2.4.3 second order euler ode

Table 2.455: second order euler ode

#

ODE

CAS classification

Solved?

152

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime } = 2 \]

[[_2nd_order, _missing_y]]

227

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

228

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

229

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]
i.c.

[[_Emden, _Fowler]]

230

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

244

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

245

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-12 y = 0 \]

[[_Emden, _Fowler]]

246

\[ {}4 x^{2} y^{\prime \prime }+8 x y^{\prime }-3 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

247

\[ {}x^{2} y^{\prime \prime }+x y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

248

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

262

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

315

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+9 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

316

\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }+25 y = 0 \]

[[_Emden, _Fowler]]

376

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 72 x^{5} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

377

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

378

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x^{4} \]

[[_2nd_order, _with_linear_symmetries]]

379

\[ {}4 x^{2} y^{\prime \prime }-4 x y^{\prime }+3 y = 8 x^{{4}/{3}} \]

[[_2nd_order, _with_linear_symmetries]]

380

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

819

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

820

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

821

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]
i.c.

[[_Emden, _Fowler]]

822

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

833

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

834

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-12 y = 0 \]

[[_Emden, _Fowler]]

835

\[ {}4 x^{2} y^{\prime \prime }+8 x y^{\prime }-3 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

836

\[ {}x^{2} y^{\prime \prime }+x y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

837

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

860

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+9 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

861

\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }+25 y = 0 \]

[[_Emden, _Fowler]]

902

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 72 x^{5} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

903

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

904

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x^{4} \]

[[_2nd_order, _with_linear_symmetries]]

905

\[ {}4 x^{2} y^{\prime \prime }-4 x y^{\prime }+3 y = 8 x^{{4}/{3}} \]

[[_2nd_order, _with_linear_symmetries]]

906

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

1293

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1294

\[ {}t^{2} y^{\prime \prime }+4 t y^{\prime }+2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1295

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+\frac {5 y}{4} = 0 \]

[[_Emden, _Fowler]]

1296

\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }-6 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1297

\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1298

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+5 y = 0 \]

[[_Emden, _Fowler]]

1299

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }-3 y = 0 \]

[[_Emden, _Fowler]]

1300

\[ {}t^{2} y^{\prime \prime }+7 t y^{\prime }+10 y = 0 \]

[[_Emden, _Fowler]]

1327

\[ {}t^{2} y^{\prime \prime }-3 t y^{\prime }+4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1328

\[ {}t^{2} y^{\prime \prime }+2 t y^{\prime }+\frac {y}{4} = 0 \]

[[_Emden, _Fowler]]

1329

\[ {}2 t^{2} y^{\prime \prime }-5 t y^{\prime }+5 y = 0 \]

[[_Emden, _Fowler]]

1330

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1331

\[ {}4 t^{2} y^{\prime \prime }-8 t y^{\prime }+9 y = 0 \]

[[_Emden, _Fowler]]

1332

\[ {}t^{2} y^{\prime \prime }+5 t y^{\prime }+13 y = 0 \]

[[_Emden, _Fowler]]

1345

\[ {}t^{2} y^{\prime \prime }-2 y = 3 t^{2}-1 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1349

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x^{2} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1351

\[ {}t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y = 4 t^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1352

\[ {}t^{2} y^{\prime \prime }+7 t y^{\prime }+5 y = t \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1746

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1747

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

1748

\[ {}x^{2} y^{\prime \prime }-\left (2 a -1\right ) x y^{\prime }+a^{2} y = 0 \]

[[_Emden, _Fowler]]

1811

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 2 x^{2}+2 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1815

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = x^{{5}/{2}} \]

[[_2nd_order, _with_linear_symmetries]]

1816

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+3 y = 2 x^{4} \sin \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

1820

\[ {}x^{2} y^{\prime \prime }-\left (2 a -1\right ) x y^{\prime }+a^{2} y = x^{a +1} \]

[[_2nd_order, _with_linear_symmetries]]

1828

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }-3 y = x^{{3}/{2}} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1835

\[ {}\left (-1+x \right )^{2} y^{\prime \prime }-2 \left (-1+x \right ) y^{\prime }+2 y = \left (-1+x \right )^{2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1838

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = -2 x^{2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

2362

\[ {}2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

2373

\[ {}t^{2} y^{\prime \prime }+\alpha t y^{\prime }+\beta y = 0 \]

[[_Emden, _Fowler]]

2374

\[ {}t^{2} y^{\prime \prime }+5 t y^{\prime }-5 y = 0 \]

[[_Emden, _Fowler]]

2375

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }-2 y = 0 \]
i.c.

[[_Emden, _Fowler]]

2385

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2386

\[ {}t^{2} y^{\prime \prime }+2 t y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler]]

2400

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

2401

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

2431

\[ {}t^{2} y^{\prime \prime }-5 t y^{\prime }+9 y = 0 \]

[[_Emden, _Fowler]]

2432

\[ {}t^{2} y^{\prime \prime }+5 t y^{\prime }-5 y = 0 \]

[[_Emden, _Fowler]]

2433

\[ {}2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

2434

\[ {}\left (t -1\right )^{2} y^{\prime \prime }-2 \left (t -1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2435

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

2436

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

2437

\[ {}\left (t -2\right )^{2} y^{\prime \prime }+5 \left (t -2\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2438

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2439

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+2 y = 0 \]
i.c.

[[_Emden, _Fowler]]

2440

\[ {}t^{2} y^{\prime \prime }-3 t y^{\prime }+4 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2543

\[ {}2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

2554

\[ {}t^{2} y^{\prime \prime }+\alpha t y^{\prime }+\beta y = 0 \]

[[_Emden, _Fowler]]

2555

\[ {}t^{2} y^{\prime \prime }+5 t y^{\prime }-2 y = 0 \]
i.c.

[[_Emden, _Fowler]]

2565

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2566

\[ {}t^{2} y^{\prime \prime }+2 t y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler]]

2581

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

2582

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

2591

\[ {}t^{2} y^{\prime \prime }-2 y = t^{2} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2628

\[ {}t^{2} y^{\prime \prime }+5 t y^{\prime }-5 y = 0 \]

[[_Emden, _Fowler]]

2629

\[ {}2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

2630

\[ {}\left (t -1\right )^{2} y^{\prime \prime }-2 \left (t -1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2631

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

2632

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

2633

\[ {}\left (t -2\right )^{2} y^{\prime \prime }+5 \left (t -2\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2634

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2635

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler]]

2636

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }-2 y = 0 \]
i.c.

[[_Emden, _Fowler]]

2637

\[ {}t^{2} y^{\prime \prime }-3 t y^{\prime }+4 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

3221

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

3222

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+16 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

3223

\[ {}4 x^{2} y^{\prime \prime }-16 x y^{\prime }+25 y = 0 \]

[[_Emden, _Fowler]]

3224

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+10 y = 0 \]

[[_Emden, _Fowler]]

3225

\[ {}2 x^{2} y^{\prime \prime }-3 x y^{\prime }-18 y = \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

3226

\[ {}2 x^{2} y^{\prime \prime }-3 x y^{\prime }+2 y = \ln \left (x^{2}\right ) \]

[[_2nd_order, _with_linear_symmetries]]

3227

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

3228

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 1-x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3230

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 4 x +\sin \left (\ln \left (x \right )\right ) \]

[[_2nd_order, _with_linear_symmetries]]

3231

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+2 y = x^{2} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3232

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+3 y = \left (-1+x \right ) \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3255

\[ {}x^{2} y^{\prime \prime } = x y^{\prime }+1 \]

[[_2nd_order, _missing_y]]

3493

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = x \]

[[_2nd_order, _with_linear_symmetries]]

3494

\[ {}\left (x +1\right )^{2} y^{\prime \prime }+3 \left (x +1\right ) y^{\prime }+y = x^{2} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3565

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+3 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

3566

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

3567

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+13 y = 0 \]

[[_Emden, _Fowler]]

3568

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+y = 9 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

3569

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = x^{4} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3575

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

3576

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = 0 \]

[[_Emden, _Fowler]]

3591

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }-8 y = 0 \]

[[_Emden, _Fowler]]

3592

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x^{2} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3707

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }-8 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

3708

\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

3773

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 4 \ln \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3774

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = \cos \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3775

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+9 y = 9 \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

3776

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+5 y = 8 x \ln \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3777

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = x^{4} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3778

\[ {}x^{2} y^{\prime \prime }+6 x y^{\prime }+6 y = 4 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3779

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = \frac {x^{2}}{\ln \left (x \right )} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3780

\[ {}x^{2} y^{\prime \prime }-\left (2 m -1\right ) x y^{\prime }+m^{2} y = x^{m} \ln \left (x \right )^{k} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3781

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+5 y = 0 \]
i.c.

[[_Emden, _Fowler]]

3782

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+25 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

4140

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = x^{2}+2 \]

[[_2nd_order, _with_linear_symmetries]]

4509

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

4510

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+5 y = \frac {5 \ln \left (x \right )}{x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

4512

\[ {}\left (-2+x \right )^{2} y^{\prime \prime }-3 \left (-2+x \right ) y^{\prime }+4 y = x \]

[[_2nd_order, _with_linear_symmetries]]

5990

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = x \]

[[_2nd_order, _with_linear_symmetries]]

5991

\[ {}y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\frac {2 y}{x^{2}} = \ln \left (x \right ) x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

5992

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

5993

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = x^{2} {\mathrm e}^{-x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

5994

\[ {}2 x^{2} y^{\prime \prime }+3 x y^{\prime }-y = \frac {1}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

5998

\[ {}x^{2} y^{\prime \prime }+x y^{\prime } = 1 \]

[[_2nd_order, _missing_y]]

6014

\[ {}x^{2} y^{\prime \prime }+x y^{\prime } = 1 \]
i.c.

[[_2nd_order, _missing_y]]

6026

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6192

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }-3 y = 0 \]

[[_Emden, _Fowler]]

6193

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6194

\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }+9 y = 0 \]

[[_Emden, _Fowler]]

6195

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+6 y = 0 \]

[[_Emden, _Fowler]]

6196

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-16 y = 8 x^{4} \]

[[_2nd_order, _with_linear_symmetries]]

6197

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = x -\frac {1}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

6198

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 2 x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

6199

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 6 x^{2} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6200

\[ {}x^{2} y^{\prime \prime }+y = 3 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

6201

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 2 x \]

[[_2nd_order, _with_linear_symmetries]]

6215

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = x \]

[[_2nd_order, _with_linear_symmetries]]

6249

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+3 y = 0 \]

[[_Emden, _Fowler]]

6409

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6411

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

6532

\[ {}t^{2} N^{\prime \prime }-2 t N^{\prime }+2 N = t \ln \left (t \right ) \]

[[_2nd_order, _with_linear_symmetries]]

6540

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = \ln \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

6541

\[ {}x^{2} y^{\prime \prime }-x y^{\prime } = x^{3} {\mathrm e}^{x} \]

[[_2nd_order, _missing_y]]

6695

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6749

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x +x^{2} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6750

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = \ln \left (x \right )^{2}-\ln \left (x^{2}\right ) \]

[[_2nd_order, _with_linear_symmetries]]

6753

\[ {}\left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }-y = \ln \left (x +1\right )^{2}+x -1 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

6754

\[ {}\left (2 x +1\right )^{2} y^{\prime \prime }-2 \left (2 x +1\right ) y^{\prime }-12 y = 6 x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

6767

\[ {}x y^{\prime \prime }-3 y^{\prime }+\frac {3 y}{x} = 2+x \]

[[_2nd_order, _with_linear_symmetries]]

6911

\[ {}4 x^{2} y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

6912

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = 0 \]

[[_Emden, _Fowler]]

6998

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6999

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = \sec \left (\ln \left (x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7479

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

7487

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }+4 y = 0 \]

[[_Emden, _Fowler]]

7492

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = x^{2}+2 x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

7524

\[ {}p \,x^{2} u^{\prime \prime }+q x u^{\prime }+r u = f \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7674

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

7675

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

7676

\[ {}\left (3 x -1\right )^{2} y^{\prime \prime }+\left (9 x -3\right ) y^{\prime }-9 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

7699

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7700

\[ {}2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

[[_Emden, _Fowler]]

7701

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7702

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

7704

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 1 \]

[[_2nd_order, _with_linear_symmetries]]

7705

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+5 y = 0 \]

[[_Emden, _Fowler]]

7706

\[ {}x^{2} y^{\prime \prime }+\left (-2-i\right ) x y^{\prime }+3 i y = 0 \]

[[_Emden, _Fowler]]

7707

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 \pi y = x \]

[[_2nd_order, _with_linear_symmetries]]

7961

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+10 y = 0 \]

[[_Emden, _Fowler]]

7962

\[ {}2 x^{2} y^{\prime \prime }+10 x y^{\prime }+8 y = 0 \]

[[_Emden, _Fowler]]

7963

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-12 y = 0 \]

[[_Emden, _Fowler]]

7964

\[ {}4 x^{2} y^{\prime \prime }-3 y = 0 \]

[[_Emden, _Fowler]]

7965

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7966

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7967

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }+3 y = 0 \]

[[_Emden, _Fowler]]

7968

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7969

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-16 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8004

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = x \,{\mathrm e}^{-x} \]

[[_2nd_order, _with_linear_symmetries]]

8061

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {2}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

8067

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8606

\[ {}2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

[[_Emden, _Fowler]]

8607

\[ {}2 x^{2} y^{\prime \prime }-3 x y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8608

\[ {}9 x^{2} y^{\prime \prime }+2 y = 0 \]

[[_Emden, _Fowler]]

8609

\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }-2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8610

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-12 y = 0 \]

[[_Emden, _Fowler]]

8611

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8612

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8613

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 0 \]

[[_Emden, _Fowler]]

8614

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+5 y = 0 \]

[[_Emden, _Fowler]]

8761

\[ {}t^{2} y^{\prime \prime }-3 t y^{\prime }+5 y = 0 \]

[[_Emden, _Fowler]]

8873

\[ {}x^{4} y^{\prime \prime }+x^{3} y^{\prime }-4 x^{2} y = 1 \]

[[_2nd_order, _with_linear_symmetries]]

8874

\[ {}x^{4} y^{\prime \prime }+x^{3} y^{\prime }-4 x^{2} y = x \]

[[_2nd_order, _with_linear_symmetries]]

8875

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = x \]

[[_2nd_order, _with_linear_symmetries]]

8888

\[ {}4 x^{2} y^{\prime \prime }+y = 8 \sqrt {x}\, \left (1+\ln \left (x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

9137

\[ {}y^{\prime \prime }-\frac {2 y}{x^{2}} = x \,{\mathrm e}^{-\sqrt {x}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

9142

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+3 y = 2 x^{3}-x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

9169

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11128

\[ {}x^{2} y^{\prime \prime }-6 y = 0 \]

[[_Emden, _Fowler]]

11129

\[ {}x^{2} y^{\prime \prime }-12 y = 0 \]

[[_Emden, _Fowler]]

11130

\[ {}x^{2} y^{\prime \prime }+a y = 0 \]

[[_Emden, _Fowler]]

11141

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y-a \,x^{2} = 0 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

11142

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+a y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11148

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y-3 x^{3} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11150

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

11156

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y-x^{5} \ln \left (x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11157

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }-4 y-x \sin \left (x \right )-\left (a \,x^{2}+12 a +4\right ) \cos \left (x \right ) = 0 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

11164

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y-5 x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11165

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }-5 y-x^{2} \ln \left (x \right ) = 0 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

11166

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y-x^{4}+x^{2} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

11168

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+8 y-\sin \left (x \right ) x^{3} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

11169

\[ {}x^{2} y^{\prime \prime }+a x y^{\prime }+b y = 0 \]

[[_Emden, _Fowler]]

11246

\[ {}\left (-2+x \right )^{2} y^{\prime \prime }-\left (-2+x \right ) y^{\prime }-3 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

11251

\[ {}4 x^{2} y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

11259

\[ {}4 x^{2} y^{\prime \prime }+5 x y^{\prime }-y-\ln \left (x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11264

\[ {}\left (2 x +1\right )^{2} y^{\prime \prime }-2 \left (2 x +1\right ) y^{\prime }-12 y-3 x -1 = 0 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

11266

\[ {}\left (3 x -1\right )^{2} y^{\prime \prime }+3 \left (3 x -1\right ) y^{\prime }-9 y-\ln \left (3 x -1\right )^{2} = 0 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

11287

\[ {}x^{3} y^{\prime \prime }-x^{2} y^{\prime }+x y-\ln \left (x \right )^{3} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11289

\[ {}x^{3} y^{\prime \prime }+3 x^{2} y^{\prime }+x y-1 = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12531

\[ {}x^{2} y^{\prime \prime }+a y = 0 \]

[[_Emden, _Fowler]]

12544

\[ {}x^{2} y^{\prime \prime }+a x y^{\prime }+b y = 0 \]

[[_Emden, _Fowler]]

12871

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{\left (1-x \right )^{2}} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

12872

\[ {}\left (x +1\right )^{2} y^{\prime \prime }-\left (x +1\right ) y^{\prime }+6 y = x \]

[[_2nd_order, _with_linear_symmetries]]

12921

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

12922

\[ {}\left (-1+x \right )^{2} y^{\prime \prime }+4 \left (-1+x \right ) y^{\prime }+2 y = \cos \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

12953

\[ {}t^{2} x^{\prime \prime }-6 x = 0 \]

[[_Emden, _Fowler]]

13075

\[ {}x^{\prime \prime } = -\frac {x}{t^{2}} \]

[[_Emden, _Fowler]]

13076

\[ {}x^{\prime \prime } = \frac {4 x}{t^{2}} \]

[[_Emden, _Fowler]]

13077

\[ {}t^{2} x^{\prime \prime }+3 t x^{\prime }+x = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

13078

\[ {}t x^{\prime \prime }+4 x^{\prime }+\frac {2 x}{t} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13079

\[ {}t^{2} x^{\prime \prime }-7 t x^{\prime }+16 x = 0 \]

[[_Emden, _Fowler]]

13080

\[ {}t^{2} x^{\prime \prime }+3 t x^{\prime }-8 x = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13081

\[ {}t^{2} x^{\prime \prime }+t x^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_y]]

13082

\[ {}t^{2} x^{\prime \prime }-t x^{\prime }+2 x = 0 \]
i.c.

[[_Emden, _Fowler]]

13087

\[ {}t^{2} x^{\prime \prime }-2 x = t^{3} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

13091

\[ {}t^{2} x^{\prime \prime }-3 t x^{\prime }+3 x = 4 t^{7} \]

[[_2nd_order, _with_linear_symmetries]]

13315

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13316

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13444

\[ {}x^{2} y^{\prime \prime }-6 x y^{\prime }+10 y = 3 x^{4}+6 x^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13445

\[ {}\left (x +1\right )^{2} y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y = 1 \]

[[_2nd_order, _with_linear_symmetries]]

13452

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+3 y = 0 \]

[[_Emden, _Fowler]]

13453

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13454

\[ {}4 x^{2} y^{\prime \prime }-4 x y^{\prime }+3 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13455

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13456

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13457

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+13 y = 0 \]

[[_Emden, _Fowler]]

13458

\[ {}3 x^{2} y^{\prime \prime }-4 x y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13459

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+9 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13460

\[ {}9 x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13461

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+10 y = 0 \]

[[_Emden, _Fowler]]

13465

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 4 x -6 \]

[[_2nd_order, _with_linear_symmetries]]

13466

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+8 y = 2 x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

13467

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 4 \ln \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

13468

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 2 \ln \left (x \right ) x \]

[[_2nd_order, _with_linear_symmetries]]

13469

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 4 \sin \left (\ln \left (x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13471

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }-10 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13472

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13473

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+3 y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

13474

\[ {}x^{2} y^{\prime \prime }-2 y = 4 x -8 \]
i.c.

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

13475

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = -6 x^{3}+4 x^{2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13476

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 10 x^{2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13477

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+8 y = 2 x^{3} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13478

\[ {}x^{2} y^{\prime \prime }-6 y = \ln \left (x \right ) \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13479

\[ {}\left (2+x \right )^{2} y^{\prime \prime }-\left (2+x \right ) y^{\prime }-3 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

13480

\[ {}\left (2 x -3\right )^{2} y^{\prime \prime }-6 \left (2 x -3\right ) y^{\prime }+12 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13587

\[ {}t^{2} x^{\prime \prime }+3 t x^{\prime }+3 x = 0 \]

[[_Emden, _Fowler]]

13594

\[ {}t^{2} x^{\prime \prime }+t x^{\prime }+x = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13603

\[ {}y^{\prime }+x y^{\prime \prime }+\frac {\lambda y}{x} = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13604

\[ {}y^{\prime }+x y^{\prime \prime }+\frac {\lambda y}{x} = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13714

\[ {}t^{2} x^{\prime \prime }-2 x = t^{3} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

13717

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13718

\[ {}4 x^{2} y^{\prime \prime }+y = 0 \]
i.c.

[[_Emden, _Fowler]]

13719

\[ {}t^{2} x^{\prime \prime }-5 t x^{\prime }+10 x = 0 \]
i.c.

[[_Emden, _Fowler]]

13720

\[ {}t^{2} x^{\prime \prime }+t x^{\prime }-x = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

13721

\[ {}x^{2} z^{\prime \prime }+3 x z^{\prime }+4 z = 0 \]
i.c.

[[_Emden, _Fowler]]

13722

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }-3 y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

13723

\[ {}4 t^{2} x^{\prime \prime }+8 t x^{\prime }+5 x = 0 \]
i.c.

[[_Emden, _Fowler]]

13724

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+5 y = 0 \]
i.c.

[[_Emden, _Fowler]]

13725

\[ {}3 x^{2} z^{\prime \prime }+5 x z^{\prime }-z = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

13726

\[ {}t^{2} x^{\prime \prime }+3 t x^{\prime }+13 x = 0 \]
i.c.

[[_Emden, _Fowler]]

13825

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 2 \]

[[_2nd_order, _with_linear_symmetries]]

13852

\[ {}\left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y = 2 \cos \left (\ln \left (x +1\right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13893

\[ {}x^{2} y^{\prime \prime }-y = \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

14008

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = t^{7} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

14231

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

14233

\[ {}2 x^{2} y^{\prime \prime }+3 x y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

14235

\[ {}x^{2} y^{\prime \prime }-2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

14241

\[ {}2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

[[_Emden, _Fowler]]

14248

\[ {}x^{2} y^{\prime \prime }-x y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

14249

\[ {}x^{2} y^{\prime \prime }+6 x y^{\prime }+4 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

14250

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 0 \]

[[_Emden, _Fowler]]

14266

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

14267

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

14268

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

14269

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

14270

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

14409

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

[[_Emden, _Fowler]]

14413

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]
i.c.

[[_Emden, _Fowler]]

14416

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = -3 x -\frac {3}{x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14909

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

15221

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15222

\[ {}4 x^{2} y^{\prime \prime }+4 x y^{\prime }-y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15223

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]
i.c.

[[_Emden, _Fowler]]

15225

\[ {}\left (x +1\right )^{2} y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15226

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15300

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+8 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15301

\[ {}x^{2} y^{\prime \prime }-2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

15302

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

15303

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15304

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 0 \]

[[_Emden, _Fowler]]

15305

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = 0 \]

[[_Emden, _Fowler]]

15306

\[ {}4 x^{2} y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

15307

\[ {}x^{2} y^{\prime \prime }-19 x y^{\prime }+100 y = 0 \]

[[_Emden, _Fowler]]

15308

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+29 y = 0 \]

[[_Emden, _Fowler]]

15309

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+10 y = 0 \]

[[_Emden, _Fowler]]

15310

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+29 y = 0 \]

[[_Emden, _Fowler]]

15311

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15312

\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

15313

\[ {}4 x^{2} y^{\prime \prime }+37 y = 0 \]

[[_Emden, _Fowler]]

15314

\[ {}x^{2} y^{\prime \prime }+x y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

15315

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-25 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15316

\[ {}4 x^{2} y^{\prime \prime }+8 x y^{\prime }+5 y = 0 \]

[[_Emden, _Fowler]]

15317

\[ {}3 x^{2} y^{\prime \prime }-7 x y^{\prime }+3 y = 0 \]

[[_Emden, _Fowler]]

15318

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }-10 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15319

\[ {}4 x^{2} y^{\prime \prime }+4 x y^{\prime }-y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15320

\[ {}x^{2} y^{\prime \prime }-11 x y^{\prime }+36 y = 0 \]
i.c.

[[_Emden, _Fowler]]

15321

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]
i.c.

[[_Emden, _Fowler]]

15322

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+2 y = 0 \]
i.c.

[[_Emden, _Fowler]]

15323

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+13 y = 0 \]
i.c.

[[_Emden, _Fowler]]

15340

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 10 x +12 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

15346

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 1 \]

[[_2nd_order, _with_linear_symmetries]]

15347

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = x \]

[[_2nd_order, _with_linear_symmetries]]

15348

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 22 x +24 \]

[[_2nd_order, _with_linear_symmetries]]

15349

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

15350

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = x \]

[[_2nd_order, _with_linear_symmetries]]

15351

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = 1 \]

[[_2nd_order, _with_linear_symmetries]]

15352

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = 4 x^{2}+2 x +3 \]

[[_2nd_order, _with_linear_symmetries]]

15426

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+8 y = \frac {5}{x^{3}} \]

[[_2nd_order, _with_linear_symmetries]]

15427

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+y = \frac {50}{x^{3}} \]

[[_2nd_order, _with_linear_symmetries]]

15428

\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = 85 \cos \left (2 \ln \left (x \right )\right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15429

\[ {}x^{2} y^{\prime \prime }-2 y = 15 \cos \left (3 \ln \left (x \right )\right )-10 \sin \left (3 \ln \left (x \right )\right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15430

\[ {}3 x^{2} y^{\prime \prime }-7 x y^{\prime }+3 y = 4 x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

15431

\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = \frac {10}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15432

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 6 x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

15433

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = 64 x^{2} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15434

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 3 \sqrt {x} \]

[[_2nd_order, _with_linear_symmetries]]

15440

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = \sqrt {x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15441

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 12 x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

15442

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

15443

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

15444

\[ {}x^{2} y^{\prime \prime }-2 y = \frac {1}{-2+x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15448

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }-4 y = \frac {10}{x} \]
i.c.

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15458

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15461

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+16 y = 0 \]

[[_Emden, _Fowler]]

15466

\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }+9 y = 0 \]

[[_Emden, _Fowler]]

15467

\[ {}x^{2} y^{\prime \prime }+\frac {5 y}{2} = 0 \]

[[_Emden, _Fowler]]

15469

\[ {}x^{2} y^{\prime \prime }-6 y = 0 \]

[[_Emden, _Fowler]]

15472

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+9 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15474

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-30 y = 0 \]

[[_Emden, _Fowler]]

15477

\[ {}4 x^{2} y^{\prime \prime }+8 x y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

15479

\[ {}2 x^{2} y^{\prime \prime }-3 x y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15480

\[ {}9 x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15490

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 3 \sqrt {x} \]

[[_2nd_order, _with_linear_symmetries]]

15493

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 18 \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

15495

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }-2 y = 10 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

15498

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+2 y = 6 \]

[[_2nd_order, _with_linear_symmetries]]

15499

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = \frac {1}{x^{2}+1} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15504

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{\left (x +1\right )^{2}} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15505

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15706

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15721

\[ {}x^{2} y^{\prime \prime }-12 x y^{\prime }+42 y = 0 \]

[[_Emden, _Fowler]]

15722

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+5 y = 0 \]

[[_Emden, _Fowler]]

15747

\[ {}t^{2} y^{\prime \prime }-12 t y^{\prime }+42 y = 0 \]
i.c.

[[_Emden, _Fowler]]

15748

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+5 y = 0 \]
i.c.

[[_Emden, _Fowler]]

15767

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }-16 y = 0 \]

[[_Emden, _Fowler]]

15768

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler]]

15779

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = 0 \]
i.c.

[[_Emden, _Fowler]]

15922

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{t}+\frac {y}{t^{2}} = \frac {1}{t} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

16100

\[ {}2 t^{2} y^{\prime \prime }-3 t y^{\prime }-3 y = 0 \]

[[_Emden, _Fowler]]

16104

\[ {}3 t^{2} y^{\prime \prime }-5 t y^{\prime }-3 y = 0 \]
i.c.

[[_Emden, _Fowler]]

16105

\[ {}t^{2} y^{\prime \prime }+7 t y^{\prime }-7 y = 0 \]
i.c.

[[_Emden, _Fowler]]

16110

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

16122

\[ {}t^{2} y^{\prime \prime }+a t y^{\prime }+b y = 0 \]

[[_Emden, _Fowler]]

16161

\[ {}3 t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler]]

16162

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

16275

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = \ln \left (t \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

16276

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+4 y = t \]

[[_2nd_order, _with_linear_symmetries]]

16277

\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }-6 y = 2 \ln \left (t \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

16361

\[ {}4 x^{2} y^{\prime \prime }-8 x y^{\prime }+5 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16362

\[ {}3 x^{2} y^{\prime \prime }-4 x y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16363

\[ {}2 x^{2} y^{\prime \prime }-8 x y^{\prime }+8 y = 0 \]

[[_Emden, _Fowler]]

16364

\[ {}2 x^{2} y^{\prime \prime }-7 x y^{\prime }+7 y = 0 \]

[[_Emden, _Fowler]]

16365

\[ {}4 x^{2} y^{\prime \prime }+17 y = 0 \]

[[_Emden, _Fowler]]

16366

\[ {}9 x^{2} y^{\prime \prime }-9 x y^{\prime }+10 y = 0 \]

[[_Emden, _Fowler]]

16367

\[ {}2 x^{2} y^{\prime \prime }-2 x y^{\prime }+20 y = 0 \]

[[_Emden, _Fowler]]

16368

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+10 y = 0 \]

[[_Emden, _Fowler]]

16369

\[ {}4 x^{2} y^{\prime \prime }+8 x y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

16370

\[ {}4 x^{2} y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

16371

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 0 \]

[[_Emden, _Fowler]]

16372

\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }+9 y = 0 \]

[[_Emden, _Fowler]]

16381

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = \frac {1}{x^{5}} \]

[[_2nd_order, _with_linear_symmetries]]

16382

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

16383

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = \frac {1}{x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

16384

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = \frac {1}{x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

16385

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 2 x \]

[[_2nd_order, _with_linear_symmetries]]

16386

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-16 y = \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

16387

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 8 \]

[[_2nd_order, _with_linear_symmetries]]

16388

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+36 y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

16391

\[ {}3 x^{2} y^{\prime \prime }-4 x y^{\prime }+2 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16392

\[ {}2 x^{2} y^{\prime \prime }-7 x y^{\prime }+7 y = 0 \]
i.c.

[[_Emden, _Fowler]]

16393

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16394

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+2 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16399

\[ {}2 x^{2} y^{\prime \prime }+3 x y^{\prime }-y = \frac {1}{x^{2}} \]
i.c.

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

16400

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = \ln \left (x \right ) \]
i.c.

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

16401

\[ {}4 x^{2} y^{\prime \prime }+y = x^{3} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

16402

\[ {}9 x^{2} y^{\prime \prime }+27 x y^{\prime }+10 y = \frac {1}{x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

16403

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler]]

16404

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

16405

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16417

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

16418

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

16419

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16420

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]
i.c.

[[_Emden, _Fowler]]

16427

\[ {}6 x^{2} y^{\prime \prime }+5 x y^{\prime }-y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16527

\[ {}t^{2} y^{\prime \prime }-5 t y^{\prime }+5 y = 0 \]

[[_Emden, _Fowler]]

16528

\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }+8 y = 0 \]

[[_Emden, _Fowler]]

16529

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16530

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16531

\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

16532

\[ {}5 x^{2} y^{\prime \prime }-x y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler]]

16533

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+25 y = 0 \]

[[_Emden, _Fowler]]

16534

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = 8 x \]

[[_2nd_order, _with_linear_symmetries]]

17038

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

17039

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

17040

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }+6 y = 0 \]

[[_Emden, _Fowler]]

17042

\[ {}\left (2+x \right )^{2} y^{\prime \prime }+3 \left (2+x \right ) y^{\prime }-3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

17043

\[ {}\left (2 x +1\right )^{2} y^{\prime \prime }-2 \left (2 x +1\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

17048

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = x \left (6-\ln \left (x \right )\right ) \]

[[_2nd_order, _with_linear_symmetries]]

17049

\[ {}x^{2} y^{\prime \prime }-2 y = \sin \left (\ln \left (x \right )\right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

17050

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }-3 y = -\frac {16 \ln \left (x \right )}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

17051

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }-2 y = x^{2}-2 x +2 \]

[[_2nd_order, _with_linear_symmetries]]

17052

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = x^{m} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

17053

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 2 \ln \left (x \right )^{2}+12 x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

17054

\[ {}\left (x +1\right )^{3} y^{\prime \prime }+3 \left (x +1\right )^{2} y^{\prime }+\left (x +1\right ) y = 6 \ln \left (x +1\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17055

\[ {}\left (-2+x \right )^{2} y^{\prime \prime }-3 \left (-2+x \right ) y^{\prime }+4 y = x \]

[[_2nd_order, _with_linear_symmetries]]

17472

\[ {}a \,x^{2} y^{\prime \prime }+b x y^{\prime }+c y = d \]

[[_2nd_order, _with_linear_symmetries]]

17486

\[ {}t^{2} y^{\prime \prime }-2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

17547

\[ {}a \,x^{2} y^{\prime \prime }+b x y^{\prime }+c y = 0 \]

[[_Emden, _Fowler]]

17548

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

17549

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

17550

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+\frac {5 y}{4} = 0 \]

[[_Emden, _Fowler]]

17551

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }-6 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

17552

\[ {}x^{2} y^{\prime \prime }-2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

17553

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 0 \]

[[_Emden, _Fowler]]

17554

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }+4 y = 0 \]

[[_Emden, _Fowler]]

17555

\[ {}2 x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

[[_Emden, _Fowler]]

17556

\[ {}2 x^{2} y^{\prime \prime }+x y^{\prime }-3 y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

17557

\[ {}4 x^{2} y^{\prime \prime }+8 x y^{\prime }+17 y = 0 \]
i.c.

[[_Emden, _Fowler]]

17558

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 0 \]
i.c.

[[_Emden, _Fowler]]

17559

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+5 y = 0 \]
i.c.

[[_Emden, _Fowler]]

17593

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

17594

\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }+5 y = x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

17595

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 3 x^{2}+2 \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

17596

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = \sin \left (\ln \left (x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17626

\[ {}t^{2} y^{\prime \prime }-2 y = 3 t^{2}-1 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

17627

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x^{2} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17628

\[ {}t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y = 4 t^{2} \]

[[_2nd_order, _with_linear_symmetries]]

17629

\[ {}t^{2} y^{\prime \prime }+7 t y^{\prime }+5 y = t \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

17922

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 2 x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

17947

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}-\frac {n \left (n +1\right ) y}{x^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

17948

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = x \]

[[_2nd_order, _with_linear_symmetries]]

17949

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+2 y = \ln \left (x \right ) x \]

[[_2nd_order, _with_linear_symmetries]]

17950

\[ {}x^{2} y^{\prime \prime }-2 y = x^{2}+\frac {1}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

17952

\[ {}\left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y = 4 \cos \left (\ln \left (x +1\right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18135

\[ {}x^{2} y^{\prime \prime }+x y^{\prime } = 1 \]

[[_2nd_order, _missing_y]]

18173

\[ {}x^{3} y^{\prime \prime }+x^{2} y^{\prime }+x y = 1 \]

[[_2nd_order, _with_linear_symmetries]]

18181

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }-5 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

18184

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18187

\[ {}x^{2} y^{\prime \prime }-2 y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

18233

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+10 y = 0 \]

[[_Emden, _Fowler]]

18234

\[ {}2 x^{2} y^{\prime \prime }+10 x y^{\prime }+8 y = 0 \]

[[_Emden, _Fowler]]

18235

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-12 y = 0 \]

[[_Emden, _Fowler]]

18236

\[ {}4 x^{2} y^{\prime \prime }-3 y = 0 \]

[[_Emden, _Fowler]]

18237

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18238

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18239

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }+3 y = 0 \]

[[_Emden, _Fowler]]

18240

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18241

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-16 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18277

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = x \,{\mathrm e}^{-x} \]

[[_2nd_order, _with_linear_symmetries]]

18434

\[ {}t^{2} x^{\prime \prime }-6 t x^{\prime }+12 x = 0 \]

[[_Emden, _Fowler]]

18437

\[ {}t^{2} x^{\prime \prime }-2 t x^{\prime }+2 x = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18516

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

18527

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+5 y = \frac {1}{x} \]

[[_2nd_order, _with_linear_symmetries]]

18536

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18606

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }-8 y = x \]

[[_2nd_order, _with_linear_symmetries]]

18611

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

18645

\[ {}y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\frac {2 y}{x^{2}} = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

18844

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 2 \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

18845

\[ {}x^{2} y^{\prime \prime }+y = 3 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

18848

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }-4 y = x^{4} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

18849

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = x^{4} \]

[[_2nd_order, _with_linear_symmetries]]

18850

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-20 y = \left (x +1\right )^{2} \]

[[_2nd_order, _with_linear_symmetries]]

18851

\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }+5 y = x^{5} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

18855

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = {\mathrm e}^{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

18857

\[ {}\left (x +a \right )^{2} y^{\prime \prime }-4 \left (x +a \right ) y^{\prime }+6 y = x \]

[[_2nd_order, _with_linear_symmetries]]

18861

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = x^{m} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

18862

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x^{m} \]

[[_2nd_order, _with_linear_symmetries]]

18865

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{\left (1-x \right )^{2}} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

18866

\[ {}x^{2} y^{\prime \prime }-\left (2 m -1\right ) x y^{\prime }+\left (m^{2}+n^{2}\right ) y = n^{2} x^{m} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18867

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+y = \frac {\ln \left (x \right ) \sin \left (\ln \left (x \right )\right )+1}{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

18927

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

18966

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+5 y = \frac {1}{x} \]

[[_2nd_order, _with_linear_symmetries]]

19236

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

[[_Emden, _Fowler]]

19237

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 2 \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

19244

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+5 y = 0 \]

[[_Emden, _Fowler]]

19246

\[ {}x^{2} y^{\prime \prime }+y = 3 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

19247

\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }+5 y = x^{5} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

19248

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = x^{4} \]

[[_2nd_order, _with_linear_symmetries]]

19249

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = x^{4} \]

[[_2nd_order, _with_linear_symmetries]]

19250

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }-4 y = x^{4} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

19251

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = x^{m} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

19252

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x^{m} \]

[[_2nd_order, _with_linear_symmetries]]

19253

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime } = \ln \left (x \right ) \]

[[_2nd_order, _missing_y]]

19254

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = {\mathrm e}^{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

19255

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }-3 y = x \]

[[_2nd_order, _with_linear_symmetries]]

19259

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-20 y = \left (x +1\right )^{2} \]

[[_2nd_order, _with_linear_symmetries]]

19262

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+2 y = \ln \left (x \right ) x \]

[[_2nd_order, _with_linear_symmetries]]

19263

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+5 y = x^{2} \sin \left (\ln \left (x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

19266

\[ {}\left (5+2 x \right )^{2} y^{\prime \prime }-6 \left (5+2 x \right ) y^{\prime }+8 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19267

\[ {}\left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime } = \left (2 x +3\right ) \left (2 x +4\right ) \]

[[_2nd_order, _missing_y]]

19411

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 8 x^{3} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

19417

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

19500

\[ {}x^{2} y^{\prime \prime }-2 y = x^{2}+\frac {1}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

19504

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 2 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

19506

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{\left (1-x \right )^{2}} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

19508

\[ {}\left (x +a \right )^{2} y^{\prime \prime }-4 \left (x +a \right ) y^{\prime }+6 y = x \]

[[_2nd_order, _with_linear_symmetries]]

19510

\[ {}\left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y = 4 \cos \left (\ln \left (x +1\right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

19512

\[ {}x^{2} y^{\prime \prime }-\left (2 m -1\right ) x y^{\prime }+\left (m^{2}+n^{2}\right ) y = n^{2} x^{m} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

19513

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+y = \frac {\ln \left (x \right ) \sin \left (\ln \left (x \right )\right )+1}{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

19552

\[ {}\left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y = 4 \cos \left (\ln \left (x +1\right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

19556

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = x^{2} {\mathrm e}^{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]