

\[ {}y^{\prime \prime }+2 y^{\prime } = x^{2} {\mathrm e}^{-x} \sin \left (x \right ) \]

[[_2nd_order, _missing_y]]

3228

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +y = 1-x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3244

\[ {}y^{\prime \prime } = \cos \left (t \right ) \]

[[_2nd_order, _quadrature]]

3249

\[ {}x y^{\prime \prime } = x^{2}+1 \]

[[_2nd_order, _quadrature]]

3250

\[ {}\left (1-x \right ) y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_y]]

3251

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x \left (y^{\prime }+1\right ) = 0 \]

[[_2nd_order, _missing_y]]

3253

\[ {}x y^{\prime \prime }+x = y^{\prime } \]

[[_2nd_order, _missing_y]]

3260

\[ {}y^{\prime \prime } = y y^{\prime } \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

3262

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

3264

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

3267

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = y y^{\prime } \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

3272

\[ {}y^{\prime \prime } = \sec \left (x \right ) \tan \left (x \right ) \]
i.c.

[[_2nd_order, _quadrature]]

3284

\[ {}\left (1-{\mathrm e}^{x}\right ) y^{\prime \prime } = {\mathrm e}^{x} y^{\prime } \]
i.c.

[[_2nd_order, _missing_y]]

3494

\[ {}\left (x +1\right )^{2} y^{\prime \prime }+3 \left (x +1\right ) y^{\prime }+y = x^{2} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3565

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +3 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

3575

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

3584

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]

[[_2nd_order, _quadrature]]

3585

\[ {}y^{\prime \prime } = x^{n} \]

[[_2nd_order, _quadrature]]

3587

\[ {}y^{\prime \prime } = \cos \left (x \right ) \]
i.c.

[[_2nd_order, _quadrature]]

3589

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]
i.c.

[[_2nd_order, _quadrature]]

3699

\[ {}y^{\prime \prime }+4 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

3708

\[ {}2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

3773

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = 4 \ln \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3774

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = \cos \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

4124

\[ {}2 y^{\prime \prime }+3 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

4127

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

4426

\[ {}x y^{\prime \prime } = x +y^{\prime } \]

[[_2nd_order, _missing_y]]

4484

\[ {}y^{\prime \prime }-y^{\prime } = {\mathrm e}^{x} \left (x^{2}+10\right ) \]

[[_2nd_order, _missing_y]]

4508

\[ {}y^{\prime \prime }+y^{\prime } = \frac {1}{1+{\mathrm e}^{x}} \]

[[_2nd_order, _missing_y]]

5916

\[ {}y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

5945

\[ {}y^{\prime \prime } = 0 \]
i.c.

[[_2nd_order, _quadrature]]

5958

\[ {}y^{\prime \prime }-3 y^{\prime } = 2 \,{\mathrm e}^{2 x} \sin \left (x \right ) \]

[[_2nd_order, _missing_y]]

5959

\[ {}y^{\prime \prime }+y^{\prime } = x^{2}+2 x \]

[[_2nd_order, _missing_y]]

5960

\[ {}y^{\prime \prime }+y^{\prime } = x +\sin \left (2 x \right ) \]

[[_2nd_order, _missing_y]]

5991

\[ {}y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\frac {2 y}{x^{2}} = x \ln \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

5993

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = x^{2} {\mathrm e}^{-x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

5994

\[ {}2 x^{2} y^{\prime \prime }+3 y^{\prime } x -y = \frac {1}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

5995

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

5999

\[ {}x y^{\prime \prime }-y^{\prime } = x^{2} \]

[[_2nd_order, _missing_y]]

6004

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2}-y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

6009

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x \left (y^{\prime }+1\right ) = 0 \]

[[_2nd_order, _missing_y]]

6012

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

6015

\[ {}x y^{\prime \prime }-y^{\prime } = x^{2} \]
i.c.

[[_2nd_order, _missing_y]]

6017

\[ {}x y y^{\prime \prime }+x {y^{\prime }}^{2}-y y^{\prime } = 0 \]

[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

6137

\[ {}y^{\prime \prime }+9 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

6142

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

6151

\[ {}y^{\prime \prime }-4 y^{\prime } = 10 \]

[[_2nd_order, _missing_x]]

6172

\[ {}2 y^{\prime \prime }+y^{\prime } = 2 x \]

[[_2nd_order, _missing_y]]

6182

\[ {}y^{\prime \prime }-2 y^{\prime } = 9 x \,{\mathrm e}^{-x}-6 x^{2}+4 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _missing_y]]

6183

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

6186

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

6197

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = x -\frac {1}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

6219

\[ {}x y^{\prime \prime }+y^{\prime } = 4 x \]

[[_2nd_order, _missing_y]]

6231

\[ {}x \left (y y^{\prime \prime }+{y^{\prime }}^{2}\right ) = y y^{\prime } \]

[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

6235

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2}+4 = 0 \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

6409

\[ {}x \left (1-x \right ) y^{\prime \prime }+2 \left (-2 x +1\right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

6514

\[ {}y^{\prime \prime } = 9 x^{2}+2 x -1 \]

[[_2nd_order, _quadrature]]

6540

\[ {}y^{\prime \prime }-7 y^{\prime } = -3 \]

[[_2nd_order, _missing_x]]

6541

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = \ln \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

6700

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 2 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

6713

\[ {}y^{\prime \prime }-4 y^{\prime } = 5 \]

[[_2nd_order, _missing_x]]

6754

\[ {}\left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }-y = \ln \left (x +1\right )^{2}+x -1 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

6755

\[ {}\left (2 x +1\right )^{2} y^{\prime \prime }-2 \left (2 x +1\right ) y^{\prime }-12 y = 6 x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

6774

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x = \frac {2}{x^{3}} \]

[[_2nd_order, _missing_y]]

6775

\[ {}x y^{\prime \prime }-y^{\prime } = -\frac {2}{x}-\ln \left (x \right ) \]

[[_2nd_order, _missing_y]]

6778

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

6783

\[ {}\left (x +2 y\right ) y^{\prime \prime }+2 {y^{\prime }}^{2}+2 y^{\prime } = 2 \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

6911

\[ {}x y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

7257

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

7262

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

7268

\[ {}y^{\prime \prime }+y^{\prime } x +y = 2 x \,{\mathrm e}^{x}-1 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

7270

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = x^{2}+2 x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

7272

\[ {}x \left (x +1\right ) y^{\prime \prime }+\left (x +2\right ) y^{\prime }-y = x +\frac {1}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

7359

\[ {}y^{\prime \prime } = x +2 \]

[[_2nd_order, _quadrature]]

7367

\[ {}y^{\prime \prime } = 1+3 x \]

[[_2nd_order, _quadrature]]

7393

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

7452

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

7453

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

7454

\[ {}\left (3 x -1\right )^{2} y^{\prime \prime }+\left (9 x -3\right ) y^{\prime }-9 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

7537

\[ {}y^{\prime \prime }+y^{\prime } = 1 \]

[[_2nd_order, _missing_x]]

7541

\[ {}y^{\prime \prime } = y y^{\prime } \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

7542

\[ {}x y^{\prime \prime }-2 y^{\prime } = x^{3} \]

[[_2nd_order, _missing_y]]

7601

\[ {}\frac {y^{\prime \prime }}{y^{\prime }} = x^{2} \]

[[_2nd_order, _missing_y]]

7602

\[ {}y^{\prime \prime } y^{\prime } = x \left (x +1\right ) \]

[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]

7683

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

7689

\[ {}x y^{\prime \prime }+y^{\prime } = 4 x \]

[[_2nd_order, _missing_y]]

7692

\[ {}y^{\prime \prime } = y^{\prime } {\mathrm e}^{y} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

7714

\[ {}x y^{\prime \prime }-3 y^{\prime } = 5 x \]

[[_2nd_order, _missing_y]]

7755

\[ {}y^{\prime \prime }-2 y^{\prime } = 12 x -10 \]

[[_2nd_order, _missing_y]]

7758

\[ {}y^{\prime \prime }+y^{\prime } = 10 x^{4}+2 \]

[[_2nd_order, _missing_y]]

7831

\[ {}y^{\prime \prime } = \tan \left (x \right ) \]
i.c.

[[_2nd_order, _quadrature]]

7832

\[ {}y^{\prime \prime }-2 y^{\prime } = \ln \left (x \right ) \]
i.c.

[[_2nd_order, _missing_y]]

7839

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +y = \frac {2}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

8001

\[ {}y^{\prime \prime }-y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

8003

\[ {}y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

8140

\[ {}t y^{\prime \prime }-y^{\prime } = 2 t^{2} \]
i.c.

[[_2nd_order, _missing_y]]

8270

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

8274

\[ {}x y^{\prime \prime } = y^{\prime }+x^{5} \]
i.c.

[[_2nd_order, _missing_y]]

8275

\[ {}x y^{\prime \prime }+y^{\prime }+x = 0 \]
i.c.

[[_2nd_order, _missing_y]]

8537

\[ {}t y^{\prime \prime }+4 y^{\prime } = t^{2} \]

[[_2nd_order, _missing_y]]

8538

\[ {}\left (t^{2}+9\right ) y^{\prime \prime }+2 y^{\prime } t = 0 \]
i.c.

[[_2nd_order, _missing_y]]

8540

\[ {}t y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

8544

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

8545

\[ {}y^{\prime \prime } = 1 \]

[[_2nd_order, _quadrature]]

8547

\[ {}y^{\prime \prime } = k \]

[[_2nd_order, _quadrature]]

8550

\[ {}y^{\prime \prime } = 4 \sin \left (x \right )-4 \]

[[_2nd_order, _quadrature]]

8551

\[ {}y y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

8555

\[ {}y^{2} y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

8560

\[ {}a y y^{\prime \prime }+b y = 0 \]

[[_2nd_order, _quadrature]]

8577

\[ {}y^{\prime \prime } = \frac {1}{y}-\frac {x y^{\prime }}{y^{2}} \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

8850

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

8853

\[ {}a y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

8856

\[ {}y^{\prime \prime } = 1 \]

[[_2nd_order, _quadrature]]

8857

\[ {}{y^{\prime \prime }}^{2} = 1 \]

[[_2nd_order, _quadrature]]

8858

\[ {}y^{\prime \prime } = x \]

[[_2nd_order, _quadrature]]

8861

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

8864

\[ {}y^{\prime \prime }+y^{\prime } = 1 \]

[[_2nd_order, _missing_x]]

8867

\[ {}y^{\prime \prime }+y^{\prime } = x \]

[[_2nd_order, _missing_y]]

8880

\[ {}y^{\prime \prime }+y^{\prime } = 1 \]

[[_2nd_order, _missing_x]]

8881

\[ {}y^{\prime \prime }+y^{\prime } = x \]

[[_2nd_order, _missing_y]]

8882

\[ {}y^{\prime \prime }+y^{\prime } = x +1 \]

[[_2nd_order, _missing_y]]

8883

\[ {}y^{\prime \prime }+y^{\prime } = x^{2}+x +1 \]

[[_2nd_order, _missing_y]]

8884

\[ {}y^{\prime \prime }+y^{\prime } = x^{3}+x^{2}+x +1 \]

[[_2nd_order, _missing_y]]

8885

\[ {}y^{\prime \prime }+y^{\prime } = \sin \left (x \right ) \]

[[_2nd_order, _missing_y]]

8886

\[ {}y^{\prime \prime }+y^{\prime } = \cos \left (x \right ) \]

[[_2nd_order, _missing_y]]

10789

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

10826

\[ {}y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

10877

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

10893

\[ {}x y^{\prime \prime }-y^{\prime } x -y-x \left (x +1\right ) {\mathrm e}^{x} = 0 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

10943

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y-a \,x^{2} = 0 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

10949

\[ {}x^{2} y^{\prime \prime }+\left (x +a \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

10952

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

10959

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x -4 y-\sin \left (x \right ) x -\left (a \,x^{2}+12 a +4\right ) \cos \left (x \right ) = 0 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

10965

\[ {}x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

10967

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x -5 y-x^{2} \ln \left (x \right ) = 0 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

11013

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y-2 \cos \left (x \right )+2 x = 0 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

11014

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+a x y^{\prime }+\left (a -2\right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

11020

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+2 y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

11021

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+2 y^{\prime } x -a = 0 \]

[[_2nd_order, _missing_y]]

11029

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-2 \left (v -1\right ) x y^{\prime }-2 v y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

11036

\[ {}x \left (x +1\right ) y^{\prime \prime }+\left (2+3 x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

11038

\[ {}x \left (x -1\right ) y^{\prime \prime }+a y^{\prime }-2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

11046

\[ {}x \left (x +3\right ) y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y-\left (20 x +30\right ) \left (x^{2}+3 x \right )^{{7}/{3}} = 0 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

11049

\[ {}\left (x -2\right )^{2} y^{\prime \prime }-\left (x -2\right ) y^{\prime }-3 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

11050

\[ {}2 x^{2} y^{\prime \prime }-\left (2 x^{2}+l -5 x \right ) y^{\prime }-\left (4 x -1\right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

11067

\[ {}\left (2 x +1\right )^{2} y^{\prime \prime }-2 \left (2 x +1\right ) y^{\prime }-12 y-3 x -1 = 0 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

11069

\[ {}\left (3 x -1\right )^{2} y^{\prime \prime }+3 \left (3 x -1\right ) y^{\prime }-9 y-\ln \left (3 x -1\right )^{2} = 0 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

11081

\[ {}\left (a^{2} x^{2}-1\right ) y^{\prime \prime }+2 a^{2} x y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

11083

\[ {}\left (a \,x^{2}+b x \right ) y^{\prime \prime }+2 b y^{\prime }-2 a y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

11094

\[ {}x \left (x^{2}+1\right ) y^{\prime \prime }+2 \left (x^{2}-1\right ) y^{\prime }-2 y x = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

11101

\[ {}x \left (x^{2}+2\right ) y^{\prime \prime }-y^{\prime }-6 y x = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

11211

\[ {}y^{\prime \prime } = -\frac {\cos \left (x \right ) y^{\prime }}{\sin \left (x \right )}+\frac {y}{\sin \left (x \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11409

\[ {}y^{\prime \prime }-2 a y y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

11445

\[ {}x y^{\prime \prime }+\left (y-1\right ) y^{\prime } = 0 \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

11474

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2}-a = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

11476

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2}-y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

11500

\[ {}y^{\prime \prime } \left (x +y\right )+{y^{\prime }}^{2}-y^{\prime } = 0 \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

11536

\[ {}x y y^{\prime \prime }+x {y^{\prime }}^{2}-y y^{\prime } = 0 \]

[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

11545

\[ {}x \left (x +y\right ) y^{\prime \prime }+x {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

12303

\[ {}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+a y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

12334

\[ {}y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}\right ) y^{\prime }+\left (a n \,x^{n -1}+b m \,x^{m -1}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12347

\[ {}x y^{\prime \prime }+a x y^{\prime }+a y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

12360

\[ {}x y^{\prime \prime }+\left (a \,x^{2}+b x +c \right ) y^{\prime }+\left (2 a x +b \right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

12365

\[ {}x y^{\prime \prime }+x \left (a \,x^{2}+b \right ) y^{\prime }+\left (3 a \,x^{2}+b \right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

12372

\[ {}x y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime }+a n \,x^{n -1} y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12383

\[ {}\left (x +a \right ) y^{\prime \prime }+\left (b x +c \right ) y^{\prime }+b y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

12387

\[ {}\left (x +\gamma \right ) y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime }+\left (a n \,x^{n -1}+b m \,x^{m -1}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12441

\[ {}\left (x^{2}+a \right ) y^{\prime \prime }+2 b x y^{\prime }+2 \left (b -1\right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

12453

\[ {}\left (a \,x^{2}+b x +c \right ) y^{\prime \prime }+\left (d x +k \right ) y^{\prime }+\left (d -2 a \right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

12467

\[ {}x \left (a \,x^{2}+b \right ) y^{\prime \prime }+2 \left (a \,x^{2}+b \right ) y^{\prime }-2 a x y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

12528

\[ {}\left (a \,x^{n}+b x +c \right ) y^{\prime \prime } = a n \left (n -1\right ) x^{n -2} y \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12574

\[ {}y^{\prime \prime }+\left (a \,{\mathrm e}^{\lambda x}+b \,{\mathrm e}^{\mu x}+c \right ) y^{\prime }+\left (a \lambda \,{\mathrm e}^{\lambda x}+b \mu \,{\mathrm e}^{\mu x}\right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

12724

\[ {}y^{\prime \prime }-2 y^{\prime } = {\mathrm e}^{2 x}+1 \]

[[_2nd_order, _missing_y]]

12728

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +y = \frac {1}{\left (1-x \right )^{2}} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

12769

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]

[[_2nd_order, _quadrature]]

12778

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +y = x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

12779

\[ {}\left (x -1\right )^{2} y^{\prime \prime }+4 \left (x -1\right ) y^{\prime }+2 y = \cos \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

12792

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

12794

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }+\left (4 x +2\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

12797

\[ {}x \left (x +2 y\right ) y^{\prime \prime }+2 x {y^{\prime }}^{2}+4 \left (x +y\right ) y^{\prime }+2 y+x^{2} = 0 \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

12801

\[ {}\sin \left (x \right ) y^{\prime \prime }-\cos \left (x \right ) y^{\prime }+2 \sin \left (x \right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

12816

\[ {}x^{\prime \prime } = -3 \sqrt {t} \]
i.c.

[[_2nd_order, _quadrature]]

12821

\[ {}x^{\prime }+t x^{\prime \prime } = 1 \]
i.c.

[[_2nd_order, _missing_y]]

12874

\[ {}x^{\prime \prime }+x^{\prime } = 3 t \]

[[_2nd_order, _missing_y]]

12891

\[ {}x^{\prime \prime }-2 x^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12895

\[ {}x^{\prime \prime }-2 x^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12919

\[ {}x^{\prime \prime }-x^{\prime } = 6+{\mathrm e}^{2 t} \]

[[_2nd_order, _missing_y]]

12927

\[ {}x^{\prime \prime }-2 x^{\prime } = 4 \]
i.c.

[[_2nd_order, _missing_x]]

12934

\[ {}t^{2} x^{\prime \prime }+3 t x^{\prime }+x = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

12944

\[ {}t^{2} x^{\prime \prime }-2 x = t^{3} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

13027

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

13306

\[ {}\left (2 x +1\right ) \left (x +1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y = \left (2 x +1\right )^{2} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

13324

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = 4 \ln \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

13330

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +3 y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

13331

\[ {}x^{2} y^{\prime \prime }-2 y = 4 x -8 \]
i.c.

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

13336

\[ {}\left (x +2\right )^{2} y^{\prime \prime }-\left (x +2\right ) y^{\prime }-3 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

13532

\[ {}y^{\prime \prime }-4 y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13544

\[ {}x^{\prime \prime }-4 x^{\prime } = t^{2} \]

[[_2nd_order, _missing_y]]

13571

\[ {}t^{2} x^{\prime \prime }-2 x = t^{3} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

13572

\[ {}x^{\prime \prime }-4 x^{\prime } = \tan \left (t \right ) \]

[[_2nd_order, _missing_y]]

13577

\[ {}t^{2} x^{\prime \prime }+t x^{\prime }-x = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

13579

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x -3 y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

13582

\[ {}3 x^{2} z^{\prime \prime }+5 x z^{\prime }-z = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

13771

\[ {}y^{\prime \prime }+2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

13772

\[ {}x y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+\cos \left (x \right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

13773

\[ {}y^{\prime \prime }+2 x^{2} y^{\prime }+4 y x = 2 x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

13774

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y = -2 x +1 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

13777

\[ {}y^{\prime \prime }+x^{2} y^{\prime }+2 y x = 2 x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

13779

\[ {}x y^{\prime \prime }+x^{2} y^{\prime }+2 y x = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

13780

\[ {}y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+\cos \left (x \right ) y = \cos \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

13781

\[ {}y^{\prime \prime }+\cot \left (x \right ) y^{\prime }-\csc \left (x \right )^{2} y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13782

\[ {}x \ln \left (x \right ) y^{\prime \prime }+2 y^{\prime }-\frac {y}{x} = 1 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

13784

\[ {}\frac {x y^{\prime \prime }}{y+1}+\frac {y y^{\prime }-x {y^{\prime }}^{2}+y^{\prime }}{\left (y+1\right )^{2}} = \sin \left (x \right ) x \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

13785

\[ {}\left (x \cos \left (y\right )+\sin \left (x \right )\right ) y^{\prime \prime }-x {y^{\prime }}^{2} \sin \left (y\right )+2 \left (\cos \left (y\right )+\cos \left (x \right )\right ) y^{\prime } = \sin \left (x \right ) y \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

13786

\[ {}y y^{\prime \prime } \sin \left (x \right )+\left (\sin \left (x \right ) y^{\prime }+\cos \left (x \right ) y\right ) y^{\prime } = \cos \left (x \right ) \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

13787

\[ {}\left (1-y\right ) y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

13788

\[ {}\left (\cos \left (y\right )-y \sin \left (y\right )\right ) y^{\prime \prime }-{y^{\prime }}^{2} \left (2 \sin \left (y\right )+y \cos \left (y\right )\right ) = \sin \left (x \right ) \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

13865

\[ {}t^{2} y^{\prime \prime }+3 y^{\prime } t +y = t^{7} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

14008

\[ {}x y^{\prime \prime }-y^{\prime } = x^{2} {\mathrm e}^{x} \]
i.c.

[[_2nd_order, _missing_y]]

14039

\[ {}y^{\prime \prime }-3 y^{\prime } = 2-6 x \]

[[_2nd_order, _missing_y]]

14088

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

14090

\[ {}2 x^{2} y^{\prime \prime }+3 y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

14092

\[ {}x^{2} y^{\prime \prime }-2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

14106

\[ {}x^{2} y^{\prime \prime }+6 y^{\prime } x +4 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

14705

\[ {}y^{\prime \prime }+2 y^{\prime } = 3 t +2 \]
i.c.

[[_2nd_order, _missing_y]]

14706

\[ {}y^{\prime \prime }+4 y^{\prime } = 3 t +2 \]
i.c.

[[_2nd_order, _missing_y]]

14762

\[ {}y^{\prime \prime } = \frac {x +1}{x -1} \]

[[_2nd_order, _quadrature]]

14776

\[ {}y^{\prime \prime } = \sin \left (2 x \right ) \]

[[_2nd_order, _quadrature]]

14777

\[ {}y^{\prime \prime }-3 = x \]

[[_2nd_order, _quadrature]]

14785

\[ {}x y^{\prime \prime }+2 = \sqrt {x} \]
i.c.

[[_2nd_order, _quadrature]]

14987

\[ {}x y^{\prime \prime }+4 y^{\prime } = 18 x^{2} \]

[[_2nd_order, _missing_y]]

14988

\[ {}x y^{\prime \prime } = 2 y^{\prime } \]

[[_2nd_order, _missing_y]]

14989

\[ {}y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_x]]

14990

\[ {}y^{\prime \prime }+2 y^{\prime } = 8 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _missing_y]]

14992

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

14994

\[ {}y^{\prime \prime } y^{\prime } = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]]

14995

\[ {}y y^{\prime \prime } = -{y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

14999

\[ {}y^{\prime \prime } = 2 y^{\prime }-6 \]

[[_2nd_order, _missing_x]]

15001

\[ {}y^{\prime \prime }+4 y^{\prime } = 9 \,{\mathrm e}^{-3 x} \]

[[_2nd_order, _missing_y]]

15008

\[ {}\sin \left (y\right ) y^{\prime \prime }+\cos \left (y\right ) {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

15009

\[ {}y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_x]]

15010

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 2 y y^{\prime } \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

15011

\[ {}y^{2} y^{\prime \prime }+y^{\prime \prime }+2 y {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

15013

\[ {}y^{\prime \prime } y^{\prime } = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]]

15015

\[ {}x y^{\prime \prime }-y^{\prime } = 6 x^{5} \]

[[_2nd_order, _missing_y]]

15019

\[ {}y^{\prime \prime }+4 y^{\prime } = 9 \,{\mathrm e}^{-3 x} \]

[[_2nd_order, _missing_y]]

15021

\[ {}x y^{\prime \prime }+4 y^{\prime } = 18 x^{2} \]
i.c.

[[_2nd_order, _missing_y]]

15022

\[ {}x y^{\prime \prime } = 2 y^{\prime } \]
i.c.

[[_2nd_order, _missing_y]]

15023

\[ {}y^{\prime \prime } = y^{\prime } \]
i.c.

[[_2nd_order, _missing_x]]

15024

\[ {}y^{\prime \prime }+2 y^{\prime } = 8 \,{\mathrm e}^{2 x} \]
i.c.

[[_2nd_order, _missing_y]]

15027

\[ {}x y^{\prime \prime }+2 y^{\prime } = 6 \]
i.c.

[[_2nd_order, _missing_y]]

15031

\[ {}y^{\prime \prime } = -y^{\prime } {\mathrm e}^{-y} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

15036

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

15038

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

15039

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

15090

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15096

\[ {}y^{\prime \prime }+3 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

15158

\[ {}x^{2} y^{\prime \prime }-2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

15169

\[ {}2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

15213

\[ {}y^{\prime \prime }+3 y^{\prime } = {\mathrm e}^{\frac {x}{2}} \]

[[_2nd_order, _missing_y]]

15217

\[ {}y^{\prime \prime }+3 y^{\prime } = 26 \cos \left (\frac {x}{3}\right )-12 \sin \left (\frac {x}{3}\right ) \]

[[_2nd_order, _missing_y]]

15228

\[ {}y^{\prime \prime } = 6 x \,{\mathrm e}^{x} \sin \left (x \right ) \]

[[_2nd_order, _quadrature]]

15233

\[ {}y^{\prime \prime }+4 y^{\prime } = 20 \]

[[_2nd_order, _missing_x]]

15234

\[ {}y^{\prime \prime }+4 y^{\prime } = x^{2} \]

[[_2nd_order, _missing_y]]

15285

\[ {}2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y = 85 \cos \left (2 \ln \left (x \right )\right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15286

\[ {}x^{2} y^{\prime \prime }-2 y = 15 \cos \left (3 \ln \left (x \right )\right )-10 \sin \left (3 \ln \left (x \right )\right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15288

\[ {}2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y = \frac {10}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15297

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = \sqrt {x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15301

\[ {}x^{2} y^{\prime \prime }-2 y = \frac {1}{x -2} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15303

\[ {}x y^{\prime \prime }+\left (2 x +2\right ) y^{\prime }+2 y = 8 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15305

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x -4 y = \frac {10}{x} \]
i.c.

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15319

\[ {}2 x y^{\prime \prime }+y^{\prime } = \sqrt {x} \]

[[_2nd_order, _missing_y]]

15339

\[ {}2 y^{\prime \prime }-7 y^{\prime }+3 = 0 \]

[[_2nd_order, _missing_x]]

15341

\[ {}x y^{\prime \prime } = 3 y^{\prime } \]

[[_2nd_order, _missing_y]]

15342

\[ {}y^{\prime \prime }-5 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

15356

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = \frac {1}{x^{2}+1} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15361

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +y = \frac {1}{\left (x +1\right )^{2}} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15362

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +y = \frac {1}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15572

\[ {}y^{\prime \prime }+9 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

15601

\[ {}y^{\prime \prime }+9 y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15779

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{t}+\frac {y}{t^{2}} = \frac {1}{t} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15967

\[ {}t^{2} y^{\prime \prime }+y^{\prime } t -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

15984

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

15986

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

15999

\[ {}y^{\prime \prime }-y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16000

\[ {}3 y^{\prime \prime }-y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16034

\[ {}y^{\prime \prime }+2 y^{\prime } = 3-4 t \]

[[_2nd_order, _missing_y]]

16039

\[ {}y^{\prime \prime } = 3 t^{4}-2 t \]

[[_2nd_order, _quadrature]]

16049

\[ {}y^{\prime \prime }-2 y^{\prime } = 52 \sin \left (3 t \right ) \]

[[_2nd_order, _missing_y]]

16057

\[ {}y^{\prime \prime }+4 y^{\prime } = 8 \,{\mathrm e}^{4 t}-4 \,{\mathrm e}^{-4 t} \]

[[_2nd_order, _missing_y]]

16058

\[ {}y^{\prime \prime }-3 y^{\prime } = t^{2}-{\mathrm e}^{3 t} \]

[[_2nd_order, _missing_y]]

16059

\[ {}y^{\prime \prime }+4 y^{\prime } = -24 t -6-4 t \,{\mathrm e}^{-4 t}+{\mathrm e}^{-4 t} \]

[[_2nd_order, _missing_y]]

16060

\[ {}y^{\prime \prime }-3 y^{\prime } = t^{2}-{\mathrm e}^{3 t} \]

[[_2nd_order, _missing_y]]

16061

\[ {}y^{\prime \prime } = t^{2}+{\mathrm e}^{t}+\sin \left (t \right ) \]

[[_2nd_order, _quadrature]]

16062

\[ {}y^{\prime \prime }+3 y^{\prime } = 18 \]
i.c.

[[_2nd_order, _missing_x]]

16070

\[ {}y^{\prime \prime }-3 y^{\prime } = -{\mathrm e}^{3 t}-2 t \]
i.c.

[[_2nd_order, _missing_y]]

16071

\[ {}y^{\prime \prime }-y^{\prime } = -3 t -4 t^{2} {\mathrm e}^{2 t} \]
i.c.

[[_2nd_order, _missing_y]]

16072

\[ {}y^{\prime \prime }-2 y^{\prime } = 2 t^{2} \]
i.c.

[[_2nd_order, _missing_y]]

16073

\[ {}y^{\prime \prime }+4 y^{\prime } = -24 t -6-4 t \,{\mathrm e}^{-4 t}+{\mathrm e}^{-4 t} \]
i.c.

[[_2nd_order, _missing_y]]

16074

\[ {}y^{\prime \prime }-3 y^{\prime } = {\mathrm e}^{-3 t}-{\mathrm e}^{3 t} \]
i.c.

[[_2nd_order, _missing_y]]

16087

\[ {}y^{\prime \prime }+16 y^{\prime } = t \]

[[_2nd_order, _missing_y]]

16132

\[ {}t^{2} y^{\prime \prime }+3 y^{\prime } t +y = \ln \left (t \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

16134

\[ {}t^{2} y^{\prime \prime }-4 y^{\prime } t -6 y = 2 \ln \left (t \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

16256

\[ {}2 x^{2} y^{\prime \prime }+3 y^{\prime } x -y = \frac {1}{x^{2}} \]
i.c.

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

16257

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = \ln \left (x \right ) \]
i.c.

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

16261

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

16274

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

16354

\[ {}y^{\prime \prime }+5 y^{\prime } = 5 t^{2} \]

[[_2nd_order, _missing_y]]

16355

\[ {}y^{\prime \prime }-4 y^{\prime } = -3 \sin \left (t \right ) \]

[[_2nd_order, _missing_y]]

16358

\[ {}y^{\prime \prime }-2 y^{\prime } = \frac {1}{1+{\mathrm e}^{2 t}} \]

[[_2nd_order, _missing_y]]

16388

\[ {}2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

16400

\[ {}t \left (y^{\prime \prime } y+{y^{\prime }}^{2}\right )+y^{\prime } y = 1 \]
i.c.

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

16687

\[ {}\left (x -1\right ) y^{\prime \prime } = 1 \]

[[_2nd_order, _quadrature]]

16692

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

16696

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]
i.c.

[[_2nd_order, _quadrature]]

16697

\[ {}y^{\prime \prime } = 2 x \ln \left (x \right ) \]

[[_2nd_order, _quadrature]]

16698

\[ {}x y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_y]]

16699

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

16701

\[ {}x y^{\prime \prime } = y^{\prime }+x^{2} \]

[[_2nd_order, _missing_y]]

16713

\[ {}y^{\prime \prime }+y^{\prime }+2 = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16721

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

16752

\[ {}y^{\prime \prime }+3 y^{\prime } = 3 \]

[[_2nd_order, _missing_x]]

16753

\[ {}y^{\prime \prime }-7 y^{\prime } = \left (x -1\right )^{2} \]

[[_2nd_order, _missing_y]]

16754

\[ {}y^{\prime \prime }+3 y^{\prime } = {\mathrm e}^{x} \]

[[_2nd_order, _missing_y]]

16755

\[ {}y^{\prime \prime }+7 y^{\prime } = {\mathrm e}^{-7 x} \]

[[_2nd_order, _missing_y]]

16758

\[ {}4 y^{\prime \prime }-3 y^{\prime } = x \,{\mathrm e}^{\frac {3 x}{4}} \]

[[_2nd_order, _missing_y]]

16759

\[ {}y^{\prime \prime }-4 y^{\prime } = x \,{\mathrm e}^{4 x} \]

[[_2nd_order, _missing_y]]

16789

\[ {}y^{\prime \prime }+2 y^{\prime } = -2 \]

[[_2nd_order, _missing_x]]

16797

\[ {}y^{\prime \prime }+8 y^{\prime } = 8 x \]

[[_2nd_order, _missing_y]]

16801

\[ {}7 y^{\prime \prime }-y^{\prime } = 14 x \]

[[_2nd_order, _missing_y]]

16802

\[ {}y^{\prime \prime }+3 y^{\prime } = 3 x \,{\mathrm e}^{-3 x} \]

[[_2nd_order, _missing_y]]

16811

\[ {}y^{\prime \prime }-y^{\prime } = {\mathrm e}^{x} \sin \left (x \right ) \]

[[_2nd_order, _missing_y]]

16812

\[ {}y^{\prime \prime }+2 y^{\prime } = 4 \,{\mathrm e}^{x} \left (\sin \left (x \right )+\cos \left (x \right )\right ) \]

[[_2nd_order, _missing_y]]

16814

\[ {}4 y^{\prime \prime }+8 y^{\prime } = \sin \left (x \right ) x \]

[[_2nd_order, _missing_y]]

16829

\[ {}y^{\prime \prime }+4 y^{\prime } = x +{\mathrm e}^{-4 x} \]

[[_2nd_order, _missing_y]]

16835

\[ {}y^{\prime \prime }-4 y^{\prime } = 2 \cos \left (4 x \right )^{2} \]

[[_2nd_order, _missing_y]]

16837

\[ {}y^{\prime \prime }-3 y^{\prime } = 18 x -10 \cos \left (x \right ) \]

[[_2nd_order, _missing_y]]

16844

\[ {}y^{\prime \prime }+y^{\prime } = \cos \left (x \right )^{2}+{\mathrm e}^{x}+x^{2} \]

[[_2nd_order, _missing_y]]

16847

\[ {}y^{\prime \prime }+y^{\prime } = x^{2}-{\mathrm e}^{-x}+{\mathrm e}^{x} \]

[[_2nd_order, _missing_y]]

16854

\[ {}y^{\prime \prime }-3 y^{\prime } = 1+{\mathrm e}^{x}+\cos \left (x \right )+\sin \left (x \right ) \]

[[_2nd_order, _missing_y]]

16860

\[ {}y^{\prime \prime }+2 y^{\prime }+1 = 3 \sin \left (2 x \right )+\cos \left (x \right ) \]

[[_2nd_order, _missing_y]]

16872

\[ {}y^{\prime \prime }+y^{\prime } = {\mathrm e}^{-x} \]
i.c.

[[_2nd_order, _missing_y]]

16879

\[ {}y^{\prime \prime }-y^{\prime } = -5 \,{\mathrm e}^{-x} \left (\sin \left (x \right )+\cos \left (x \right )\right ) \]
i.c.

[[_2nd_order, _missing_y]]

16895

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

16896

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

16898

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

16906

\[ {}x^{2} y^{\prime \prime }-2 y = \sin \left (\ln \left (x \right )\right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

16907

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x -3 y = -\frac {16 \ln \left (x \right )}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

16909

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = x^{m} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

16910

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = 2 \ln \left (x \right )^{2}+12 x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

16927

\[ {}y^{\prime \prime }+y^{\prime } = \frac {1}{1+{\mathrm e}^{x}} \]

[[_2nd_order, _missing_y]]

16933

\[ {}y^{\prime \prime }+y^{\prime } = {\mathrm e}^{2 x} \cos \left ({\mathrm e}^{x}\right ) \]

[[_2nd_order, _missing_y]]

16942

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x = \frac {1}{x^{2}+1} \]
i.c.

[[_2nd_order, _missing_y]]

16956

\[ {}x^{\prime \prime }+\left (2+x\right ) x^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

16962

\[ {}y y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

16966

\[ {}y^{\prime \prime }+\alpha y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16973

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

17343

\[ {}t^{2} y^{\prime \prime }-2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

17344

\[ {}y^{\prime \prime } y+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

17373

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

17395

\[ {}y^{\prime \prime }+3 y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17406

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

17408

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x -6 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

17409

\[ {}x^{2} y^{\prime \prime }-2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

17413

\[ {}2 x^{2} y^{\prime \prime }+y^{\prime } x -3 y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

17423

\[ {}y^{\prime \prime }+2 y^{\prime } = 3+4 \sin \left (2 t \right ) \]

[[_2nd_order, _missing_y]]

17441

\[ {}y^{\prime \prime }+3 y^{\prime } = 2 t^{4}+t^{2} {\mathrm e}^{-3 t}+\sin \left (3 t \right ) \]

[[_2nd_order, _missing_y]]

17451

\[ {}x^{2} y^{\prime \prime }+7 y^{\prime } x +5 y = x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

17483

\[ {}t^{2} y^{\prime \prime }-2 y = 3 t^{2}-1 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

17486

\[ {}t^{2} y^{\prime \prime }+7 y^{\prime } t +5 y = t \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

17671

\[ {}y^{\prime \prime } = \sin \left (x \right ) \]

[[_2nd_order, _quadrature]]

17756

\[ {}x y y^{\prime \prime }+x {y^{\prime }}^{2}-y y^{\prime } = 0 \]

[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

17762

\[ {}x \left (y x +1\right ) y^{\prime \prime }+x^{2} {y^{\prime }}^{2}+\left (4 y x +2\right ) y^{\prime }+y^{2}+1 = 0 \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

17807

\[ {}x^{2} y^{\prime \prime }-2 y = x^{2}+\frac {1}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

17965

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

17971

\[ {}x y^{\prime \prime }+y^{\prime } = 4 x \]

[[_2nd_order, _missing_y]]

17974

\[ {}y^{\prime \prime } = y^{\prime } {\mathrm e}^{y} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

17983

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2}-2 y y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

18027

\[ {}x y^{\prime \prime }-y^{\prime } = 3 x^{2} \]

[[_2nd_order, _missing_y]]

18028

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

18031

\[ {}y^{\prime \prime }-2 y^{\prime } = 6 \]

[[_2nd_order, _missing_x]]

18033

\[ {}y^{\prime \prime } = {\mathrm e}^{x} \]

[[_2nd_order, _quadrature]]

18034

\[ {}y^{\prime \prime }-2 y^{\prime } = 4 \]

[[_2nd_order, _missing_x]]

18037

\[ {}y^{\prime \prime }+2 y^{\prime } = 6 \,{\mathrm e}^{x} \]

[[_2nd_order, _missing_y]]

18038

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x -5 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

18044

\[ {}x^{2} y^{\prime \prime }-2 y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

18047

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

18074

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

18108

\[ {}y^{\prime \prime }-2 y^{\prime } = 12 x -10 \]

[[_2nd_order, _missing_y]]

18111

\[ {}y^{\prime \prime }+y^{\prime } = 10 x^{4}+2 \]

[[_2nd_order, _missing_y]]

18192

\[ {}y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

18298

\[ {}x^{\prime \prime }+3 x^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

18373

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +y = \frac {1}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

18387

\[ {}y^{\prime \prime }-2 y y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

18456

\[ {}e y^{\prime \prime } = \frac {P \left (\frac {L}{2}-x \right )}{2} \]

[[_2nd_order, _quadrature]]

18457

\[ {}e y^{\prime \prime } = \frac {w \left (\frac {L^{2}}{4}-x^{2}\right )}{2} \]

[[_2nd_order, _quadrature]]

18458

\[ {}e y^{\prime \prime } = -\frac {\left (w L +P \right ) x}{2}-\frac {w \,x^{2}}{2} \]

[[_2nd_order, _quadrature]]

18459

\[ {}e y^{\prime \prime } = -P \left (L -x \right ) \]

[[_2nd_order, _quadrature]]

18460

\[ {}e y^{\prime \prime } = -P L +\left (w L +P \right ) x -\frac {w \left (L^{2}+x^{2}\right )}{2} \]

[[_2nd_order, _quadrature]]

18467

\[ {}x y^{\prime \prime }+2 y^{\prime } = 2 x \]

[[_2nd_order, _missing_y]]

18469

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y = 2 x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

18470

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y = x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

18471

\[ {}y^{\prime \prime }-\cot \left (x \right ) y^{\prime }+\csc \left (x \right )^{2} y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18472

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }+\left (3 x -2\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

18473

\[ {}\left (3 x^{2}+x \right ) y^{\prime \prime }+2 \left (1+6 x \right ) y^{\prime }+6 y = \sin \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

18476

\[ {}y^{\prime \prime } = \cos \left (x \right ) \]

[[_2nd_order, _quadrature]]

18483

\[ {}x y^{\prime \prime }+3 y^{\prime } = 3 x \]

[[_2nd_order, _missing_y]]

18484

\[ {}x = y^{\prime \prime }+y^{\prime } \]

[[_2nd_order, _missing_y]]

18502

\[ {}y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\frac {2 y}{x^{2}} = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

18705

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x -4 y = x^{4} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

18708

\[ {}x^{2} y^{\prime \prime }+7 y^{\prime } x +5 y = x^{5} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

18712

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = {\mathrm e}^{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

18718

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = x^{m} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

18722

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +y = \frac {1}{\left (1-x \right )^{2}} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

18727

\[ {}x y^{\prime \prime }+2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

18728

\[ {}y^{\prime \prime }+2 \,{\mathrm e}^{x} y^{\prime }+2 y \,{\mathrm e}^{x} = x^{2} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

18731

\[ {}x^{2} y y^{\prime \prime }+\left (-y+y^{\prime } x \right )^{2}-3 y^{2} = 0 \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

18734

\[ {}y^{\prime \prime } = x^{2} \sin \left (x \right ) \]

[[_2nd_order, _quadrature]]

18744

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

18750

\[ {}a^{2} y^{\prime \prime } y^{\prime } = x \]

[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]

18752

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

18769

\[ {}\sin \left (x \right ) y^{\prime \prime }-\cos \left (x \right ) y^{\prime }+2 \sin \left (x \right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

18771

\[ {}y^{\prime \prime } = \frac {a}{x} \]

[[_2nd_order, _quadrature]]

18774

\[ {}y^{\prime \prime }+y^{\prime } = {\mathrm e}^{x} \]

[[_2nd_order, _missing_y]]

18777

\[ {}a y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_x]]

18781

\[ {}x y^{\prime \prime }+\left (1-x \right ) y^{\prime }-y = {\mathrm e}^{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

18784

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

18798

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+3 y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

18812

\[ {}y y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

19104

\[ {}x^{2} y^{\prime \prime }+7 y^{\prime } x +5 y = x^{5} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

19107

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x -4 y = x^{4} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

19108

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = x^{m} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

19110

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x = \ln \left (x \right ) \]

[[_2nd_order, _missing_y]]

19111

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = {\mathrm e}^{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

19125

\[ {}x y^{\prime \prime }+2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

19126

\[ {}y^{\prime \prime }+{\mathrm e}^{x} \left (y^{\prime }+y\right ) = {\mathrm e}^{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

19127

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+3 y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

19130

\[ {}y^{\prime \prime }+2 \,{\mathrm e}^{x} y^{\prime }+2 y \,{\mathrm e}^{x} = x^{2} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

19131

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }+2 \left (2 x +1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

19132

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }-4 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

19133

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +y = 2 x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

19134

\[ {}\left (2 x^{2}+3 x \right ) y^{\prime \prime }+\left (6 x +3\right ) y^{\prime }+2 y = \left (x +1\right ) {\mathrm e}^{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

19135

\[ {}x y y^{\prime \prime }+x {y^{\prime }}^{2}+y y^{\prime } = 0 \]

[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

19136

\[ {}\left (-b \,x^{2}+a x \right ) y^{\prime \prime }+2 a y^{\prime }+2 b y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

19137

\[ {}\sin \left (x \right ) y^{\prime \prime }-\cos \left (x \right ) y^{\prime }+2 \sin \left (x \right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

19144

\[ {}y^{\prime \prime } = x +\sin \left (x \right ) \]

[[_2nd_order, _quadrature]]

19145

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]

[[_2nd_order, _quadrature]]

19148

\[ {}y^{\prime \prime } = \frac {a}{x} \]

[[_2nd_order, _quadrature]]

19160

\[ {}y^{\prime \prime }+y^{\prime } = {\mathrm e}^{x} \]

[[_2nd_order, _missing_y]]

19169

\[ {}x y^{\prime \prime }+y^{\prime } = x \]

[[_2nd_order, _missing_y]]

19171

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

19172

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

19176

\[ {}y y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

19178

\[ {}a y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_x]]

19179

\[ {}a^{2} y^{\prime \prime } y^{\prime } = x \]

[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]

19193

\[ {}x y y^{\prime \prime }+x {y^{\prime }}^{2} = 3 y y^{\prime } \]

[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

19205

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+3 y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

19215

\[ {}x y^{\prime \prime }+\left (1-x \right ) y^{\prime } = y+{\mathrm e}^{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

19268

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 8 x^{3} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

19274

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

19357

\[ {}x^{2} y^{\prime \prime }-2 y = x^{2}+\frac {1}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

19363

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +y = \frac {1}{\left (1-x \right )^{2}} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

19377

\[ {}x^{2} y y^{\prime \prime }+\left (-y+y^{\prime } x \right )^{2}-3 y^{2} = 0 \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

19381

\[ {}y^{\prime \prime } = x^{2} \sin \left (x \right ) \]

[[_2nd_order, _quadrature]]

19382

\[ {}y^{\prime \prime } = \sec \left (x \right )^{2} \]

[[_2nd_order, _quadrature]]

19388

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

19413

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = x^{2} {\mathrm e}^{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]