2.3.13 first order ode dAlembert

Table 2.419: first order ode dAlembert

#

ODE

ODE classification

Solved?

29

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

30

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

32

\[ {}y^{\prime } = \sqrt {x -y} \]
i.c.

[[_homogeneous, ‘class C‘], _dAlembert]

33

\[ {}y y^{\prime } = x -1 \]
i.c.

[_separable]

34

\[ {}y y^{\prime } = x -1 \]
i.c.

[_separable]

35

\[ {}y^{\prime } = \ln \left (1+y^{2}\right ) \]
i.c.

[_quadrature]

63

\[ {}y^{\prime }+1 = 2 y \]
i.c.

[_quadrature]

67

\[ {}y^{\prime } = 6 \,{\mathrm e}^{2 x -y} \]
i.c.

[_separable]

70

\[ {}{y^{\prime }}^{2} = 4 y \]
i.c.

[_quadrature]

73

\[ {}y^{\prime }+y = 2 \]
i.c.

[_quadrature]

105

\[ {}\left (x +y\right ) y^{\prime } = x -y \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

107

\[ {}y^{\prime } x = y+2 \sqrt {x y} \]

[[_homogeneous, ‘class A‘], _dAlembert]

108

\[ {}\left (x -y\right ) y^{\prime } = x +y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

109

\[ {}x \left (x +y\right ) y^{\prime } = y \left (x -y\right ) \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

110

\[ {}\left (x +2 y\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

111

\[ {}x y^{2} y^{\prime } = x^{3}+y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

114

\[ {}x y^{\prime } y = x^{2}+3 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

115

\[ {}\left (x^{2}-y^{2}\right ) y^{\prime } = 2 x y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

117

\[ {}y^{\prime } x = y+\sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

119

\[ {}x \left (x +y\right ) y^{\prime }+y \left (3 x +y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

122

\[ {}\left (x +y\right ) y^{\prime } = 1 \]

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

135

\[ {}2 x +3 y+\left (3 x +2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

136

\[ {}4 x -y+\left (6 y-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

137

\[ {}3 x^{2}+2 y^{2}+\left (4 x y+6 y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

159

\[ {}y^{\prime } = f \left (a x +b y+c \right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

163

\[ {}y^{\prime } = \frac {x -y-1}{x +y+3} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

164

\[ {}y^{\prime } = \frac {2 y-x +7}{4 x -3 y-18} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

165

\[ {}y^{\prime } = \sin \left (x -y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

166

\[ {}y^{\prime } = -\frac {y \left (2 x^{3}-y^{3}\right )}{x \left (2 y^{3}-x^{3}\right )} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

168

\[ {}y^{\prime }+2 x y = x^{2}+y^{2}+1 \]

[[_homogeneous, ‘class C‘], _Riccati]

173

\[ {}x^{\prime } = 1-x^{2} \]
i.c.

[_quadrature]

174

\[ {}x^{\prime } = 9-4 x^{2} \]
i.c.

[_quadrature]

192

\[ {}x^{3} y^{\prime } = x^{2} y-y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

196

\[ {}2 x^{2} y-x^{3} y^{\prime } = y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

211

\[ {}y^{\prime } = -\frac {3 x^{2}+2 y^{2}}{4 x y} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

212

\[ {}y^{\prime } = \frac {x +3 y}{y-3 x} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

231

\[ {}y^{\prime }+y^{2} = 0 \]

[_quadrature]

671

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

672

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

673

\[ {}y y^{\prime } = x -1 \]
i.c.

[_separable]

674

\[ {}y y^{\prime } = x -1 \]
i.c.

[_separable]

675

\[ {}y^{\prime } = \ln \left (1+y^{2}\right ) \]
i.c.

[_quadrature]

698

\[ {}y^{\prime }+1 = 2 y \]
i.c.

[_quadrature]

702

\[ {}y^{\prime } = 6 \,{\mathrm e}^{2 x -y} \]
i.c.

[_separable]

704

\[ {}y^{\prime }+y = 2 \]
i.c.

[_quadrature]

729

\[ {}\left (x +y\right ) y^{\prime } = x -y \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

730

\[ {}2 x y^{\prime } y = x^{2}+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

731

\[ {}y^{\prime } x = y+2 \sqrt {x y} \]

[[_homogeneous, ‘class A‘], _dAlembert]

732

\[ {}\left (x -y\right ) y^{\prime } = x +y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

733

\[ {}x \left (x +y\right ) y^{\prime } = y \left (x -y\right ) \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

734

\[ {}\left (x +2 y\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

735

\[ {}x y^{2} y^{\prime } = x^{3}+y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

738

\[ {}x y^{\prime } y = x^{2}+3 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

739

\[ {}\left (x^{2}-y^{2}\right ) y^{\prime } = 2 x y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

741

\[ {}y^{\prime } x = y+\sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

743

\[ {}x \left (x +y\right ) y^{\prime }+y \left (3 x +y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

759

\[ {}2 x +3 y+\left (3 x +2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

760

\[ {}4 x -y+\left (6 y-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

761

\[ {}3 x^{2}+2 y^{2}+\left (4 x y+6 y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

784

\[ {}x^{3} y^{\prime } = x^{2} y-y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

788

\[ {}2 x^{2} y-x^{3} y^{\prime } = y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

803

\[ {}y^{\prime } = \frac {-3 x^{2}-2 y^{2}}{4 x y} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

804

\[ {}y^{\prime } = \frac {x +3 y}{y-3 x} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1138

\[ {}y^{\prime } = \frac {-2 x +1}{y} \]
i.c.

[_separable]

1157

\[ {}y^{\prime } = \frac {b +a y}{d +c y} \]

[_quadrature]

1159

\[ {}y^{\prime } = \frac {x^{2}+3 y^{2}}{2 x y} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1160

\[ {}y^{\prime } = \frac {4 y-3 x}{2 x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1161

\[ {}y^{\prime } = -\frac {4 x +3 y}{2 x +y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1162

\[ {}y^{\prime } = \frac {x +3 y}{x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1164

\[ {}y^{\prime } = \frac {x^{2}-3 y^{2}}{2 x y} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1165

\[ {}y^{\prime } = \frac {3 y^{2}-x^{2}}{2 x y} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1176

\[ {}y^{3}+y^{\prime } = 0 \]

[_quadrature]

1182

\[ {}y^{\prime } = a y+b y^{2} \]

[_quadrature]

1184

\[ {}y^{\prime } = -1+{\mathrm e}^{y} \]

[_quadrature]

1185

\[ {}y^{\prime } = -1+{\mathrm e}^{-y} \]

[_quadrature]

1187

\[ {}y^{\prime } = -k \left (-1+y\right )^{2} \]

[_quadrature]

1190

\[ {}y^{\prime } = -b \sqrt {y}+a y \]

[_quadrature]

1193

\[ {}3+2 x +\left (-2+2 y\right ) y^{\prime } = 0 \]

[_separable]

1194

\[ {}2 x +4 y+\left (2 x -2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1197

\[ {}y^{\prime } = \frac {-a x -b y}{b x +c y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1198

\[ {}y^{\prime } = \frac {-a x +b y}{b x -c y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1205

\[ {}2 x -y+\left (-x +2 y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1217

\[ {}3 x y+y^{2}+\left (x^{2}+x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1231

\[ {}x +y+\left (x +2 y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1237

\[ {}y^{\prime } = {\mathrm e}^{x +y} \]

[_separable]

1246

\[ {}y^{\prime } = \frac {x +y}{x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1247

\[ {}2 x y+3 y^{2}-\left (x^{2}+2 x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1519

\[ {}y^{\prime } = 2 y \]

[_quadrature]

1534

\[ {}y^{\prime } = a y^{\frac {a -1}{a}} \]

[_quadrature]

1537

\[ {}y^{\prime }+a y = 0 \]

[_quadrature]

1548

\[ {}y^{\prime }+3 y = 1 \]

[_quadrature]

1615

\[ {}y^{\prime } = \frac {2 x +3 y}{x -4 y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1621

\[ {}y^{\prime } = y^{{2}/{5}} \]
i.c.

[_quadrature]

1644

\[ {}x y^{3} y^{\prime } = y^{4}+x^{4} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1647

\[ {}x y^{\prime } y = x^{2}+2 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1655

\[ {}y^{\prime } = \frac {x +y}{x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1657

\[ {}y^{\prime } = \frac {y^{3}+2 x y^{2}+x^{2} y+x^{3}}{x \left (x +y\right )^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1658

\[ {}y^{\prime } = \frac {x +2 y}{2 x +y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1659

\[ {}y^{\prime } = \frac {y}{y-2 x} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1660

\[ {}y^{\prime } = \frac {x y^{2}+2 y^{3}}{x^{3}+x^{2} y+x y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1661

\[ {}y^{\prime } = \frac {x^{3}+x^{2} y+3 y^{3}}{x^{3}+3 x y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1663

\[ {}x y^{\prime } y = x^{2}-x y+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1664

\[ {}y^{\prime } = \frac {2 y^{2}-x y+2 x^{2}}{x y+2 x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1665

\[ {}y^{\prime } = \frac {x^{2}+x y+y^{2}}{x y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1666

\[ {}y^{\prime } = \frac {-6 x +y-3}{2 x -y-1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1667

\[ {}y^{\prime } = \frac {2 x +y+1}{x +2 y-4} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1668

\[ {}y^{\prime } = \frac {-x +3 y-14}{x +y-2} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1685

\[ {}4 x +7 y+\left (3 x +4 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1687

\[ {}2 x +y+\left (2 y+2 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1702

\[ {}7 x +4 y+\left (4 x +3 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1707

\[ {}x^{2}+y^{2}+2 x y^{\prime } y = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

1792

\[ {}y^{\prime }+y^{2}+k^{2} = 0 \]

[_quadrature]

1800

\[ {}y^{\prime }+y^{2}+4 x y+4 x^{2}+2 = 0 \]

[[_homogeneous, ‘class C‘], _Riccati]

2321

\[ {}y^{\prime } = {\mathrm e}^{3+t +y} \]

[_separable]

2330

\[ {}y^{\prime } t = y+\sqrt {t^{2}+y^{2}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2331

\[ {}2 t y y^{\prime } = 3 y^{2}-t^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2332

\[ {}\left (t -\sqrt {t y}\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2333

\[ {}y^{\prime } = \frac {t +y}{t -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2334

\[ {}{\mathrm e}^{\frac {t}{y}} \left (y-t \right ) y^{\prime }+y \left (1+{\mathrm e}^{\frac {t}{y}}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

2335

\[ {}y^{\prime } = \frac {t +y+1}{t -y+3} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2336

\[ {}1+t -2 y+\left (4 t -3 y-6\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2337

\[ {}t +2 y+3+\left (2 t +4 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2355

\[ {}y^{\prime } = {\mathrm e}^{\left (y-t \right )^{2}} \]
i.c.

[[_homogeneous, ‘class C‘], _dAlembert]

2492

\[ {}y^{\prime } = {\mathrm e}^{3+t +y} \]

[_separable]

2502

\[ {}y^{\prime } t = y+\sqrt {t^{2}+y^{2}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2503

\[ {}2 t y y^{\prime } = 3 y^{2}-t^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2504

\[ {}\left (t -\sqrt {t y}\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2505

\[ {}y^{\prime } = \frac {t +y}{t -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2506

\[ {}{\mathrm e}^{\frac {t}{y}} \left (y-t \right ) y^{\prime }+y \left (1+{\mathrm e}^{\frac {t}{y}}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

2507

\[ {}y^{\prime } = \frac {t +y+1}{t -y+3} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2508

\[ {}1+t -2 y+\left (4 t -3 y-6\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2509

\[ {}t +2 y+3+\left (2 t +4 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2530

\[ {}y^{\prime } = {\mathrm e}^{\left (y-t \right )^{2}} \]
i.c.

[[_homogeneous, ‘class C‘], _dAlembert]

2811

\[ {}x^{\prime } = x^{2} \]

[_quadrature]

2865

\[ {}y^{\prime } = {\mathrm e}^{y} \]
i.c.

[_quadrature]

2866

\[ {}{\mathrm e}^{y} \left (y^{\prime }+1\right ) = 1 \]
i.c.

[_quadrature]

2872

\[ {}\left (x +y\right ) y^{\prime }+x = y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2873

\[ {}y^{\prime } x -y = \sqrt {x y} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2874

\[ {}y^{\prime } = \frac {2 x -y}{x +4 y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2875

\[ {}y^{\prime } x -y = \sqrt {x^{2}-y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2877

\[ {}y^{\prime } x -y+\sqrt {y^{2}-x^{2}} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

2879

\[ {}\left (x y-x^{2}\right ) y^{\prime }-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2880

\[ {}y^{\prime } x +y = 2 \sqrt {x y} \]

[[_homogeneous, ‘class A‘], _dAlembert]

2881

\[ {}x +y+\left (x -y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2882

\[ {}y \left (x^{2}-x y+y^{2}\right )+x y^{\prime } \left (x^{2}+x y+y^{2}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2883

\[ {}y^{\prime } x -y-x \sin \left (\frac {y}{x}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

2886

\[ {}\left (\frac {x}{y}+\frac {y}{x}\right ) y^{\prime }+1 = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2891

\[ {}y^{\prime } = \frac {y}{x -k \sqrt {x^{2}+y^{2}}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

2892

\[ {}y^{2} \left (y y^{\prime }-x \right )+x^{3} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2893

\[ {}y^{\prime } = \frac {y}{x}+\tanh \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

2894

\[ {}x +y-\left (x -y+2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2895

\[ {}x +\left (x -2 y+2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

2896

\[ {}2 x -y+1+\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2897

\[ {}x -y+2+\left (x +y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2898

\[ {}x -y+\left (y-x +1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2899

\[ {}y^{\prime } = \frac {x +y-1}{x -y-1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2900

\[ {}x +y+\left (2 x +2 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2901

\[ {}x -y+1+\left (x -y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2902

\[ {}x +2 y+\left (3 x +6 y+3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2903

\[ {}x +2 y+2 = \left (2 x +y-1\right ) y^{\prime } \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2904

\[ {}3 x -y+1+\left (x -3 y-5\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2905

\[ {}6 x -3 y+6+\left (2 x -y+5\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2907

\[ {}x +y+4 = \left (2 x +2 y-1\right ) y^{\prime } \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2908

\[ {}2 x +3 y-1+\left (2 x +3 y+2\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2911

\[ {}x -2 y+3+\left (1-x +2 y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2912

\[ {}2 x +y+\left (4 x +2 y+1\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2914

\[ {}x +y+\left (x -2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2915

\[ {}3 x +y+\left (x +3 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2916

\[ {}a_{1} x +b_{1} y+c_{1} +\left (b_{1} x +b_{2} y+c_{2} \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2919

\[ {}2 x y-\left (x^{2}+y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2934

\[ {}\frac {x^{2}+3 y^{2}}{x \left (3 x^{2}+4 y^{2}\right )}+\frac {\left (2 x^{2}+y^{2}\right ) y^{\prime }}{y \left (3 x^{2}+4 y^{2}\right )} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

2935

\[ {}\frac {x^{2}-y^{2}}{x \left (2 x^{2}+y^{2}\right )}+\frac {\left (x^{2}+2 y^{2}\right ) y^{\prime }}{y \left (2 x^{2}+y^{2}\right )} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

2964

\[ {}y+\left (2 x -3 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2986

\[ {}x y^{\prime } y = x^{2}-y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

3005

\[ {}y^{2}+\left (x^{2}+x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3006

\[ {}2 x +y-\left (x -2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3008

\[ {}x -2 y+1+\left (-2+y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3012

\[ {}x -3 y = \left (3 y-x +2\right ) y^{\prime } \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3014

\[ {}x^{2} y-\left (x^{3}+y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3019

\[ {}y+\left (3 x -2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3021

\[ {}\left (3 x +4 y\right ) y^{\prime }+2 x +y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3023

\[ {}y^{\prime } x -y-\sqrt {x^{2}+y^{2}} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3025

\[ {}x +y+\left (2 x +3 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3026

\[ {}1+{\mathrm e}^{\frac {x}{y}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

3032

\[ {}y \sqrt {x^{2}+y^{2}}+x y = x^{2} y^{\prime } \]

[[_homogeneous, ‘class A‘], _dAlembert]

3036

\[ {}y \cos \left (\frac {x}{y}\right )-\left (y+x \cos \left (\frac {x}{y}\right )\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

3053

\[ {}x -2 y+3 = \left (x -2 y+1\right ) y^{\prime } \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3058

\[ {}y^{\prime }-y = 0 \]

[_quadrature]

3288

\[ {}x \left ({y^{\prime }}^{2}-1\right ) = 2 y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3292

\[ {}y^{2} {y^{\prime }}^{2}-2 x y^{\prime } y+2 y^{2} = x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3295

\[ {}y = y^{\prime } x \left (y^{\prime }+1\right ) \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3296

\[ {}y = x +3 \ln \left (y^{\prime }\right ) \]

[_separable]

3298

\[ {}y {y^{\prime }}^{2}-2 y^{\prime } x +y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3299

\[ {}{y^{\prime }}^{2}+y^{2} = 1 \]

[_quadrature]

3300

\[ {}x \left ({y^{\prime }}^{2}-1\right ) = 2 y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3301

\[ {}4 x -2 y y^{\prime }+x {y^{\prime }}^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3303

\[ {}y {y^{\prime }}^{2} = 3 y^{\prime } x +y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3304

\[ {}8 x +1 = y {y^{\prime }}^{2} \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

3305

\[ {}y {y^{\prime }}^{2}+2 y^{\prime }+1 = 0 \]

[_quadrature]

3306

\[ {}\left (1+{y^{\prime }}^{2}\right ) x = \left (x +y\right ) y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3308

\[ {}2 y^{\prime } x +y = x {y^{\prime }}^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3310

\[ {}x = y-{y^{\prime }}^{3} \]

[[_homogeneous, ‘class C‘], _dAlembert]

3311

\[ {}x +2 y y^{\prime } = x {y^{\prime }}^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3312

\[ {}4 x -2 y y^{\prime }+x {y^{\prime }}^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3313

\[ {}x {y^{\prime }}^{3} = y y^{\prime }+1 \]

[_dAlembert]

3314

\[ {}y \left (1+{y^{\prime }}^{2}\right ) = 2 y^{\prime } x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3315

\[ {}2 x +x {y^{\prime }}^{2} = 2 y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3316

\[ {}x = y y^{\prime }+{y^{\prime }}^{2} \]

[_dAlembert]

3317

\[ {}4 x {y^{\prime }}^{2}+2 y^{\prime } x = y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3318

\[ {}y = y^{\prime } x \left (y^{\prime }+1\right ) \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3319

\[ {}2 x {y^{\prime }}^{3}+1 = y {y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

3321

\[ {}3 {y^{\prime }}^{4} x = y {y^{\prime }}^{3}+1 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

3322

\[ {}2 {y^{\prime }}^{5}+2 y^{\prime } x = y \]

[_dAlembert]

3323

\[ {}\frac {1}{{y^{\prime }}^{2}}+y^{\prime } x = 2 y \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

3324

\[ {}2 y = 3 y^{\prime } x +4+2 \ln \left (y^{\prime }\right ) \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

3414

\[ {}{y^{\prime }}^{2}-y^{2} = 0 \]

[_quadrature]

3425

\[ {}y^{\prime } = 2 y-4 \]
i.c.

[_quadrature]

3434

\[ {}y^{\prime } = -1+y \]

[_quadrature]

3435

\[ {}y^{\prime } = 1-y \]

[_quadrature]

3436

\[ {}y^{\prime } = y^{3}-y^{2} \]

[_quadrature]

3437

\[ {}y^{\prime } = 1-y^{2} \]

[_quadrature]

3439

\[ {}y^{\prime } = -y \]

[_quadrature]

3447

\[ {}y^{\prime } = y \]
i.c.

[_quadrature]

3448

\[ {}y^{\prime } = 2 y \]
i.c.

[_quadrature]

3467

\[ {}\left (y-x \right ) y^{\prime }+2 x +3 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3468

\[ {}y^{\prime } = \frac {1}{x +2 y+1} \]

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

3469

\[ {}y^{\prime } = -\frac {x +y}{3 x +3 y-4} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3479

\[ {}\left (5 x +y-7\right ) y^{\prime } = 3 x +3 y+3 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3517

\[ {}{\mathrm e}^{x +y} y^{\prime }-1 = 0 \]

[_separable]

3544

\[ {}\left (3 x -y\right ) y^{\prime } = 3 y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3547

\[ {}y^{\prime } x = \sqrt {16 x^{2}-y^{2}}+y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3548

\[ {}y^{\prime } x -y = \sqrt {9 x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3549

\[ {}x \left (x^{2}-y^{2}\right )-x \left (x^{2}+y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3550

\[ {}y^{\prime } x +y \ln \left (x \right ) = y \ln \left (y\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

3551

\[ {}y^{\prime } = \frac {y^{2}+2 x y-2 x^{2}}{x^{2}-x y+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3555

\[ {}2 x \left (2 x +y\right ) y^{\prime } = y \left (4 x -y\right ) \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3556

\[ {}y^{\prime } x = x \tan \left (\frac {y}{x}\right )+y \]

[[_homogeneous, ‘class A‘], _dAlembert]

3561

\[ {}y^{\prime } = -y^{2} \]

[_quadrature]

3595

\[ {}{\mathrm e}^{x +y} y^{\prime }-1 = 0 \]

[_separable]

3608

\[ {}y^{\prime } = \frac {2 \sqrt {-1+y}}{3} \]
i.c.

[_quadrature]

3609

\[ {}m v^{\prime } = m g -k v^{2} \]
i.c.

[_quadrature]

3637

\[ {}\left (3 x -y\right ) y^{\prime } = 3 y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3640

\[ {}y^{\prime } x = \sqrt {16 x^{2}-y^{2}}+y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3641

\[ {}y^{\prime } x -y = \sqrt {9 x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3643

\[ {}y^{\prime } x +y \ln \left (x \right ) = y \ln \left (y\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

3644

\[ {}y^{\prime } = \frac {y^{2}+2 x y-2 x^{2}}{x^{2}-x y+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3648

\[ {}2 x \left (2 x +y\right ) y^{\prime } = y \left (4 x -y\right ) \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3649

\[ {}y^{\prime } x = x \tan \left (\frac {y}{x}\right )+y \]

[[_homogeneous, ‘class A‘], _dAlembert]

3653

\[ {}y^{\prime } = \frac {y-\sqrt {x^{2}+y^{2}}}{x} \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

3654

\[ {}y^{\prime } x -y = \sqrt {4 x^{2}-y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3655

\[ {}y^{\prime } = \frac {x +a y}{a x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3673

\[ {}y^{\prime } = \left (4 x +y+2\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

3674

\[ {}y^{\prime } = \sin \left (3 x -3 y+1\right )^{2} \]

[[_homogeneous, ‘class C‘], _dAlembert]

3677

\[ {}y^{\prime } = \frac {x +2 y-1}{2 x -y+3} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3682

\[ {}\frac {y^{\prime }}{y}-\frac {2 \ln \left (y\right )}{x} = \frac {1-2 \ln \left (x \right )}{x} \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

4081

\[ {}5 x +2 y+1+\left (2 x +y+1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4082

\[ {}3 x -y+1-\left (6 x -2 y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4083

\[ {}x -2 y-3+\left (2 x +y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4086

\[ {}2 x +3 y+1+\left (4 x +6 y+1\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4087

\[ {}y = y^{\prime }+\frac {{y^{\prime }}^{2}}{2} \]

[_quadrature]

4089

\[ {}y-x = {y^{\prime }}^{2} \left (1-\frac {2 y^{\prime }}{3}\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

4098

\[ {}x^{3}+y^{3}-x y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4099

\[ {}y^{\prime }+y = 0 \]

[_quadrature]

4102

\[ {}y^{\prime } = {\mathrm e}^{x -2 y} \]
i.c.

[_separable]

4113

\[ {}y^{\prime } = \frac {3 x -y+1}{3 y-x +5} \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4114

\[ {}3 y-7 x +7+\left (7 y-3 x +3\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4216

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

4239

\[ {}\left (x +y-1\right ) y^{\prime } = x -y+1 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4240

\[ {}x y^{\prime } y = 2 x^{2}-y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4247

\[ {}y^{\prime } = \sin \left (x -y+1\right )^{2} \]

[[_homogeneous, ‘class C‘], _dAlembert]

4248

\[ {}y^{\prime } = \frac {x +y+4}{x -y-6} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4249

\[ {}y^{\prime } = \frac {x +y+4}{x +y-6} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4261

\[ {}\left (3 x^{2}-y^{2}\right ) y^{\prime }-2 x y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4267

\[ {}\left (x +y\right ) y^{\prime } = y-x \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4276

\[ {}2 x +3 y+1+\left (2 y-3 x +5\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4281

\[ {}\left (x y-x^{2}\right ) y^{\prime } = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4285

\[ {}6 x +4 y+3+\left (3 x +2 y+2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4288

\[ {}y^{\prime } \ln \left (x -y\right ) = 1+\ln \left (x -y\right ) \]

[[_homogeneous, ‘class C‘], _exact, _dAlembert]

4290

\[ {}y^{2}-3 x y-2 x^{2} = \left (x^{2}-x y\right ) y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4296

\[ {}x +y+\left (x -y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4316

\[ {}x \cos \left (\frac {y}{x}\right )^{2}-y+y^{\prime } x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4317

\[ {}y^{\prime } x = y \left (1+\ln \left (y\right )-\ln \left (x \right )\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

4318

\[ {}x y+\left (x^{2}+y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4319

\[ {}\left (1-{\mathrm e}^{-\frac {y}{x}}\right ) y^{\prime }+1-\frac {y}{x} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4320

\[ {}x^{2}-x y+y^{2}-x y^{\prime } y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4321

\[ {}\left (3+2 x +4 y\right ) y^{\prime } = x +2 y+1 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4322

\[ {}y^{\prime } = \frac {2 x +y-1}{x -y-2} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4323

\[ {}y+2 = \left (2 x +y-4\right ) y^{\prime } \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4324

\[ {}y^{\prime } = \sin \left (x -y\right )^{2} \]

[[_homogeneous, ‘class C‘], _dAlembert]

4325

\[ {}y^{\prime } = \left (x +1\right )^{2}+\left (4 y+1\right )^{2}+8 x y+1 \]

[[_homogeneous, ‘class C‘], _Riccati]

4333

\[ {}2 x y+\left (x^{2}+2 x y+y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4347

\[ {}x -\sqrt {x^{2}+y^{2}}+\left (y-\sqrt {x^{2}+y^{2}}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _dAlembert]

4386

\[ {}x y^{\prime } \left (y^{\prime }+2\right ) = y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4394

\[ {}y^{\prime } x +y = 4 \sqrt {y^{\prime }} \]

[[_homogeneous, ‘class G‘], _dAlembert]

4395

\[ {}2 y^{\prime } x -y = \ln \left (y^{\prime }\right ) \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

4401

\[ {}2 \sqrt {x y}-y-y^{\prime } x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4402

\[ {}y^{\prime } = {\mathrm e}^{\frac {x y^{\prime }}{y}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

4405

\[ {}y^{\prime } x -y = x \tan \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

4413

\[ {}4 x -2 y y^{\prime }+x {y^{\prime }}^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4416

\[ {}y^{\prime } x = y+\sqrt {x^{2}-y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4420

\[ {}\left (y^{\prime }+1\right ) \ln \left (\frac {x +y}{3+x}\right ) = \frac {x +y}{3+x} \]

[[_homogeneous, ‘class C‘], _exact, _dAlembert]

4434

\[ {}2 {y^{\prime }}^{3}-3 {y^{\prime }}^{2}+x = y \]

[[_homogeneous, ‘class C‘], _dAlembert]

4652

\[ {}y^{\prime } = 3-3 x +3 y+\left (x -y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

4659

\[ {}y^{\prime } = \left (3+x -4 y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

4660

\[ {}y^{\prime } = \left (1+4 x +9 y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

4662

\[ {}y^{\prime } = a +b y^{2} \]

[_quadrature]

4667

\[ {}y^{\prime } = \operatorname {a0} +\operatorname {a1} y+\operatorname {a2} y^{2} \]

[_quadrature]

4688

\[ {}y^{\prime } = y \left (a +b y^{2}\right ) \]

[_quadrature]

4689

\[ {}y^{\prime } = \operatorname {a0} +\operatorname {a1} y+\operatorname {a2} y^{2}+\operatorname {a3} y^{3} \]

[_quadrature]

4705

\[ {}y^{\prime } = \sqrt {a +b y^{2}} \]

[_quadrature]

4706

\[ {}y^{\prime } = y \sqrt {a +b y} \]

[_quadrature]

4711

\[ {}y^{\prime } = a +b \cos \left (A x +B y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

4713

\[ {}y^{\prime } = a +b \cos \left (y\right ) \]

[_quadrature]

4725

\[ {}y^{\prime } = a +b \sin \left (y\right ) \]

[_quadrature]

4729

\[ {}y^{\prime } = \sqrt {a +b \cos \left (y\right )} \]

[_quadrature]

4731

\[ {}y^{\prime } = {\mathrm e}^{x +y} \]

[_separable]

4735

\[ {}y^{\prime } = a f \left (y\right ) \]

[_quadrature]

4736

\[ {}y^{\prime } = f \left (a +b x +c y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

4741

\[ {}3 y^{\prime } = x +\sqrt {x^{2}-3 y} \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

4794

\[ {}y^{\prime } x = y+\sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4795

\[ {}y^{\prime } x = y+\sqrt {x^{2}-y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4798

\[ {}y^{\prime } x = y+a \sqrt {y^{2}+b^{2} x^{2}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

4800

\[ {}y^{\prime } x +x -y+x \cos \left (\frac {y}{x}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4801

\[ {}y^{\prime } x = y-x \cos \left (\frac {y}{x}\right )^{2} \]

[[_homogeneous, ‘class A‘], _dAlembert]

4808

\[ {}y^{\prime } x = y+x \sin \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

4811

\[ {}y^{\prime } x = y-x \tan \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

4814

\[ {}y^{\prime } x = x +y+{\mathrm e}^{\frac {y}{x}} x \]

[[_homogeneous, ‘class A‘], _dAlembert]

4816

\[ {}y^{\prime } x = \left (1+\ln \left (x \right )-\ln \left (y\right )\right ) y \]

[[_homogeneous, ‘class A‘], _dAlembert]

4818

\[ {}y^{\prime } x = y-2 x \tanh \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

4860

\[ {}x^{2} y^{\prime } = \left (x +a y\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4861

\[ {}x^{2} y^{\prime } = \left (a x +b y\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4921

\[ {}\left (x -a \right )^{2} y^{\prime }+k \left (x +y-a \right )^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class C‘], _rational, _Riccati]

4938

\[ {}a \,x^{2} y^{\prime } = x^{2}+y a x +b^{2} y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

4951

\[ {}x^{3} y^{\prime } = \left (2 x^{2}+y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4965

\[ {}2 x^{3} y^{\prime } = y \left (x^{2}-y^{2}\right ) \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4966

\[ {}2 x^{3} y^{\prime } = \left (3 x^{2}+a y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5030

\[ {}\left (1+y\right ) y^{\prime } = x +y \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5032

\[ {}\left (x +y\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5033

\[ {}\left (x -y\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5034

\[ {}\left (x +y\right ) y^{\prime }+x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5035

\[ {}\left (x +y\right ) y^{\prime } = x -y \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5039

\[ {}\left (x -y\right ) y^{\prime } = \left ({\mathrm e}^{-\frac {x}{y}}+1\right ) y \]

[[_homogeneous, ‘class A‘], _dAlembert]

5040

\[ {}\left (x +y+1\right ) y^{\prime }+1+4 x +3 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5041

\[ {}\left (x +y+2\right ) y^{\prime } = 1-x -y \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5042

\[ {}\left (3-x -y\right ) y^{\prime } = 1+x -3 y \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5043

\[ {}\left (3-x +y\right ) y^{\prime } = 11-4 x +3 y \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5044

\[ {}\left (2 x +y\right ) y^{\prime }+x -2 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5045

\[ {}\left (2 x -y+2\right ) y^{\prime }+3+6 x -3 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5046

\[ {}\left (2 x -y+3\right ) y^{\prime }+2 = 0 \]

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

5047

\[ {}\left (4+2 x -y\right ) y^{\prime }+5+x -2 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5048

\[ {}\left (5-2 x -y\right ) y^{\prime }+4-x -2 y = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5049

\[ {}\left (1-3 x +y\right ) y^{\prime } = 2 x -2 y \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5050

\[ {}\left (2-3 x +y\right ) y^{\prime }+5-2 x -3 y = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5051

\[ {}\left (4 x -y\right ) y^{\prime }+2 x -5 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5052

\[ {}\left (6-4 x -y\right ) y^{\prime } = 2 x -y \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5053

\[ {}\left (1+5 x -y\right ) y^{\prime }+5+x -5 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5054

\[ {}\left (a +b x +y\right ) y^{\prime }+a -b x -y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5060

\[ {}\left (x -2 y\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5061

\[ {}\left (x +2 y\right ) y^{\prime }+2 x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5062

\[ {}\left (x -2 y\right ) y^{\prime }+2 x +y = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5063

\[ {}\left (x -2 y+1\right ) y^{\prime } = 1+2 x -y \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5064

\[ {}\left (x +2 y+1\right ) y^{\prime }+1-x -2 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5065

\[ {}\left (x +2 y+1\right ) y^{\prime }+7+x -4 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5067

\[ {}\left (3+2 x -2 y\right ) y^{\prime } = 1+6 x -2 y \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5068

\[ {}\left (1-4 x -2 y\right ) y^{\prime }+2 x +y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5069

\[ {}\left (6 x -2 y\right ) y^{\prime } = 2+3 x -y \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5070

\[ {}\left (19+9 x +2 y\right ) y^{\prime }+18-2 x -6 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5076

\[ {}\left (x -3 y\right ) y^{\prime }+4+3 x -y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5077

\[ {}\left (4-x -3 y\right ) y^{\prime }+3-x -3 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5078

\[ {}\left (2 x +3 y+2\right ) y^{\prime } = 1-2 x -3 y \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5079

\[ {}\left (5-2 x -3 y\right ) y^{\prime }+1-2 x -3 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5080

\[ {}\left (1+9 x -3 y\right ) y^{\prime }+2+3 x -y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5081

\[ {}\left (x +4 y\right ) y^{\prime }+4 x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5082

\[ {}\left (3+2 x +4 y\right ) y^{\prime } = x +2 y+1 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5083

\[ {}\left (5+2 x -4 y\right ) y^{\prime } = x -2 y+3 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5084

\[ {}\left (5+3 x -4 y\right ) y^{\prime } = 2+7 x -3 y \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5085

\[ {}4 \left (1-x -y\right ) y^{\prime }+2-x = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

5086

\[ {}\left (11-11 x -4 y\right ) y^{\prime } = 62-8 x -25 y \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5087

\[ {}\left (6+3 x +5 y\right ) y^{\prime } = 2+x +7 y \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5088

\[ {}\left (7 x +5 y\right ) y^{\prime }+10 x +8 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5090

\[ {}\left (5-x +6 y\right ) y^{\prime } = 3-x +4 y \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5091

\[ {}3 \left (x +2 y\right ) y^{\prime } = 1-x -2 y \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5092

\[ {}3 y-7 x +7+\left (7 y-3 x +3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5093

\[ {}\left (1+x +9 y\right ) y^{\prime }+1+x +5 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5094

\[ {}\left (8+5 x -12 y\right ) y^{\prime } = 3+2 x -5 y \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5095

\[ {}\left (140+7 x -16 y\right ) y^{\prime }+25+8 x +y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5097

\[ {}\left (a x +b y\right ) y^{\prime }+x = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

5098

\[ {}\left (a x +b y\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5099

\[ {}\left (a x +b y\right ) y^{\prime }+b x +a y = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5100

\[ {}\left (a x +b y\right ) y^{\prime } = b x +a y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5103

\[ {}x y^{\prime } y+x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5106

\[ {}x y^{\prime } y = x^{2}-x y+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5107

\[ {}x y^{\prime } y+2 x^{2}-2 x y-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5112

\[ {}x y^{\prime } y+x^{2} {\mathrm e}^{-\frac {2 y}{x}}-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5117

\[ {}x \left (y+2\right ) y^{\prime }+a x = 0 \]

[_quadrature]

5122

\[ {}x \left (x +y\right ) y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5123

\[ {}x \left (x -y\right ) y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5124

\[ {}x \left (x +y\right ) y^{\prime } = x^{2}+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5125

\[ {}x \left (x -y\right ) y^{\prime }+2 x^{2}+3 x y-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5128

\[ {}x \left (2 x +y\right ) y^{\prime } = x^{2}+x y-y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5129

\[ {}x \left (4 x -y\right ) y^{\prime }+4 x^{2}-6 x y-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5138

\[ {}x^{2}+y^{2}+2 x y^{\prime } y = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

5139

\[ {}2 x y^{\prime } y = x^{2}+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5143

\[ {}x \left (x -2 y\right ) y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5144

\[ {}x \left (x +2 y\right ) y^{\prime }+\left (2 x -y\right ) y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5145

\[ {}x \left (x -2 y\right ) y^{\prime }+\left (2 x -y\right ) y = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5150

\[ {}x \left (2 x +3 y\right ) y^{\prime } = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5151

\[ {}x \left (2 x +3 y\right ) y^{\prime }+3 \left (x +y\right )^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5154

\[ {}a x y y^{\prime } = x^{2}+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5155

\[ {}a x y y^{\prime }+x^{2}-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5157

\[ {}x \left (x -a y\right ) y^{\prime } = y \left (y-a x \right ) \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5173

\[ {}x^{2} \left (x -2 y\right ) y^{\prime } = 2 x^{3}-4 x y^{2}+y^{3} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

5176

\[ {}x^{2} \left (4 x -3 y\right ) y^{\prime } = \left (6 x^{2}-3 x y+2 y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

5181

\[ {}8 x^{3} y y^{\prime }+3 x^{4}-6 x^{2} y^{2}-y^{4} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5192

\[ {}x y+\left (x^{2}+y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5194

\[ {}\left (x^{2}-y^{2}\right ) y^{\prime } = 2 x y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5195

\[ {}\left (x^{2}-y^{2}\right ) y^{\prime }+x \left (x +2 y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5196

\[ {}\left (x^{2}+y^{2}\right ) y^{\prime }+2 x \left (2 x +y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5201

\[ {}\left (3 x^{2}-y^{2}\right ) y^{\prime } = 2 x y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5208

\[ {}\left (x +y\right )^{2} y^{\prime } = a^{2} \]

[[_homogeneous, ‘class C‘], _dAlembert]

5209

\[ {}\left (x -y\right )^{2} y^{\prime } = a^{2} \]

[[_homogeneous, ‘class C‘], _dAlembert]

5210

\[ {}\left (x^{2}+2 x y-y^{2}\right ) y^{\prime }+x^{2}-2 x y+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5211

\[ {}\left (x +y\right )^{2} y^{\prime } = x^{2}-2 x y+5 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5213

\[ {}\left (2 x^{2}+4 x y-y^{2}\right ) y^{\prime } = x^{2}-4 x y-2 y^{2} \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5214

\[ {}\left (3 x +y\right )^{2} y^{\prime } = 4 \left (3 x +2 y\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5219

\[ {}\left (2 x^{2}+3 y^{2}\right ) y^{\prime }+x \left (3 x +y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5221

\[ {}\left (3 x^{2}+2 x y+4 y^{2}\right ) y^{\prime }+2 x^{2}+6 x y+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5226

\[ {}\left (x^{2}+x y+a y^{2}\right ) y^{\prime } = a \,x^{2}+x y+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5227

\[ {}\left (a \,x^{2}+2 x y-a y^{2}\right ) y^{\prime }+x^{2}-2 y a x -y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5228

\[ {}\left (a \,x^{2}+2 b x y+c y^{2}\right ) y^{\prime }+k \,x^{2}+2 y a x +b y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5234

\[ {}x \left (2 x^{2}+y^{2}\right ) y^{\prime } = \left (2 x^{2}+3 y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5237

\[ {}x \left (x^{2}-x y+y^{2}\right ) y^{\prime }+\left (x^{2}+x y+y^{2}\right ) y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5238

\[ {}x \left (x^{2}-x y-y^{2}\right ) y^{\prime } = \left (x^{2}+x y-y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5239

\[ {}x \left (x^{2}+y a x +y^{2}\right ) y^{\prime } = \left (x^{2}+b x y+y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5240

\[ {}x \left (x^{2}-2 y^{2}\right ) y^{\prime } = \left (2 x^{2}-y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5241

\[ {}x \left (x^{2}+2 y^{2}\right ) y^{\prime } = \left (2 x^{2}+3 y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5242

\[ {}2 x \left (5 x^{2}+y^{2}\right ) y^{\prime } = x^{2} y-y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5243

\[ {}x \left (x^{2}+y a x +2 y^{2}\right ) y^{\prime } = \left (a x +2 y\right ) y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5251

\[ {}x \left (x^{2}-6 y^{2}\right ) y^{\prime } = 4 \left (x^{2}+3 y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5267

\[ {}\left (x^{3}-y^{3}\right ) y^{\prime }+x^{2} y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5268

\[ {}\left (x^{3}+y^{3}\right ) y^{\prime }+x^{2} \left (a x +3 y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5272

\[ {}\left (3 x^{2}+y^{2}\right ) y y^{\prime }+x \left (x^{2}+3 y^{2}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5274

\[ {}2 y^{3} y^{\prime } = x^{3}-x y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5276

\[ {}\left (3 x^{2}+2 y^{2}\right ) y y^{\prime }+x^{3} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5277

\[ {}\left (5 x^{2}+2 y^{2}\right ) y y^{\prime }+x \left (x^{2}+5 y^{2}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5280

\[ {}\left (x^{3}+a y^{3}\right ) y^{\prime } = x^{2} y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5283

\[ {}x \left (2 x^{3}+y^{3}\right ) y^{\prime } = \left (2 x^{3}-x^{2} y+y^{3}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5284

\[ {}x \left (2 x^{3}-y^{3}\right ) y^{\prime } = \left (x^{3}-2 y^{3}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5285

\[ {}x \left (x^{3}+3 x^{2} y+y^{3}\right ) y^{\prime } = \left (3 x^{2}+y^{2}\right ) y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5286

\[ {}x \left (x^{3}-2 y^{3}\right ) y^{\prime } = \left (2 x^{3}-y^{3}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5301

\[ {}\left (a \,x^{3}+\left (a x +b y\right )^{3}\right ) y y^{\prime }+x \left (\left (a x +b y\right )^{3}+b y^{3}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5308

\[ {}\left (1+a \left (x +y\right )\right )^{n} y^{\prime }+a \left (x +y\right )^{n} = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

5313

\[ {}y^{\prime } \sqrt {y} = \sqrt {x} \]

[_separable]

5314

\[ {}\left (1+\sqrt {x +y}\right ) y^{\prime }+1 = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

5315

\[ {}y^{\prime } \sqrt {x y}+x -y = \sqrt {x y} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5316

\[ {}\left (x -2 \sqrt {x y}\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _dAlembert]

5328

\[ {}x \left (x -y \tan \left (\frac {y}{x}\right )\right ) y^{\prime }+\left (x +y \tan \left (\frac {y}{x}\right )\right ) y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5334

\[ {}{y^{\prime }}^{2} = y \]

[_quadrature]

5335

\[ {}{y^{\prime }}^{2} = x -y \]

[[_homogeneous, ‘class C‘], _dAlembert]

5340

\[ {}{y^{\prime }}^{2} = 1+y^{2} \]

[_quadrature]

5341

\[ {}{y^{\prime }}^{2} = 1-y^{2} \]

[_quadrature]

5342

\[ {}{y^{\prime }}^{2} = a^{2}-y^{2} \]

[_quadrature]

5343

\[ {}{y^{\prime }}^{2} = a^{2} y^{2} \]

[_quadrature]

5344

\[ {}{y^{\prime }}^{2} = a +b y^{2} \]

[_quadrature]

5346

\[ {}{y^{\prime }}^{2} = \left (-1+y\right ) y^{2} \]

[_quadrature]

5348

\[ {}{y^{\prime }}^{2} = a^{2} y^{n} \]

[_quadrature]

5357

\[ {}{y^{\prime }}^{2}-2 y^{\prime }+a \left (x -y\right ) = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

5358

\[ {}{y^{\prime }}^{2}-2 y^{\prime }-y^{2} = 0 \]

[_quadrature]

5363

\[ {}{y^{\prime }}^{2}+a y^{\prime }+b y = 0 \]

[_quadrature]

5367

\[ {}{y^{\prime }}^{2}-y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

5368

\[ {}{y^{\prime }}^{2}+y^{\prime } x +x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

5375

\[ {}{y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

5376

\[ {}{y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

5379

\[ {}{y^{\prime }}^{2}+2 \left (1-x \right ) y^{\prime }-2 x +2 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

5380

\[ {}{y^{\prime }}^{2}+3 y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

5393

\[ {}{y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+x y = 0 \]

[_quadrature]

5394

\[ {}{y^{\prime }}^{2}-2 y y^{\prime }-2 x = 0 \]

[_dAlembert]

5396

\[ {}{y^{\prime }}^{2}-2 \left (x -y\right ) y^{\prime }-4 x y = 0 \]

[_quadrature]

5397

\[ {}{y^{\prime }}^{2}-\left (4 y+1\right ) y^{\prime }+\left (4 y+1\right ) y = 0 \]

[_quadrature]

5398

\[ {}{y^{\prime }}^{2}-2 \left (1-3 y\right ) y^{\prime }-\left (4-9 y\right ) y = 0 \]

[_quadrature]

5399

\[ {}{y^{\prime }}^{2}+\left (a +6 y\right ) y^{\prime }+y \left (3 a +b +9 y\right ) = 0 \]

[_quadrature]

5400

\[ {}{y^{\prime }}^{2}+a y y^{\prime }-a x = 0 \]

[_dAlembert]

5401

\[ {}{y^{\prime }}^{2}-a y y^{\prime }-a x = 0 \]

[_dAlembert]

5402

\[ {}{y^{\prime }}^{2}+\left (a x +b y\right ) y^{\prime }+a b x y = 0 \]

[_quadrature]

5405

\[ {}{y^{\prime }}^{2}-\left (4+y^{2}\right ) y^{\prime }+4+y^{2} = 0 \]

[_quadrature]

5413

\[ {}{y^{\prime }}^{2} = {\mathrm e}^{4 x -2 y} \left (y^{\prime }-1\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

5414

\[ {}2 {y^{\prime }}^{2}+y^{\prime } x -2 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

5417

\[ {}2 {y^{\prime }}^{2}+2 \left (6 y-1\right ) y^{\prime }+3 y \left (6 y-1\right ) = 0 \]

[_quadrature]

5418

\[ {}3 {y^{\prime }}^{2}-2 y^{\prime } x +y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

5422

\[ {}4 {y^{\prime }}^{2}+2 \,{\mathrm e}^{2 x -2 y} y^{\prime }-{\mathrm e}^{2 x -2 y} = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

5423

\[ {}5 {y^{\prime }}^{2}+3 y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

5424

\[ {}5 {y^{\prime }}^{2}+6 y^{\prime } x -2 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

5428

\[ {}x {y^{\prime }}^{2} = y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5429

\[ {}x {y^{\prime }}^{2}+x -2 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5430

\[ {}x {y^{\prime }}^{2}+y^{\prime } = y \]

[_rational, _dAlembert]

5431

\[ {}x {y^{\prime }}^{2}+2 y^{\prime }-y = 0 \]

[_rational, _dAlembert]

5432

\[ {}x {y^{\prime }}^{2}-2 y^{\prime }-y = 0 \]

[_rational, _dAlembert]

5433

\[ {}x {y^{\prime }}^{2}+4 y^{\prime }-2 y = 0 \]

[_rational, _dAlembert]

5434

\[ {}x {y^{\prime }}^{2}+y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5436

\[ {}x {y^{\prime }}^{2}+y y^{\prime }+a = 0 \]

[[_homogeneous, ‘class G‘], _dAlembert]

5438

\[ {}x {y^{\prime }}^{2}-y y^{\prime }+a x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5440

\[ {}x {y^{\prime }}^{2}-y y^{\prime }+a y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5445

\[ {}x {y^{\prime }}^{2}-\left (3 x -y\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5446

\[ {}x {y^{\prime }}^{2}+a +b x -y-b y = 0 \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

5447

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+a = 0 \]

[[_homogeneous, ‘class G‘], _rational, _dAlembert]

5448

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+a x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5449

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+x +2 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5452

\[ {}x {y^{\prime }}^{2}-a y y^{\prime }+b = 0 \]

[[_homogeneous, ‘class G‘], _rational, _dAlembert]

5453

\[ {}x {y^{\prime }}^{2}+a y y^{\prime }+b x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5454

\[ {}x {y^{\prime }}^{2}-\left (x y+1\right ) y^{\prime }+y = 0 \]

[_quadrature]

5457

\[ {}\left (x +1\right ) {y^{\prime }}^{2} = y \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

5460

\[ {}2 x {y^{\prime }}^{2}+\left (2 x -y\right ) y^{\prime }+1-y = 0 \]

[_rational, _dAlembert]

5461

\[ {}3 x {y^{\prime }}^{2}-6 y y^{\prime }+x +2 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5463

\[ {}\left (3 x +5\right ) {y^{\prime }}^{2}-\left (3+3 y\right ) y^{\prime }+y = 0 \]

[_rational, _dAlembert]

5465

\[ {}4 x {y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5466

\[ {}4 x {y^{\prime }}^{2}-3 y y^{\prime }+3 = 0 \]

[[_homogeneous, ‘class G‘], _rational, _dAlembert]

5467

\[ {}4 x {y^{\prime }}^{2}+4 y y^{\prime } = 1 \]

[[_homogeneous, ‘class G‘], _rational, _dAlembert]

5482

\[ {}x^{2} {y^{\prime }}^{2}-x \left (x -2 y\right ) y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5491

\[ {}x^{2} {y^{\prime }}^{2}+\left (2 x +y\right ) y y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5492

\[ {}x^{2} {y^{\prime }}^{2}+\left (2 x -y\right ) y y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5493

\[ {}x^{2} {y^{\prime }}^{2}+\left (a +b \,x^{2} y^{3}\right ) y^{\prime }+a b y^{3} = 0 \]

[_quadrature]

5504

\[ {}a \,x^{2} {y^{\prime }}^{2}-2 a x y y^{\prime }+x^{2} a \left (1-a \right )+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5505

\[ {}\left (-a^{2}+1\right ) x^{2} {y^{\prime }}^{2}-2 x y^{\prime } y-a^{2} x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5520

\[ {}y {y^{\prime }}^{2} = a^{2} x \]

[[_homogeneous, ‘class A‘], _dAlembert]

5522

\[ {}y {y^{\prime }}^{2}+2 a x y^{\prime }-a y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5523

\[ {}y {y^{\prime }}^{2}-4 a^{2} x y^{\prime }+a^{2} y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5524

\[ {}y {y^{\prime }}^{2}+a x y^{\prime }+b y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5525

\[ {}y {y^{\prime }}^{2}-\left (-2 b x +a \right ) y^{\prime }-b y = 0 \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

5528

\[ {}y {y^{\prime }}^{2}-\left (x +y\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5532

\[ {}\left (x +y\right ) {y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5533

\[ {}\left (2 x -y\right ) {y^{\prime }}^{2}-2 \left (1-x \right ) y^{\prime }+2-y = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

5534

\[ {}2 y {y^{\prime }}^{2}+\left (5-4 x \right ) y^{\prime }+2 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

5536

\[ {}\left (1-a y\right ) {y^{\prime }}^{2} = a y \]

[_quadrature]

5545

\[ {}x \left (x -2 y\right ) {y^{\prime }}^{2}-2 x y^{\prime } y-2 x y+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5546

\[ {}x \left (x -2 y\right ) {y^{\prime }}^{2}+6 x y^{\prime } y-2 x y+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5555

\[ {}y^{2} {y^{\prime }}^{2}-2 x y^{\prime } y-x^{2}+2 y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5559

\[ {}\left (a^{2}-y^{2}\right ) {y^{\prime }}^{2} = y^{2} \]

[_quadrature]

5561

\[ {}\left (\left (1-a \right ) x^{2}+y^{2}\right ) {y^{\prime }}^{2}+2 a x y y^{\prime }+x^{2}+\left (1-a \right ) y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5563

\[ {}\left (\left (-a^{2}+1\right ) x^{2}+y^{2}\right ) {y^{\prime }}^{2}+2 a^{2} x y y^{\prime }+x^{2}+\left (-a^{2}+1\right ) y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5564

\[ {}\left (x +y\right )^{2} {y^{\prime }}^{2} = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5565

\[ {}\left (x +y\right )^{2} {y^{\prime }}^{2}-\left (x^{2}-x y-2 y^{2}\right ) y^{\prime }-y \left (x -y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5566

\[ {}\left (a^{2}-\left (x -y\right )^{2}\right ) {y^{\prime }}^{2}+2 a^{2} y^{\prime }+a^{2}-\left (x -y\right )^{2} = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

5568

\[ {}3 y^{2} {y^{\prime }}^{2}-2 x y^{\prime } y-x^{2}+4 y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5570

\[ {}\left (x^{2}-4 y^{2}\right ) {y^{\prime }}^{2}+6 x y^{\prime } y-4 x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5575

\[ {}a^{2} \left (b^{2}-\left (c x -a y\right )^{2}\right ) {y^{\prime }}^{2}+2 a \,b^{2} c y^{\prime }+c^{2} \left (b^{2}-\left (c x -a y\right )^{2}\right ) = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

5579

\[ {}4 x^{2} y^{2} {y^{\prime }}^{2} = \left (x^{2}+y^{2}\right )^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5586

\[ {}{y^{\prime }}^{3}+x -y = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

5588

\[ {}{y^{\prime }}^{3} = \left (y-a \right )^{2} \left (y-b \right )^{2} \]

[_quadrature]

5592

\[ {}{y^{\prime }}^{3}+y^{\prime }-y = 0 \]

[_quadrature]

5593

\[ {}{y^{\prime }}^{3}+y^{\prime } = {\mathrm e}^{y} \]

[_quadrature]

5595

\[ {}{y^{\prime }}^{3}-y^{\prime } x +a y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

5596

\[ {}{y^{\prime }}^{3}+2 y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

5597

\[ {}{y^{\prime }}^{3}-2 y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

5601

\[ {}{y^{\prime }}^{3}-2 y y^{\prime }+y^{2} = 0 \]

[_quadrature]

5604

\[ {}{y^{\prime }}^{3}+{\mathrm e}^{3 x -2 y} \left (y^{\prime }-1\right ) = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

5606

\[ {}{y^{\prime }}^{3}+{y^{\prime }}^{2}-y = 0 \]

[_quadrature]

5607

\[ {}{y^{\prime }}^{3}-{y^{\prime }}^{2}+y^{2} = 0 \]

[_quadrature]

5609

\[ {}{y^{\prime }}^{3}-a {y^{\prime }}^{2}+b y+a b x = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

5610

\[ {}{y^{\prime }}^{3}+\operatorname {a0} {y^{\prime }}^{2}+\operatorname {a1} y^{\prime }+\operatorname {a2} +\operatorname {a3} y = 0 \]

[_quadrature]

5612

\[ {}{y^{\prime }}^{3}-y {y^{\prime }}^{2}+y^{2} = 0 \]

[_quadrature]

5613

\[ {}{y^{\prime }}^{3}+\left (\cos \left (x \right ) \cot \left (x \right )-y\right ) {y^{\prime }}^{2}-\left (1+y \cos \left (x \right ) \cot \left (x \right )\right ) y^{\prime }+y = 0 \]

[_quadrature]

5614

\[ {}{y^{\prime }}^{3}+\left (2 x -y^{2}\right ) {y^{\prime }}^{2}-2 x y^{2} y^{\prime } = 0 \]

[_quadrature]

5618

\[ {}2 {y^{\prime }}^{3}+y^{\prime } x -2 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

5619

\[ {}2 {y^{\prime }}^{3}+{y^{\prime }}^{2}-y = 0 \]

[_quadrature]

5622

\[ {}8 {y^{\prime }}^{3}+12 {y^{\prime }}^{2} = 27 x +27 y \]

[[_homogeneous, ‘class C‘], _dAlembert]

5626

\[ {}2 x {y^{\prime }}^{3}-3 y {y^{\prime }}^{2}-x = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

5627

\[ {}4 x {y^{\prime }}^{3}-6 y {y^{\prime }}^{2}-x +3 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

5628

\[ {}8 x {y^{\prime }}^{3}-12 y {y^{\prime }}^{2}+9 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

5635

\[ {}y {y^{\prime }}^{3}-3 y^{\prime } x +3 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

5636

\[ {}2 y {y^{\prime }}^{3}-3 y^{\prime } x +2 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

5637

\[ {}\left (x +2 y\right ) {y^{\prime }}^{3}+3 \left (x +y\right ) {y^{\prime }}^{2}+\left (2 x +y\right ) y^{\prime } = 0 \]

[_quadrature]

5645

\[ {}{y^{\prime }}^{4} = \left (y-a \right )^{3} \left (y-b \right )^{2} \]

[_quadrature]

5649

\[ {}{y^{\prime }}^{4}+y^{\prime } x -3 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

5651

\[ {}{y^{\prime }}^{4}+4 y {y^{\prime }}^{3}+6 y^{2} {y^{\prime }}^{2}-\left (1-4 y^{3}\right ) y^{\prime }-\left (3-y^{3}\right ) y = 0 \]

[_quadrature]

5652

\[ {}2 {y^{\prime }}^{4}-y y^{\prime }-2 = 0 \]

[_quadrature]

5654

\[ {}3 {y^{\prime }}^{5}-y y^{\prime }+1 = 0 \]

[_quadrature]

5655

\[ {}{y^{\prime }}^{6} = \left (y-a \right )^{4} \left (y-b \right )^{3} \]

[_quadrature]

5661

\[ {}\left (x -y\right ) \sqrt {y^{\prime }} = a \left (y^{\prime }+1\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

5664

\[ {}\sqrt {1+{y^{\prime }}^{2}}+a y^{\prime } = y \]

[_quadrature]

5668

\[ {}a x \sqrt {1+{y^{\prime }}^{2}}+y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5674

\[ {}y^{\prime } \sin \left (y^{\prime }\right )+\cos \left (y^{\prime }\right ) = y \]

[_quadrature]

5675

\[ {}{y^{\prime }}^{2} \left (x +\sin \left (y^{\prime }\right )\right ) = y \]

[_dAlembert]

5678

\[ {}{\mathrm e}^{y^{\prime }-y}-{y^{\prime }}^{2}+1 = 0 \]

[_quadrature]

5682

\[ {}\ln \left (y^{\prime }\right )+4 y^{\prime } x -2 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

5684

\[ {}a \left (\ln \left (y^{\prime }\right )-y^{\prime }\right )-x +y = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

5690

\[ {}y^{\prime } = \frac {x +y-3}{x -y-1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5691

\[ {}y^{\prime } = \frac {2 x +y-1}{4 x +2 y+5} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5694

\[ {}\frac {2 x}{y^{3}}+\frac {\left (y^{2}-3 x^{2}\right ) y^{\prime }}{y^{4}} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5698

\[ {}y = x {y^{\prime }}^{2}+{y^{\prime }}^{2} \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

5705

\[ {}\left (y-x \right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5706

\[ {}\left (2 \sqrt {x y}-x \right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5707

\[ {}y^{\prime } x -y-\sqrt {x^{2}+y^{2}} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5709

\[ {}\left (7 x +5 y\right ) y^{\prime }+10 x +8 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5710

\[ {}2 x -y+1+\left (2 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5711

\[ {}3 y-7 x +7+\left (7 y-3 x +3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5733

\[ {}y^{\prime } x -y = \sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5734

\[ {}\left (7 x +5 y\right ) y^{\prime }+10 x +8 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5735

\[ {}x^{2}+2 x y-y^{2}+\left (y^{2}+2 x y-x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5736

\[ {}y^{2}+\left (x^{2}+x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5753

\[ {}{y^{\prime }}^{2}+\frac {2 x y^{\prime }}{y}-1 = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5754

\[ {}y = a y^{\prime }+b {y^{\prime }}^{2} \]

[_quadrature]

5756

\[ {}y = \sqrt {1+{y^{\prime }}^{2}}+a y^{\prime } \]

[_quadrature]

5763

\[ {}y = y^{\prime } x +x \sqrt {1+{y^{\prime }}^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5764

\[ {}y = y^{\prime } x +a x \sqrt {1+{y^{\prime }}^{2}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

5765

\[ {}x -y y^{\prime } = a {y^{\prime }}^{2} \]

[_dAlembert]

5766

\[ {}y y^{\prime }+x = a \sqrt {1+{y^{\prime }}^{2}} \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

5768

\[ {}y-\frac {1}{\sqrt {1+{y^{\prime }}^{2}}} = x +\frac {y^{\prime }}{\sqrt {1+{y^{\prime }}^{2}}} \]

[[_homogeneous, ‘class C‘], _dAlembert]

5769

\[ {}y-2 y^{\prime } x = x {y^{\prime }}^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5771

\[ {}2 x y+\left (x^{2}+y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5772

\[ {}\left (x +\sqrt {y^{2}-x y}\right ) y^{\prime }-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5773

\[ {}x +y-\left (x -y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5774

\[ {}y^{\prime } x -y-x \sin \left (\frac {y}{x}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5775

\[ {}2 x^{2} y+y^{3}+\left (x y^{2}-2 x^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5776

\[ {}y^{2}+\left (x \sqrt {y^{2}-x^{2}}-x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _dAlembert]

5777

\[ {}\frac {y \cos \left (\frac {y}{x}\right )}{x}-\left (\frac {x \sin \left (\frac {y}{x}\right )}{y}+\cos \left (\frac {y}{x}\right )\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5778

\[ {}y+x \ln \left (\frac {y}{x}\right ) y^{\prime }-2 y^{\prime } x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5779

\[ {}2 y \,{\mathrm e}^{\frac {x}{y}}+\left (y-2 x \,{\mathrm e}^{\frac {x}{y}}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5780

\[ {}{\mathrm e}^{\frac {y}{x}} x -y \sin \left (\frac {y}{x}\right )+x \sin \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5785

\[ {}x +2 y-4-\left (2 x -4 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5786

\[ {}3 x +2 y+1-\left (3 x +2 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5788

\[ {}x +y-1+\left (2 x +2 y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5789

\[ {}x +y-1-\left (x -y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5790

\[ {}x +y+\left (2 x +2 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5792

\[ {}x +2 y+\left (3 x +6 y+3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5793

\[ {}x +2 y+\left (-1+y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5794

\[ {}3 x -2 y+4-\left (2 x +7 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5795

\[ {}x +y+\left (3 x +3 y-4\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5796

\[ {}3 x +2 y+3-\left (x +2 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5797

\[ {}y+7+\left (2 x +y+3\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5798

\[ {}x +y+2-\left (x -y-4\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5840

\[ {}y^{\prime }+a y = b \]

[_quadrature]

5869

\[ {}{\mathrm e}^{y} \left (y^{\prime }+1\right ) = {\mathrm e}^{x} \]

[[_homogeneous, ‘class C‘], _dAlembert]

5871

\[ {}\left (x -y\right )^{2} y^{\prime } = 4 \]

[[_homogeneous, ‘class C‘], _dAlembert]

5872

\[ {}y^{\prime } x -y = \sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5873

\[ {}\left (3 x +2 y+1\right ) y^{\prime }+4 x +3 y+2 = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5874

\[ {}\left (x^{2}-y^{2}\right ) y^{\prime } = 2 x y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5888

\[ {}y^{\prime } x = x +y+{\mathrm e}^{\frac {y}{x}} x \]

[[_homogeneous, ‘class A‘], _dAlembert]

5893

\[ {}y^{\prime } x -y-x \sin \left (\frac {y}{x}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5894

\[ {}y^{2}-3 x y-2 x^{2}+\left (x y-x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5906

\[ {}x y^{\prime } y+x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5907

\[ {}2 x y^{\prime } y+3 x^{2}-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5908

\[ {}\left (2 x y^{3}-x^{4}\right ) y^{\prime }+2 x^{3} y-y^{4} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5910

\[ {}\left (x^{2}+y^{2}\right ) y^{\prime }+2 x \left (2 x +y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5912

\[ {}2 y^{3} y^{\prime }+x y^{2}-x^{3} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6027

\[ {}y {y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6036

\[ {}y^{\prime }+b^{2} y^{2} = a^{2} \]

[_quadrature]

6092

\[ {}y^{\prime } = y \]

[_quadrature]

6101

\[ {}\left (1+y\right ) y^{\prime } = y \]
i.c.

[_quadrature]

6103

\[ {}2 y^{\prime } = 3 \left (-2+y\right )^{{1}/{3}} \]
i.c.

[_quadrature]

6123

\[ {}\left (x -y\right ) y^{\prime }+x +y+1 = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6128

\[ {}y^{2}-x y+\left (x^{2}+x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6129

\[ {}y^{\prime } = \cos \left (x +y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

6130

\[ {}y^{\prime } = \frac {y}{x}-\tan \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

6224

\[ {}\left (2 x +y\right ) y^{\prime }-x +2 y = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6256

\[ {}y^{\prime }-\sin \left (x +y\right ) = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

6286

\[ {}y^{\prime } = y^{{1}/{3}} \]

[_quadrature]

6287

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

6321

\[ {}u^{\prime } = \alpha \left (1-u\right )-\beta u \]

[_quadrature]

6424

\[ {}\left (x y^{2}+x^{3}\right ) y^{\prime } = 2 y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6435

\[ {}\left (-x +2 y\right ) y^{\prime } = 2 x +y \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6436

\[ {}x y+y^{2}+\left (x^{2}-x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6437

\[ {}x^{3}+y^{3} = 3 x y^{2} y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6438

\[ {}y-3 x +\left (3 x +4 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6439

\[ {}\left (x^{3}+3 x y^{2}\right ) y^{\prime } = y^{3}+3 x^{2} y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6445

\[ {}\left (3 x +3 y-4\right ) y^{\prime } = -x -y \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6447

\[ {}x -y-1+\left (4 y+x -1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6448

\[ {}3 y-7 x +7+\left (7 y-3 x +3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6457

\[ {}x^{2}-2 x y+5 y^{2} = \left (x^{2}+2 x y+y^{2}\right ) y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6461

\[ {}y^{\prime } = \frac {y^{2}+2 x y}{x^{2}+2 x y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6464

\[ {}x^{2} y^{\prime } = y^{2}-x y^{\prime } y \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6465

\[ {}y^{\prime } = {\mathrm e}^{3 x -2 y} \]
i.c.

[_separable]

6467

\[ {}x^{2} y^{\prime }+y^{2} = x y^{\prime } y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6468

\[ {}2 x y^{\prime } y = x^{2}-y^{2} \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

6469

\[ {}y^{\prime } = \frac {x -2 y+1}{2 x -4 y} \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6572

\[ {}2 x^{3} y^{\prime } = y \left (3 x^{2}+y^{2}\right ) \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6587

\[ {}x +y+1+\left (2 x +2 y+1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6590

\[ {}x +2 y+\left (2 x +3 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6591

\[ {}2 y^{\prime } x -2 y = \sqrt {x^{2}+4 y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6592

\[ {}3 y-7 x +7+\left (7 y-3 x +3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6594

\[ {}y^{2}-x^{2}+x y^{\prime } y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6597

\[ {}x^{3}+y^{3}+3 x y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

6598

\[ {}3 x +2 y+1-\left (3 x +2 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6603

\[ {}y^{\prime } = -2 \left (2 x +3 y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

6616

\[ {}x y^{\prime } y+x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6617

\[ {}x^{2}+y^{2}+2 x y^{\prime } y = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

6619

\[ {}x +y+1-\left (x -y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6668

\[ {}4 x -2 y y^{\prime }+x {y^{\prime }}^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6670

\[ {}8 y {y^{\prime }}^{2}-2 y^{\prime } x +y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6675

\[ {}x {y^{\prime }}^{2}-y y^{\prime }-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6677

\[ {}{y^{\prime }}^{2}-y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

6678

\[ {}y = x \left (y^{\prime }+1\right )+{y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

6679

\[ {}y = 2 y^{\prime }+\sqrt {1+{y^{\prime }}^{2}} \]

[_quadrature]

6680

\[ {}y {y^{\prime }}^{2}-y^{\prime } x +3 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6683

\[ {}4 x -2 y y^{\prime }+x {y^{\prime }}^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6684

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+x +2 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6687

\[ {}2 y = {y^{\prime }}^{2}+4 y^{\prime } x \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

6690

\[ {}\left (1+{y^{\prime }}^{2}\right ) \left (x -y\right )^{2} = \left (y y^{\prime }+x \right )^{2} \]

[[_homogeneous, ‘class A‘], _dAlembert]

6883

\[ {}\sin \left (y^{\prime }\right ) = x +y \]

[[_homogeneous, ‘class C‘], _dAlembert]

6886

\[ {}2 y^{\prime }+y = 0 \]

[_quadrature]

6887

\[ {}y^{\prime }+20 y = 24 \]

[_quadrature]

6891

\[ {}y^{\prime } = 25+y^{2} \]

[_quadrature]

6906

\[ {}2 y+y^{\prime } = 0 \]

[_quadrature]

6907

\[ {}5 y^{\prime } = 2 y \]

[_quadrature]

6916

\[ {}\left (-1+y\right ) y^{\prime } = 1 \]

[_quadrature]

6918

\[ {}{y^{\prime }}^{2} = 4 y \]

[_quadrature]

6919

\[ {}{y^{\prime }}^{2} = 9-y^{2} \]

[_quadrature]

6921

\[ {}{y^{\prime }}^{2}-2 y^{\prime }+4 y = 4 x -1 \]

[[_homogeneous, ‘class C‘], _dAlembert]

6924

\[ {}y^{\prime } = \sqrt {1-y^{2}} \]

[_quadrature]

6929

\[ {}y^{\prime } = 5-y \]

[_quadrature]

6930

\[ {}y^{\prime } = 4+y^{2} \]

[_quadrature]

6947

\[ {}y^{\prime } = 3 y^{{2}/{3}} \]
i.c.

[_quadrature]

6949

\[ {}y^{\prime } = y^{{2}/{3}} \]

[_quadrature]

6955

\[ {}\left (x^{2}+y^{2}\right ) y^{\prime } = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6956

\[ {}\left (y-x \right ) y^{\prime } = x +y \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6958

\[ {}y^{\prime } = \sqrt {y^{2}-9} \]
i.c.

[_quadrature]

6959

\[ {}y^{\prime } = \sqrt {y^{2}-9} \]
i.c.

[_quadrature]

6964

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

6965

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

6984

\[ {}y^{\prime } = 2 y-4 \]

[_quadrature]

7053

\[ {}y^{\prime } = y^{2}-y^{3} \]

[_quadrature]

7058

\[ {}y^{\prime } = y \ln \left (y+2\right ) \]

[_quadrature]

7059

\[ {}y^{\prime } = \left ({\mathrm e}^{y} y-9 y\right ) {\mathrm e}^{-y} \]

[_quadrature]

7060

\[ {}y^{\prime } = \frac {2 y}{\pi }-\sin \left (y\right ) \]

[_quadrature]

7062

\[ {}m v^{\prime } = m g -k v^{2} \]

[_quadrature]

7069

\[ {}y^{\prime } = {\mathrm e}^{3 x +2 y} \]

[_separable]

7077

\[ {}s^{\prime } = k s \]

[_quadrature]

7078

\[ {}q^{\prime } = k \left (q-70\right ) \]

[_quadrature]

7088

\[ {}y^{\prime }+2 y = 1 \]
i.c.

[_quadrature]

7097

\[ {}y^{\prime } = \frac {3 x +1}{2 y} \]
i.c.

[_separable]

7099

\[ {}{\mathrm e}^{y}-{\mathrm e}^{-x} y^{\prime } = 0 \]
i.c.

[_separable]

7101

\[ {}y^{\prime } = y^{2}-4 \]
i.c.

[_quadrature]

7102

\[ {}y^{\prime } = y^{2}-4 \]
i.c.

[_quadrature]

7117

\[ {}y^{\prime } = \frac {1}{y-3} \]
i.c.

[_quadrature]

7120

\[ {}y^{\prime } = \frac {1}{y-3} \]
i.c.

[_quadrature]

7124

\[ {}y^{\prime } = y^{{2}/{3}}-y \]

[_quadrature]

7130

\[ {}y^{\prime } = y \]
i.c.

[_quadrature]

7132

\[ {}{y^{\prime }}^{2}+y^{2} = 1 \]

[_quadrature]

7135

\[ {}u^{\prime } = a \sqrt {1+u^{2}} \]
i.c.

[_quadrature]

7136

\[ {}x^{\prime } = k \left (A -x\right )^{2} \]
i.c.

[_quadrature]

7145

\[ {}y^{\prime } = 5 y \]

[_quadrature]

7146

\[ {}2 y+y^{\prime } = 0 \]

[_quadrature]

7148

\[ {}3 y^{\prime }+12 y = 4 \]

[_quadrature]

7173

\[ {}L i^{\prime }+R i = E \]
i.c.

[_quadrature]

7174

\[ {}T^{\prime } = k \left (T-T_{m} \right ) \]
i.c.

[_quadrature]

7199

\[ {}e^{\prime } = -\frac {e}{r c} \]
i.c.

[_quadrature]

7200

\[ {}2 x -1+\left (3 y+7\right ) y^{\prime } = 0 \]

[_separable]

7389

\[ {}y^{\prime } = 3 y^{{2}/{3}} \]
i.c.

[_quadrature]

7393

\[ {}\left (1+z^{\prime }\right ) {\mathrm e}^{-z} = 1 \]

[_quadrature]

7398

\[ {}\frac {1}{\sqrt {x}}+\frac {y^{\prime }}{\sqrt {y}} = 0 \]

[_separable]

7402

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

7403

\[ {}y^{\prime } = \frac {\sqrt {y}}{\sqrt {x}} \]

[_separable]

7405

\[ {}z^{\prime } = 10^{x +z} \]

[_separable]

7407

\[ {}y^{\prime } = \cos \left (x -y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

7409

\[ {}\left (x +2 y\right ) y^{\prime } = 1 \]
i.c.

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

7411

\[ {}y^{\prime } = \cos \left (x -y-1\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

7412

\[ {}y^{\prime }+\sin \left (x +y\right )^{2} = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

7414

\[ {}y^{\prime } = \left (x +y+1\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

7417

\[ {}\left (x +y\right ) y^{\prime }+x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7420

\[ {}x^{2} y^{\prime }+y^{2} = x y^{\prime } y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7421

\[ {}\left (x^{2}+y^{2}\right ) y^{\prime } = 2 x y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7422

\[ {}y^{\prime } x -y = x \tan \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

7424

\[ {}y^{\prime } x -y = \left (x +y\right ) \ln \left (\frac {x +y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

7425

\[ {}y^{\prime } x = y \cos \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

7426

\[ {}y+\sqrt {x y}-y^{\prime } x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7427

\[ {}y^{\prime } x -\sqrt {x^{2}-y^{2}}-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7428

\[ {}x +y-\left (x -y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7429

\[ {}x^{2}+2 x y-y^{2}+\left (y^{2}+2 x y-x^{2}\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7430

\[ {}y^{\prime } x -y = y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7431

\[ {}y^{2}+\left (x^{2}-x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7433

\[ {}\frac {1}{x^{2}-x y+y^{2}} = \frac {y^{\prime }}{2 y^{2}-x y} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7434

\[ {}y^{\prime } = \frac {2 x y}{3 x^{2}-y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7436

\[ {}y^{\prime } x = y+\sqrt {y^{2}-x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7437

\[ {}\left (2 \sqrt {x y}-x \right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

7438

\[ {}y^{\prime } x = y \ln \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

7440

\[ {}\left (y^{\prime } x +y\right )^{2} = y^{2} y^{\prime } \]

[[_homogeneous, ‘class A‘], _dAlembert]

7442

\[ {}y^{\prime } x -y = \sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7443

\[ {}y {y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7445

\[ {}y^{\prime } = \frac {y}{x +y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7447

\[ {}y^{\prime } = \frac {x +y-2}{y-x -4} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7448

\[ {}2 x -4 y+6+\left (x +y-2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7449

\[ {}y^{\prime } = \frac {2 y-x +5}{2 x -y-4} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7450

\[ {}y^{\prime } = -\frac {4 x +3 y+15}{2 x +y+7} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7451

\[ {}y^{\prime } = \frac {x +3 y-5}{x -y-1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7453

\[ {}2 x +y+1-\left (4 x +2 y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7454

\[ {}x -y-1+\left (y-x +2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7455

\[ {}\left (x +4 y\right ) y^{\prime } = 2 x +3 y-5 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7456

\[ {}y+2 = \left (2 x +y-4\right ) y^{\prime } \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7457

\[ {}\left (y^{\prime }+1\right ) \ln \left (\frac {x +y}{3+x}\right ) = \frac {x +y}{3+x} \]

[[_homogeneous, ‘class C‘], _exact, _dAlembert]

7458

\[ {}y^{\prime } = \frac {x -2 y+5}{y-2 x -4} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7459

\[ {}y^{\prime } = \frac {3 x -y+1}{2 x +y+4} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7476

\[ {}3+2 x +\left (-2+2 y\right ) y^{\prime } = 0 \]

[_separable]

7477

\[ {}2 x +4 y+\left (2 x -2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7505

\[ {}y^{\prime } x -2 \sqrt {x y} = y \]

[[_homogeneous, ‘class A‘], _dAlembert]

7506

\[ {}y^{\prime } = \frac {x +y-1}{x -y+3} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7510

\[ {}x +y-\left (x -y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7514

\[ {}y y^{\prime }+x = a {y^{\prime }}^{2} \]

[_dAlembert]

7515

\[ {}{y^{\prime }}^{2}-a^{2} y^{2} = 0 \]

[_quadrature]

7543

\[ {}y+\sqrt {x^{2}+y^{2}}-y^{\prime } x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7544

\[ {}{y^{\prime }}^{2} = a^{2}-y^{2} \]

[_quadrature]

7560

\[ {}x^{2}+y^{2}-2 x y^{\prime } y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7561

\[ {}x^{2}-y^{2}+2 x y^{\prime } y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7564

\[ {}x +y y^{\prime }+y-y^{\prime } x = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7588

\[ {}y^{\prime }+5 y = 2 \]

[_quadrature]

7590

\[ {}y^{\prime } = k y \]

[_quadrature]

7591

\[ {}y^{\prime }-2 y = 1 \]

[_quadrature]

7597

\[ {}L y^{\prime }+R y = E \]

[_quadrature]

7609

\[ {}y^{\prime } = 1+y \]
i.c.

[_quadrature]

7738

\[ {}y^{\prime } = 2 \sqrt {y} \]
i.c.

[_quadrature]

7739

\[ {}y^{\prime } = \frac {x +y}{x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7740

\[ {}y^{\prime } = \frac {y^{2}}{x^{2}+x y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7743

\[ {}y^{\prime } = \frac {x -y+2}{x +y-1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7744

\[ {}y^{\prime } = \frac {2 x +3 y+1}{x -2 y-1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7745

\[ {}y^{\prime } = \frac {x +y+1}{2 x +2 y-1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7776

\[ {}y^{\prime } = k y \]

[_quadrature]

7782

\[ {}2 x y^{\prime } y = x^{2}+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7784

\[ {}y^{\prime } = \frac {y^{2}}{x y-x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7871

\[ {}x^{2}-2 y^{2}+x y^{\prime } y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7876

\[ {}x -y-\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7880

\[ {}x^{3}+y^{3}-x y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7881

\[ {}y^{\prime } = \frac {x +y+4}{x -y-6} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7882

\[ {}y^{\prime } = \frac {x +y+4}{x +y-6} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7883

\[ {}2 x -2 y+\left (-1+y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7884

\[ {}y^{\prime } = \frac {x +y-1}{x +4 y+2} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7889

\[ {}y^{\prime } = \sin \left (\frac {y}{x}\right )-\cos \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

7890

\[ {}{\mathrm e}^{\frac {x}{y}}-\frac {y y^{\prime }}{x} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

7891

\[ {}y^{\prime } = \frac {x^{2}-x y}{y^{2} \cos \left (\frac {x}{y}\right )} \]

[[_homogeneous, ‘class A‘], _dAlembert]

7892

\[ {}y^{\prime } = \frac {y \tan \left (\frac {y}{x}\right )}{x} \]

[[_homogeneous, ‘class A‘], _dAlembert]

7921

\[ {}y^{\prime } = \frac {x^{2}+y^{2}}{x^{2}-y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7922

\[ {}y^{\prime } = \frac {x +2 y}{2 x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7930

\[ {}y^{\prime } = \frac {x^{2}+2 y^{2}}{x^{2}-2 y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

8075

\[ {}y^{\prime }+y = 1 \]

[_quadrature]

8077

\[ {}y^{\prime }-y = 2 \]

[_quadrature]

8079

\[ {}y^{\prime }+y = 0 \]

[_quadrature]

8081

\[ {}y^{\prime }-y = 0 \]

[_quadrature]

8441

\[ {}x {y^{\prime }}^{2}-\left (x y+1\right ) y^{\prime }+y = 0 \]

[_quadrature]

8443

\[ {}\left (x +y\right )^{2} {y^{\prime }}^{2} = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

8446

\[ {}\left (4 x -y\right ) {y^{\prime }}^{2}+6 \left (x -y\right ) y^{\prime }+2 x -5 y = 0 \]

[_quadrature]

8447

\[ {}\left (x -y\right )^{2} {y^{\prime }}^{2} = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

8449

\[ {}\left (x^{2}+y^{2}\right )^{2} {y^{\prime }}^{2} = 4 x^{2} y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

8450

\[ {}\left (x +y\right )^{2} {y^{\prime }}^{2}+\left (2 y^{2}+x y-x^{2}\right ) y^{\prime }+y \left (y-x \right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

8451

\[ {}x y \left (x^{2}+y^{2}\right ) \left ({y^{\prime }}^{2}-1\right ) = y^{\prime } \left (x^{4}+x^{2} y^{2}+y^{4}\right ) \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

8454

\[ {}4 x -2 y y^{\prime }+x {y^{\prime }}^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

8456

\[ {}{y^{\prime }}^{2}-y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

8461

\[ {}{y^{\prime }}^{3}+x {y^{\prime }}^{2}-y = 0 \]

[_dAlembert]

8470

\[ {}4 x -2 y y^{\prime }+x {y^{\prime }}^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

8478

\[ {}{y^{\prime }}^{2}-y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

8479

\[ {}2 {y^{\prime }}^{3}+y^{\prime } x -2 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

8480

\[ {}2 {y^{\prime }}^{2}+y^{\prime } x -2 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

8481

\[ {}{y^{\prime }}^{3}+2 y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

8482

\[ {}4 x {y^{\prime }}^{2}-3 y y^{\prime }+3 = 0 \]

[[_homogeneous, ‘class G‘], _rational, _dAlembert]

8483

\[ {}{y^{\prime }}^{3}-y^{\prime } x +2 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

8484

\[ {}5 {y^{\prime }}^{2}+6 y^{\prime } x -2 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

8485

\[ {}2 x {y^{\prime }}^{2}+\left (2 x -y\right ) y^{\prime }+1-y = 0 \]

[_rational, _dAlembert]

8486

\[ {}5 {y^{\prime }}^{2}+3 y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

8487

\[ {}{y^{\prime }}^{2}+3 y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

8538

\[ {}5 {y^{\prime }}^{2}+6 y^{\prime } x -2 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

8542

\[ {}{y^{\prime }}^{4}+y^{\prime } x -3 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

8546

\[ {}{y^{\prime }}^{3}-2 y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

8554

\[ {}y {y^{\prime }}^{2}-\left (x +y\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

8717

\[ {}y^{\prime } = 1+y \]

[_quadrature]

8720

\[ {}y^{\prime } = y \]

[_quadrature]

8734

\[ {}x^{2} y^{\prime }+y^{2} = x y^{\prime } y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

8741

\[ {}y = x {y^{\prime }}^{2}+{y^{\prime }}^{2} \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

8743

\[ {}2 t +3 x+\left (x+2\right ) x^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

8744

\[ {}y^{\prime } = \frac {1}{1-y} \]
i.c.

[_quadrature]

8756

\[ {}y = x {y^{\prime }}^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

8757

\[ {}y y^{\prime } = 1-x {y^{\prime }}^{3} \]

[_dAlembert]

8770

\[ {}y^{\prime } = -4 \sin \left (x -y\right )-4 \]

[[_homogeneous, ‘class C‘], _dAlembert]

8771

\[ {}y^{\prime }+\sin \left (x -y\right ) = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

8790

\[ {}\frac {y^{\prime } y}{1+\frac {\sqrt {1+{y^{\prime }}^{2}}}{2}} = -x \]

[[_homogeneous, ‘class A‘], _dAlembert]

8791

\[ {}\frac {y^{\prime } y}{1+\frac {\sqrt {1+{y^{\prime }}^{2}}}{2}} = -x \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

8794

\[ {}y^{\prime } = 2 \sqrt {y} \]
i.c.

[_quadrature]

8796

\[ {}y^{\prime } = \sqrt {1-y^{2}} \]

[_quadrature]

8886

\[ {}y^{\prime } = {\mathrm e}^{-\frac {y}{x}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

8922

\[ {}\left (y-2 y^{\prime } x \right )^{2} = {y^{\prime }}^{3} \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

8993

\[ {}y^{\prime } = y \]

[_quadrature]

8994

\[ {}y^{\prime } = b y \]

[_quadrature]

9001

\[ {}c y^{\prime } = y \]

[_quadrature]

9002

\[ {}c y^{\prime } = b y \]

[_quadrature]

9034

\[ {}{y^{\prime }}^{2} = x +y \]

[[_homogeneous, ‘class C‘], _dAlembert]

9035

\[ {}{y^{\prime }}^{2} = \frac {y}{x} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9047

\[ {}y^{\prime } = \left (a +b x +y\right )^{4} \]

[[_homogeneous, ‘class C‘], _dAlembert]

9048

\[ {}y^{\prime } = \left (\pi +x +7 y\right )^{{7}/{2}} \]

[[_homogeneous, ‘class C‘], _dAlembert]

9049

\[ {}y^{\prime } = \left (a +b x +c y\right )^{6} \]

[[_homogeneous, ‘class C‘], _dAlembert]

9050

\[ {}y^{\prime } = {\mathrm e}^{x +y} \]

[_separable]

9051

\[ {}y^{\prime } = 10+{\mathrm e}^{x +y} \]

[[_homogeneous, ‘class C‘], _dAlembert]

9130

\[ {}y^{\prime } = \left (x +y\right )^{4} \]

[[_homogeneous, ‘class C‘], _dAlembert]

9171

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

10026

\[ {}y^{\prime }+y^{2}-1 = 0 \]

[_quadrature]

10037

\[ {}y^{\prime }+a y^{2}-b = 0 \]

[_quadrature]

10040

\[ {}y^{\prime }-\left (A y-a \right ) \left (B y-b \right ) = 0 \]

[_quadrature]

10053

\[ {}y^{\prime }-\operatorname {a3} y^{3}-\operatorname {a2} y^{2}-\operatorname {a1} y-\operatorname {a0} = 0 \]

[_quadrature]

10089

\[ {}y^{\prime }-a \cos \left (y\right )+b = 0 \]

[_quadrature]

10090

\[ {}y^{\prime }-\cos \left (b x +a y\right ) = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

10091

\[ {}y^{\prime }+a \sin \left (\alpha y+\beta x \right )+b = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

10097

\[ {}y^{\prime }-f \left (a x +b y\right ) = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

10124

\[ {}y^{\prime } x -y-\sqrt {x^{2}+y^{2}} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10125

\[ {}y^{\prime } x +a \sqrt {x^{2}+y^{2}}-y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

10128

\[ {}y^{\prime } x -{\mathrm e}^{\frac {y}{x}} x -y-x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

10134

\[ {}y^{\prime } x -y-x \sin \left (\frac {y}{x}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

10135

\[ {}y^{\prime } x +x -y+x \cos \left (\frac {y}{x}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

10136

\[ {}y^{\prime } x +x \tan \left (\frac {y}{x}\right )-y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

10221

\[ {}y y^{\prime }-x \,{\mathrm e}^{\frac {x}{y}} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

10223

\[ {}\left (1+y\right ) y^{\prime }-y-x = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10224

\[ {}\left (x +y-1\right ) y^{\prime }-y+2 x +3 = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10225

\[ {}\left (y+2 x -2\right ) y^{\prime }-y+x +1 = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10226

\[ {}\left (1-2 x +y\right ) y^{\prime }+y+x = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10230

\[ {}\left (x +2 y+1\right ) y^{\prime }+1-x -2 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10231

\[ {}\left (2 y+x +7\right ) y^{\prime }-y+2 x +4 = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10232

\[ {}\left (-x +2 y\right ) y^{\prime }-y-2 x = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10233

\[ {}\left (2 y-6 x \right ) y^{\prime }-y+3 x +2 = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10234

\[ {}\left (3+2 x +4 y\right ) y^{\prime }-2 y-x -1 = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10235

\[ {}\left (4 y-2 x -3\right ) y^{\prime }+2 y-x -1 = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10236

\[ {}\left (4 y-3 x -5\right ) y^{\prime }-3 y+7 x +2 = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10237

\[ {}\left (4 y+11 x -11\right ) y^{\prime }-25 y-8 x +62 = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10238

\[ {}\left (12 y-5 x -8\right ) y^{\prime }-5 y+2 x +3 = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10240

\[ {}\left (a y+b x +c \right ) y^{\prime }+\alpha y+\beta x +\gamma = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10241

\[ {}x y^{\prime } y+x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

10248

\[ {}y^{2}-3 x y-2 x^{2}+\left (x y-x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

10250

\[ {}2 x y^{\prime } y-y^{2}+a \,x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

10255

\[ {}x \left (2 x +3 y\right ) y^{\prime }+3 \left (x +y\right )^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

10271

\[ {}\left (2 x^{2} y-x^{3}\right ) y^{\prime }+y^{3}-4 x y^{2}+2 x^{3} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

10279

\[ {}\left (x^{2}+y^{2}\right ) y^{\prime }+2 x \left (2 x +y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

10280

\[ {}\left (x^{2}+y^{2}\right ) y^{\prime }-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10284

\[ {}\left (y^{2}-x^{2}\right ) y^{\prime }+2 x y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10288

\[ {}\left (x +y\right )^{2} y^{\prime }-a^{2} = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

10289

\[ {}x^{2}+2 x y-y^{2}+\left (y^{2}+2 x y-x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10293

\[ {}\left (3 x^{2}+2 x y+4 y^{2}\right ) y^{\prime }+2 x^{2}+6 x y+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

10295

\[ {}\left (2 y-4 x +1\right )^{2} y^{\prime }-\left (y-2 x \right )^{2} = 0 \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

10298

\[ {}\left (a y^{2}+2 b x y+c \,x^{2}\right ) y^{\prime }+b y^{2}+2 c x y+d \,x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

10303

\[ {}x \left (y^{2}+x y-x^{2}\right ) y^{\prime }-y^{3}+x y^{2}+x^{2} y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10305

\[ {}2 x \left (5 x^{2}+y^{2}\right ) y^{\prime }+y^{3}-x^{2} y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10314

\[ {}\left (y^{3}-x^{3}\right ) y^{\prime }-x^{2} y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10318

\[ {}\left (2 y^{3}+5 x^{2} y\right ) y^{\prime }+5 x y^{2}+x^{3} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

10323

\[ {}\left (2 x y^{3}-x^{4}\right ) y^{\prime }+2 x^{3} y-y^{4} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10333

\[ {}y \left (y^{3}-2 x^{3}\right ) y^{\prime }+\left (2 y^{3}-x^{3}\right ) x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10334

\[ {}y \left (\left (b x +a y\right )^{3}+b \,x^{3}\right ) y^{\prime }+x \left (\left (b x +a y\right )^{3}+a y^{3}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10338

\[ {}\left (f \left (x +y\right )+1\right ) y^{\prime }+f \left (x +y\right ) = 0 \]

[[_homogeneous, ‘class C‘], _exact, _dAlembert]

10341

\[ {}\left (1+\sqrt {x +y}\right ) y^{\prime }+1 = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

10375

\[ {}{y^{\prime }}^{2}+y^{2}-a^{2} = 0 \]

[_quadrature]

10376

\[ {}{y^{\prime }}^{2}-y^{3}+y^{2} = 0 \]

[_quadrature]

10377

\[ {}{y^{\prime }}^{2}-4 y^{3}+a y+b = 0 \]

[_quadrature]

10379

\[ {}{y^{\prime }}^{2}-2 y^{\prime }-y^{2} = 0 \]

[_quadrature]

10381

\[ {}{y^{\prime }}^{2}+a y^{\prime }+b y = 0 \]

[_quadrature]

10385

\[ {}{y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

10386

\[ {}{y^{\prime }}^{2}-2 y^{\prime } x +y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

10393

\[ {}{y^{\prime }}^{2}-2 y y^{\prime }-2 x = 0 \]

[_dAlembert]

10394

\[ {}{y^{\prime }}^{2}-\left (4 y+1\right ) y^{\prime }+\left (4 y+1\right ) y = 0 \]

[_quadrature]

10395

\[ {}{y^{\prime }}^{2}+a y y^{\prime }-b x -c = 0 \]

[_dAlembert]

10396

\[ {}{y^{\prime }}^{2}+\left (b x +a y\right ) y^{\prime }+a b x y = 0 \]

[_quadrature]

10404

\[ {}3 {y^{\prime }}^{2}-2 y^{\prime } x +y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

10406

\[ {}a {y^{\prime }}^{2}+b y^{\prime }-y = 0 \]

[_quadrature]

10408

\[ {}a {y^{\prime }}^{2}+y y^{\prime }-x = 0 \]

[_dAlembert]

10409

\[ {}a {y^{\prime }}^{2}-y y^{\prime }-x = 0 \]

[_dAlembert]

10410

\[ {}x {y^{\prime }}^{2}-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10411

\[ {}x {y^{\prime }}^{2}+x -2 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10412

\[ {}x {y^{\prime }}^{2}-2 y^{\prime }-y = 0 \]

[_rational, _dAlembert]

10413

\[ {}x {y^{\prime }}^{2}+4 y^{\prime }-2 y = 0 \]

[_rational, _dAlembert]

10414

\[ {}x {y^{\prime }}^{2}+y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10415

\[ {}x {y^{\prime }}^{2}+y y^{\prime }+a = 0 \]

[[_homogeneous, ‘class G‘], _dAlembert]

10419

\[ {}x {y^{\prime }}^{2}+\left (y-3 x \right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10421

\[ {}x {y^{\prime }}^{2}-y y^{\prime }+a y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10422

\[ {}x {y^{\prime }}^{2}+2 y y^{\prime }-x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10423

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+a = 0 \]

[[_homogeneous, ‘class G‘], _rational, _dAlembert]

10424

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }-x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10425

\[ {}4 x -2 y y^{\prime }+x {y^{\prime }}^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10426

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+x +2 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10427

\[ {}x {y^{\prime }}^{2}+a y y^{\prime }+b x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10433

\[ {}\left (\operatorname {a2} x +\operatorname {c2} \right ) {y^{\prime }}^{2}+\left (\operatorname {a1} x +\operatorname {b1} y+\operatorname {c1} \right ) y^{\prime }+\operatorname {a0} x +\operatorname {b0} y+\operatorname {c0} = 0 \]

[_dAlembert]

10446

\[ {}x^{2} {y^{\prime }}^{2}-y \left (y-2 x \right ) y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

10447

\[ {}x^{2} {y^{\prime }}^{2}+\left (a \,x^{2} y^{3}+b \right ) y^{\prime }+a b y^{3} = 0 \]

[_quadrature]

10455

\[ {}\left (a^{2}-1\right ) x^{2} {y^{\prime }}^{2}+2 x y^{\prime } y-y^{2}+a^{2} x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10456

\[ {}a \,x^{2} {y^{\prime }}^{2}-2 a x y y^{\prime }+y^{2}-a \left (a -1\right ) x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10465

\[ {}y {y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10466

\[ {}y {y^{\prime }}^{2}+2 y^{\prime } x -9 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10467

\[ {}y {y^{\prime }}^{2}-2 y^{\prime } x +y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10468

\[ {}y {y^{\prime }}^{2}-4 y^{\prime } x +y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10469

\[ {}y {y^{\prime }}^{2}-4 a^{2} x y^{\prime }+a^{2} y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

10470

\[ {}y {y^{\prime }}^{2}+a x y^{\prime }+b y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10473

\[ {}\left (x +y\right ) {y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10474

\[ {}\left (y-2 x \right ) {y^{\prime }}^{2}-2 \left (x -1\right ) y^{\prime }+y-2 = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

10475

\[ {}2 y {y^{\prime }}^{2}-\left (4 x -5\right ) y^{\prime }+2 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

10476

\[ {}4 y {y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10478

\[ {}a y {y^{\prime }}^{2}+\left (2 x -b \right ) y^{\prime }-y = 0 \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

10479

\[ {}\left (b +a y\right ) \left (1+{y^{\prime }}^{2}\right )-c = 0 \]

[_quadrature]

10480

\[ {}\left (b_{2} y+a_{2} x +c_{2} \right ) {y^{\prime }}^{2}+\left (a_{1} x +b_{1} y+c_{1} \right ) y^{\prime }+a_{0} x +b_{0} y+c_{0} = 0 \]

[_rational, _dAlembert]

10484

\[ {}\left (2 x y-x^{2}\right ) {y^{\prime }}^{2}+2 x y^{\prime } y+2 x y-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

10485

\[ {}\left (2 x y-x^{2}\right ) {y^{\prime }}^{2}-6 x y^{\prime } y-y^{2}+2 x y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

10493

\[ {}\left (y^{2}-a^{2}\right ) {y^{\prime }}^{2}+y^{2} = 0 \]

[_quadrature]

10495

\[ {}\left (y^{2}-a^{2} x^{2}\right ) {y^{\prime }}^{2}+2 x y^{\prime } y+\left (-a^{2}+1\right ) x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

10496

\[ {}\left (\left (1-a \right ) x^{2}+y^{2}\right ) {y^{\prime }}^{2}+2 a x y y^{\prime }+x^{2}+\left (1-a \right ) y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

10497

\[ {}\left (y-x \right )^{2} \left (1+{y^{\prime }}^{2}\right )-a^{2} \left (y^{\prime }+1\right )^{2} = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

10498

\[ {}3 y^{2} {y^{\prime }}^{2}-2 x y^{\prime } y-x^{2}+4 y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

10499

\[ {}\left (3 y-2\right ) {y^{\prime }}^{2}-4+4 y = 0 \]

[_quadrature]

10500

\[ {}\left (-a^{2}+1\right ) y^{2} {y^{\prime }}^{2}-2 a^{2} x y y^{\prime }+y^{2}-a^{2} x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10503

\[ {}\left (a y-b x \right )^{2} \left (a^{2} {y^{\prime }}^{2}+b^{2}\right )-c^{2} \left (a y^{\prime }+b \right )^{2} = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

10515

\[ {}{y^{\prime }}^{2} \left (a \cos \left (y\right )+b \right )-c \cos \left (y\right )+d = 0 \]

[_quadrature]

10519

\[ {}{y^{\prime }}^{3}-\left (y-a \right )^{2} \left (y-b \right )^{2} = 0 \]

[_quadrature]

10521

\[ {}{y^{\prime }}^{3}+y^{\prime }-y = 0 \]

[_quadrature]

10525

\[ {}{y^{\prime }}^{3}-2 y y^{\prime }+y^{2} = 0 \]

[_quadrature]

10529

\[ {}{y^{\prime }}^{3}+a {y^{\prime }}^{2}+b y+a b x = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

10530

\[ {}{y^{\prime }}^{3}+x {y^{\prime }}^{2}-y = 0 \]

[_dAlembert]

10531

\[ {}{y^{\prime }}^{3}-y {y^{\prime }}^{2}+y^{2} = 0 \]

[_quadrature]

10533

\[ {}a {y^{\prime }}^{3}+b {y^{\prime }}^{2}+c y^{\prime }-y-d = 0 \]

[_quadrature]

10535

\[ {}4 x {y^{\prime }}^{3}-6 y {y^{\prime }}^{2}-x +3 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

10536

\[ {}8 x {y^{\prime }}^{3}-12 y {y^{\prime }}^{2}+9 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

10540

\[ {}{y^{\prime }}^{3} \sin \left (x \right )-\left (y \sin \left (x \right )-\cos \left (x \right )^{2}\right ) {y^{\prime }}^{2}-\left (\cos \left (x \right )^{2} y+\sin \left (x \right )\right ) y^{\prime }+y \sin \left (x \right ) = 0 \]

[_quadrature]

10541

\[ {}2 y {y^{\prime }}^{3}-y {y^{\prime }}^{2}+2 y^{\prime } x -x = 0 \]

[_quadrature]

10546

\[ {}{y^{\prime }}^{4}-\left (y-a \right )^{3} \left (y-b \right )^{2} = 0 \]

[_quadrature]

10547

\[ {}{y^{\prime }}^{4}+3 \left (x -1\right ) {y^{\prime }}^{2}-3 \left (2 y-1\right ) y^{\prime }+3 x = 0 \]

[_dAlembert]

10549

\[ {}{y^{\prime }}^{6}-\left (y-a \right )^{4} \left (y-b \right )^{3} = 0 \]

[_quadrature]

10554

\[ {}a {y^{\prime }}^{m}+b {y^{\prime }}^{n}-y = 0 \]

[_quadrature]

10557

\[ {}\sqrt {1+{y^{\prime }}^{2}}+x {y^{\prime }}^{2}+y = 0 \]

[_dAlembert]

10558

\[ {}x \left (\sqrt {1+{y^{\prime }}^{2}}+y^{\prime }\right )-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

10559

\[ {}a x \sqrt {1+{y^{\prime }}^{2}}+y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

10563

\[ {}a \left (1+{y^{\prime }}^{3}\right )^{{1}/{3}}+b x y^{\prime }-y = 0 \]

[_dAlembert]

10569

\[ {}{y^{\prime }}^{2} \sin \left (y^{\prime }\right )-y = 0 \]

[_quadrature]

10793

\[ {}y^{\prime } = \frac {x^{3}+3 a \,x^{2}+3 a^{2} x +a^{3}+x y^{2}+a y^{2}+y^{3}}{\left (x +a \right )^{3}} \]

[[_homogeneous, ‘class C‘], _rational, _Abel]

10798

\[ {}y^{\prime } = \frac {-b^{3}+6 b^{2} x -12 b \,x^{2}+8 x^{3}-4 b y^{2}+8 x y^{2}+8 y^{3}}{\left (2 x -b \right )^{3}} \]

[[_homogeneous, ‘class C‘], _rational, _Abel]

10807

\[ {}y^{\prime } = \frac {-125+300 x -240 x^{2}+64 x^{3}-80 y^{2}+64 x y^{2}+64 y^{3}}{\left (4 x -5\right )^{3}} \]

[[_homogeneous, ‘class C‘], _rational, _Abel]

10848

\[ {}y^{\prime } = \frac {b^{3}+y^{2} b^{3}+2 y b^{2} a x +x^{2} b \,a^{2}+y^{3} b^{3}+3 y^{2} b^{2} a x +3 y b \,a^{2} x^{2}+a^{3} x^{3}}{b^{3}} \]

[[_homogeneous, ‘class C‘], _Abel]

10849

\[ {}y^{\prime } = \frac {\alpha ^{3}+y^{2} \alpha ^{3}+2 y \alpha ^{2} \beta x +\alpha \,\beta ^{2} x^{2}+y^{3} \alpha ^{3}+3 y^{2} \alpha ^{2} \beta x +3 y \alpha \,\beta ^{2} x^{2}+\beta ^{3} x^{3}}{\alpha ^{3}} \]

[[_homogeneous, ‘class C‘], _Abel]

10855

\[ {}y^{\prime } = \frac {a^{3}+y^{2} a^{3}+2 a^{2} b x y+a \,b^{2} x^{2}+y^{3} a^{3}+3 y^{2} a^{2} b x +3 y a \,b^{2} x^{2}+b^{3} x^{3}}{a^{3}} \]

[[_homogeneous, ‘class C‘], _Abel]

11923

\[ {}y^{\prime } = f \left (y\right ) \]

[_quadrature]

11927

\[ {}y^{\prime } = f \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

12248

\[ {}y y^{\prime }-y = A x +B \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12415

\[ {}\left (A y+B x +a \right ) y^{\prime }+B y+k x +b = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12416

\[ {}\left (y+a x +b \right ) y^{\prime } = \alpha y+\beta x +\gamma \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12728

\[ {}\frac {y^{2}-2 x^{2}}{x y^{2}-x^{3}}+\frac {\left (2 y^{2}-x^{2}\right ) y^{\prime }}{y^{3}-x^{2} y} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

12729

\[ {}\frac {1}{\sqrt {x^{2}+y^{2}}}+\left (\frac {1}{y}-\frac {x}{y \sqrt {x^{2}+y^{2}}}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

12731

\[ {}6 x -2 y+1+\left (2 y-2 x -3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12737

\[ {}2 x^{2} y+3 y^{3}-\left (x^{3}+2 x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12739

\[ {}2 x^{2} y+y^{3}-x^{3} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12742

\[ {}\left (x +y+1\right ) y^{\prime }+1+4 x +3 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12743

\[ {}4 x -y+2+\left (x +y+3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12744

\[ {}2 x +y-\left (4 x +2 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12763

\[ {}x +y-\left (x -y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12764

\[ {}x^{2}+y^{2}-2 x y^{\prime } y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12767

\[ {}3 x^{2}+6 x y+3 y^{2}+\left (2 x^{2}+3 x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

12771

\[ {}y^{2}-x^{2}+2 m x y+\left (m y^{2}-m \,x^{2}-2 x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12773

\[ {}\left (x +y\right ) y^{\prime }-1 = 0 \]

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

12774

\[ {}x +y y^{\prime }+y-y^{\prime } x = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12779

\[ {}\left (y-x \right )^{2} y^{\prime } = 1 \]

[[_homogeneous, ‘class C‘], _dAlembert]

12782

\[ {}\left (y-x \right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12783

\[ {}y^{\prime } x -y = \sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12784

\[ {}y^{\prime } x -y = \sqrt {x^{2}-y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12786

\[ {}\left (4+2 x -y\right ) y^{\prime }+5+x -2 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12797

\[ {}2 x +3 y-1+\left (2 x +3 y-5\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12798

\[ {}y^{3}-2 x^{2} y+\left (2 x y^{2}-x^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12801

\[ {}1+{\mathrm e}^{\frac {y}{x}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

12804

\[ {}\left (2 \sqrt {x y}-x \right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

12805

\[ {}{y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+x y = 0 \]

[_quadrature]

12806

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }-x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12807

\[ {}{y^{\prime }}^{2}+y^{2} = 1 \]

[_quadrature]

12811

\[ {}2 y^{\prime } x -y+\ln \left (y^{\prime }\right ) = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

12812

\[ {}4 x {y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12813

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }-x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12816

\[ {}{y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

12818

\[ {}a^{2} y {y^{\prime }}^{2}-2 y^{\prime } x +y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12819

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }-x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12823

\[ {}4 \,{\mathrm e}^{2 y} {y^{\prime }}^{2}+2 \,{\mathrm e}^{2 x} y^{\prime }-{\mathrm e}^{2 x} = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

12826

\[ {}\left (x^{2}+y^{2}\right ) \left (y^{\prime }+1\right )^{2}-2 \left (x +y\right ) \left (y^{\prime }+1\right ) \left (y y^{\prime }+x \right )+\left (y y^{\prime }+x \right )^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

12828

\[ {}a^{2} y {y^{\prime }}^{2}-2 y^{\prime } x +y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12833

\[ {}3 x {y^{\prime }}^{2}-6 y y^{\prime }+x +2 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12834

\[ {}y = \left (x +1\right ) {y^{\prime }}^{2} \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

12842

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }-x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12845

\[ {}8 \left (y^{\prime }+1\right )^{3} = 27 \left (x +y\right ) \left (1-y^{\prime }\right )^{3} \]

[[_homogeneous, ‘class C‘], _dAlembert]

12956

\[ {}x^{\prime } = -x^{2} \]

[_quadrature]

12958

\[ {}x^{\prime } = {\mathrm e}^{-x} \]

[_quadrature]

12973

\[ {}x^{\prime } = \sqrt {x} \]
i.c.

[_quadrature]

12974

\[ {}x^{\prime } = {\mathrm e}^{-2 x} \]
i.c.

[_quadrature]

12975

\[ {}y^{\prime } = 1+y^{2} \]

[_quadrature]

12976

\[ {}u^{\prime } = \frac {1}{5-2 u} \]

[_quadrature]

12977

\[ {}x^{\prime } = a x+b \]

[_quadrature]

12979

\[ {}x^{\prime } = {\mathrm e}^{x^{2}} \]

[_quadrature]

12980

\[ {}y^{\prime } = r \left (a -y\right ) \]

[_quadrature]

12983

\[ {}\left (2 u+1\right ) u^{\prime }-1-t = 0 \]

[_separable]

12987

\[ {}y^{\prime } = \frac {1}{2 y+1} \]
i.c.

[_quadrature]

12992

\[ {}x^{\prime } = {\mathrm e}^{t +x} \]
i.c.

[_separable]

12999

\[ {}x^{\prime } = \frac {4 t^{2}+3 x^{2}}{2 t x} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

13027

\[ {}x^{\prime } = a x+b \]

[_quadrature]

13029

\[ {}x^{\prime } = \frac {2 x}{3 t}+\frac {2 t}{x} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

13033

\[ {}x^{\prime } = a x+b x^{3} \]

[_quadrature]

13179

\[ {}x^{2}+y^{2}+2 x y^{\prime } y = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

13189

\[ {}{y^{\prime }}^{2}-4 y = 0 \]

[_quadrature]

13200

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

13201

\[ {}3 x +2 y+\left (2 x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13227

\[ {}2 x y+3 y^{2}-\left (x^{2}+2 x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

13228

\[ {}v^{3}+\left (u^{3}-u v^{2}\right ) v^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

13229

\[ {}x \tan \left (\frac {y}{x}\right )+y-y^{\prime } x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

13230

\[ {}\left (2 s^{2}+2 s t +t^{2}\right ) s^{\prime }+s^{2}+2 s t -t^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

13232

\[ {}\sqrt {x +y}+\sqrt {x -y}+\left (\sqrt {x -y}-\sqrt {x +y}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

13237

\[ {}\left (4 x -y\right ) y^{\prime }+2 x -5 y = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13239

\[ {}x +2 y+\left (2 x -y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13240

\[ {}3 x -y-\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13241

\[ {}x^{2}+2 y^{2}+\left (4 x y-y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

13242

\[ {}2 x^{2}+2 x y+y^{2}+\left (x^{2}+2 x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

13284

\[ {}3 x -5 y+\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13290

\[ {}y^{\prime } = \frac {2 x -7 y}{3 y-8 x} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13293

\[ {}y^{\prime } = \frac {2 x^{2}+y^{2}}{2 x y-x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

13294

\[ {}x^{2}+y^{2}-2 x y^{\prime } y = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

13299

\[ {}y^{\prime } = \frac {2 x +7 y}{2 x -2 y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13303

\[ {}x y+x^{2} y^{\prime } = \frac {y^{3}}{x} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

13310

\[ {}5 x +2 y+1+\left (2 x +y+1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13311

\[ {}3 x -y+1-\left (6 x -2 y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13312

\[ {}x -2 y-3+\left (2 x +y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13313

\[ {}10 x -4 y+12-\left (x +5 y+3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13316

\[ {}2 x +3 y+1+\left (4 x +6 y+1\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13317

\[ {}\left (x +y+1\right ) y^{\prime }+1+4 x +3 y = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13643

\[ {}x^{\prime } = 1-x \]

[_quadrature]

13645

\[ {}x^{\prime } = \left (1+x\right ) \left (2-x\right ) \sin \left (x\right ) \]

[_quadrature]

13651

\[ {}x^{\prime } = -x^{2} \]

[_quadrature]

13653

\[ {}x^{\prime }+p x = q \]

[_quadrature]

13656

\[ {}x^{\prime } = \lambda x \]

[_quadrature]

13657

\[ {}m v^{\prime } = -m g +k v^{2} \]

[_quadrature]

13678

\[ {}x^{\prime } = k x-x^{2} \]

[_quadrature]

13778

\[ {}12 x +6 y-9+\left (5 x +2 y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13779

\[ {}y^{\prime } x = y+\sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

13784

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

13786

\[ {}x \left (\ln \left (x \right )-\ln \left (y\right )\right ) y^{\prime }-y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

13788

\[ {}{y^{\prime }}^{2} = 9 y^{4} \]

[_quadrature]

13794

\[ {}y = {y^{\prime }}^{4}-{y^{\prime }}^{3}-2 \]

[_quadrature]

13795

\[ {}{y^{\prime }}^{2}+y^{2} = 4 \]

[_quadrature]

13796

\[ {}y^{\prime } = \frac {2 y-x -4}{2 x -y+5} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13801

\[ {}2 x +2 y-1+\left (x +y-2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13803

\[ {}y = 5 y^{\prime } x -{y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

13811

\[ {}y^{\prime } = \frac {3 x -4 y-2}{3 x -4 y-3} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13819

\[ {}y^{\prime } = \frac {x +y-3}{y-x +1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13822

\[ {}\left (3+2 x +4 y\right ) y^{\prime }-2 y-x -1 = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13824

\[ {}\left (y^{2}-x^{2}\right ) y^{\prime }+2 x y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

13827

\[ {}{y^{\prime }}^{2}-2 y^{\prime } x +y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

13881

\[ {}y^{\prime } = \cos \left (x +y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

14085

\[ {}y {y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

14104

\[ {}y-x +\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14106

\[ {}x +y+\left (y-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14107

\[ {}y^{\prime } x -y = \sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

14108

\[ {}\left (7 x +5 y\right ) y^{\prime }+10 x +8 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14109

\[ {}2 \sqrt {s t}-s+t s^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

14111

\[ {}x y^{2} y^{\prime } = x^{3}+y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

14113

\[ {}3 y-7 x +7-\left (3 x -7 y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14114

\[ {}x +2 y+1-\left (3+2 x +4 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14116

\[ {}\frac {y-y^{\prime } x}{\sqrt {x^{2}+y^{2}}} = m \]

[[_homogeneous, ‘class A‘], _dAlembert]

14117

\[ {}\frac {y y^{\prime }+x}{\sqrt {x^{2}+y^{2}}} = m \]

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

14118

\[ {}y+\frac {x}{y^{\prime }} = \sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

14141

\[ {}\frac {1}{x^{2}}+\frac {3 y^{2}}{x^{4}} = \frac {2 y y^{\prime }}{x^{3}} \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

14144

\[ {}y = 2 y^{\prime } x +{y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

14145

\[ {}y = x {y^{\prime }}^{2}+{y^{\prime }}^{2} \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

14146

\[ {}y = x \left (y^{\prime }+1\right )+{y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

14147

\[ {}y = y {y^{\prime }}^{2}+2 y^{\prime } x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

14148

\[ {}y = y y^{\prime }+y^{\prime }-{y^{\prime }}^{2} \]

[_quadrature]

14206

\[ {}y = x {y^{\prime }}^{2}+{y^{\prime }}^{2} \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

14212

\[ {}2 x +2 y-1+\left (x +y-2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14248

\[ {}y^{\prime }-y^{2} = 1 \]

[_quadrature]

14251

\[ {}y^{\prime }+3 y = 0 \]

[_quadrature]

14259

\[ {}{y^{\prime }}^{2}-4 y = 0 \]

[_quadrature]

14267

\[ {}y^{\prime } = 3 y^{{2}/{3}} \]

[_quadrature]

14282

\[ {}y^{\prime } = 1-y \]

[_quadrature]

14283

\[ {}y^{\prime } = 1+y \]

[_quadrature]

14284

\[ {}y^{\prime } = y^{2}-4 \]

[_quadrature]

14285

\[ {}y^{\prime } = 4-y^{2} \]

[_quadrature]

14294

\[ {}y^{\prime } = 1+y^{2} \]

[_quadrature]

14298

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

14299

\[ {}y^{\prime } = \ln \left (x +y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

14300

\[ {}y^{\prime } = \frac {2 x -y}{x +3 y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14305

\[ {}y^{\prime } = \ln \left (-1+y\right ) \]

[_quadrature]

14307

\[ {}y^{\prime } = \frac {y}{y-x} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14312

\[ {}y^{\prime } = \sqrt {\frac {y-4}{x}} \]

[[_homogeneous, ‘class C‘], _dAlembert]

14314

\[ {}y^{\prime } = 4 y-5 \]
i.c.

[_quadrature]

14315

\[ {}y^{\prime }+3 y = 1 \]
i.c.

[_quadrature]

14316

\[ {}y^{\prime } = b +a y \]
i.c.

[_quadrature]

14336

\[ {}y^{\prime } = 3 y \]
i.c.

[_quadrature]

14337

\[ {}y^{\prime } = 1-y \]
i.c.

[_quadrature]

14338

\[ {}y^{\prime } = 1-y \]
i.c.

[_quadrature]

14349

\[ {}y^{\prime } = -\frac {y \left (2 x +y\right )}{x \left (x +2 y\right )} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

14351

\[ {}y^{\prime } = 4 y+1 \]
i.c.

[_quadrature]

14372

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

14375

\[ {}y^{\prime } = y^{3} \]
i.c.

[_quadrature]

14393

\[ {}y^{\prime } = \frac {y}{y-x} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14395

\[ {}y^{\prime } = \frac {y}{y-x} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14533

\[ {}y^{\prime } = 2 y+1 \]

[_quadrature]

14534

\[ {}y^{\prime } = 2-y \]

[_quadrature]

14535

\[ {}y^{\prime } = {\mathrm e}^{-y} \]

[_quadrature]

14536

\[ {}x^{\prime } = x^{2}+1 \]

[_quadrature]

14541

\[ {}y^{\prime } = \frac {1}{2 y+1} \]

[_quadrature]

14548

\[ {}y^{\prime } = y^{2}-4 \]

[_quadrature]

14550

\[ {}y^{\prime } = \sec \left (y\right ) \]

[_quadrature]

14553

\[ {}y^{\prime } = -y^{2} \]
i.c.

[_quadrature]

14555

\[ {}y^{\prime } = -y^{2} \]
i.c.

[_quadrature]

14557

\[ {}y^{\prime } = 2 y+1 \]
i.c.

[_quadrature]

14562

\[ {}y^{\prime } = \frac {1}{2 y+3} \]
i.c.

[_quadrature]

14567

\[ {}y^{\prime } = 1-2 y \]

[_quadrature]

14568

\[ {}y^{\prime } = 4 y^{2} \]

[_quadrature]

14577

\[ {}S^{\prime } = S^{3}-2 S^{2}+S \]
i.c.

[_quadrature]

14582

\[ {}y^{\prime } = y^{3}+y^{2} \]

[_quadrature]

14588

\[ {}\theta ^{\prime } = \frac {9}{10}-\frac {11 \cos \left (\theta \right )}{10} \]

[_quadrature]

14590

\[ {}\theta ^{\prime } = \frac {11}{10}-\frac {9 \cos \left (\theta \right )}{10} \]

[_quadrature]

14591

\[ {}v^{\prime } = -\frac {v}{R C} \]

[_quadrature]

14592

\[ {}v^{\prime } = \frac {K -v}{R C} \]

[_quadrature]

14594

\[ {}y^{\prime } = 2 y+1 \]
i.c.

[_quadrature]

14604

\[ {}y^{\prime } = \sqrt {y} \]
i.c.

[_quadrature]

14605

\[ {}y^{\prime } = 2-y \]
i.c.

[_quadrature]

14611

\[ {}y^{\prime } = -y^{2} \]

[_quadrature]

14628

\[ {}w^{\prime } = w \cos \left (w\right ) \]

[_quadrature]

14629

\[ {}w^{\prime } = w \cos \left (w\right ) \]
i.c.

[_quadrature]

14633

\[ {}w^{\prime } = \left (1-w\right ) \sin \left (w\right ) \]

[_quadrature]

14634

\[ {}y^{\prime } = \frac {1}{-2+y} \]

[_quadrature]

14636

\[ {}w^{\prime } = 3 w^{3}-12 w^{2} \]

[_quadrature]

14637

\[ {}y^{\prime } = 1+\cos \left (y\right ) \]

[_quadrature]

14638

\[ {}y^{\prime } = \tan \left (y\right ) \]

[_quadrature]

14647

\[ {}y^{\prime } = y \cos \left (\frac {\pi y}{2}\right ) \]

[_quadrature]

14649

\[ {}y^{\prime } = y \sin \left (\frac {\pi y}{2}\right ) \]

[_quadrature]

14650

\[ {}y^{\prime } = y^{3}-y^{2} \]

[_quadrature]

14651

\[ {}y^{\prime } = \cos \left (\frac {\pi y}{2}\right ) \]

[_quadrature]

14653

\[ {}y^{\prime } = y \sin \left (\frac {\pi y}{2}\right ) \]

[_quadrature]

14654

\[ {}y^{\prime } = y^{2}-y^{3} \]

[_quadrature]

14694

\[ {}y^{\prime } = 3 y \]

[_quadrature]

14696

\[ {}y^{\prime } = -\sin \left (y\right )^{5} \]

[_quadrature]

14698

\[ {}y^{\prime } = \sin \left (y\right )^{2} \]

[_quadrature]

14701

\[ {}y^{\prime } = 3-2 y \]

[_quadrature]

14707

\[ {}y^{\prime } = 3+y^{2} \]

[_quadrature]

14718

\[ {}y^{\prime } = 1-y^{2} \]
i.c.

[_quadrature]

14725

\[ {}y^{\prime } = 3-y^{2} \]
i.c.

[_quadrature]

14909

\[ {}y^{\prime } = 3-\sin \left (y\right ) \]

[_quadrature]

14955

\[ {}y^{\prime }-y^{3} = 8 \]

[_quadrature]

14960

\[ {}\left (-2+y\right ) y^{\prime } = x -3 \]

[_separable]

14963

\[ {}y^{\prime } = 2 \sqrt {y} \]
i.c.

[_quadrature]

14968

\[ {}y^{\prime }+4 y = 8 \]

[_quadrature]

14972

\[ {}y^{\prime } = \sin \left (x +y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

14975

\[ {}y^{\prime } = y^{2}+9 \]

[_quadrature]

14979

\[ {}y^{\prime } = {\mathrm e}^{2 x -3 y} \]

[_separable]

14985

\[ {}y^{\prime }-4 y = 2 \]

[_quadrature]

14987

\[ {}y^{\prime } = \sin \left (y\right ) \]

[_quadrature]

14993

\[ {}y^{\prime } = \tan \left (y\right ) \]

[_quadrature]

14998

\[ {}y^{\prime } = {\mathrm e}^{-y} \]

[_quadrature]

14999

\[ {}y^{\prime } = {\mathrm e}^{-y}+1 \]

[_quadrature]

15005

\[ {}y^{\prime }-2 y = -10 \]
i.c.

[_quadrature]

15017

\[ {}y^{\prime } = 4 y+8 \]

[_quadrature]

15022

\[ {}2 y+y^{\prime } = 6 \]

[_quadrature]

15032

\[ {}y^{\prime }-3 y = 6 \]
i.c.

[_quadrature]

15033

\[ {}y^{\prime }-3 y = 6 \]
i.c.

[_quadrature]

15041

\[ {}y^{\prime } = \frac {1}{\left (3 x +3 y+2\right )^{2}} \]

[[_homogeneous, ‘class C‘], _dAlembert]

15042

\[ {}y^{\prime } = \frac {\left (3 x -2 y\right )^{2}+1}{3 x -2 y}+\frac {3}{2} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15048

\[ {}y^{\prime } = \frac {x -y}{x +y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15053

\[ {}y^{\prime } = \frac {y}{x}+\frac {x^{2}}{y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15054

\[ {}3 y^{\prime } = -2+\sqrt {2 x +3 y+4} \]

[[_homogeneous, ‘class C‘], _dAlembert]

15056

\[ {}y^{\prime } = 4+\frac {1}{\sin \left (4 x -y\right )} \]

[[_homogeneous, ‘class C‘], _dAlembert]

15057

\[ {}\left (y-x \right ) y^{\prime } = 1 \]

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

15058

\[ {}\left (x +y\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15061

\[ {}y^{\prime } = 2 \sqrt {2 x +y-3}-2 \]

[[_homogeneous, ‘class C‘], _dAlembert]

15063

\[ {}y^{\prime } x -y = \sqrt {x^{2}+x y} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

15065

\[ {}y^{\prime } = \left (x -y+3\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

15071

\[ {}2 x y+y^{2}+\left (x^{2}+2 x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

15075

\[ {}4 x^{3} y+\left (x^{4}-y^{4}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

15097

\[ {}x^{3}+y^{3}+x y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15109

\[ {}x y^{\prime } y = 2 x^{2}+2 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15110

\[ {}y^{\prime } = \frac {x +2 y}{x +2 y+3} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15111

\[ {}y^{\prime } = \frac {x +2 y}{2 x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15112

\[ {}y^{\prime } = \frac {y}{x}+\tan \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

15114

\[ {}1-\left (x +2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

15116

\[ {}y^{2}+1-y^{\prime } = 0 \]

[_quadrature]

15118

\[ {}x y^{\prime } y = x^{2}+x y+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

15125

\[ {}\left (3-x +y\right )^{2} \left (y^{\prime }-1\right ) = 1 \]

[[_homogeneous, ‘class C‘], _exact, _rational, _dAlembert]

15132

\[ {}y^{\prime } = {\mathrm e}^{4 x +3 y} \]

[_separable]

15133

\[ {}y^{\prime } = \tan \left (6 x +3 y+1\right )-2 \]

[[_homogeneous, ‘class C‘], _dAlembert]

15134

\[ {}y^{\prime } = {\mathrm e}^{4 x +3 y} \]

[_separable]

15713

\[ {}{y^{\prime }}^{2}+y = 0 \]

[_quadrature]

15719

\[ {}2 y+y^{\prime } = 0 \]

[_quadrature]

15749

\[ {}2 y+y^{\prime } = 0 \]
i.c.

[_quadrature]

15779

\[ {}2 x -3 y+\left (2 y-3 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15793

\[ {}y^{\prime } = y^{{1}/{5}} \]
i.c.

[_quadrature]

15797

\[ {}y^{\prime } = 6 y^{{2}/{3}} \]
i.c.

[_quadrature]

15802

\[ {}y^{\prime } = \sqrt {y^{2}-1} \]
i.c.

[_quadrature]

15804

\[ {}y^{\prime } = \sqrt {y^{2}-1} \]
i.c.

[_quadrature]

15806

\[ {}y^{\prime } = \sqrt {25-y^{2}} \]
i.c.

[_quadrature]

15808

\[ {}y^{\prime } = \sqrt {25-y^{2}} \]
i.c.

[_quadrature]

15822

\[ {}y^{\prime } = -y^{3} \]
i.c.

[_quadrature]

15835

\[ {}y^{\prime }+k y = 0 \]

[_quadrature]

15838

\[ {}y^{\prime } = {\mathrm e}^{2 y+10 t} \]

[_separable]

15839

\[ {}y^{\prime } = {\mathrm e}^{3 y+2 t} \]

[_separable]

15857

\[ {}y^{\prime } = y^{3}+1 \]

[_quadrature]

15858

\[ {}y^{\prime } = y^{3}-1 \]

[_quadrature]

15860

\[ {}y^{\prime } = y^{3}-y^{2} \]

[_quadrature]

15865

\[ {}1 = y^{\prime } \cos \left (y\right ) \]
i.c.

[_quadrature]

15868

\[ {}y^{\prime } = \sqrt {\frac {y}{t}} \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

15870

\[ {}y^{\prime } = {\mathrm e}^{t -y} \]
i.c.

[_separable]

15876

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]
i.c.

[_separable]

15877

\[ {}y^{\prime } = {\mathrm e}^{2 x -y} \]
i.c.

[_separable]

15884

\[ {}y^{\prime } = \frac {x +y+3}{3 x +3 y+1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15885

\[ {}y^{\prime } = \frac {x -y+2}{2 x -2 y-1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15886

\[ {}y^{\prime } = \left (x +y-4\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

15888

\[ {}y^{\prime } = 3 y \]

[_quadrature]

15889

\[ {}y^{\prime } = -y \]

[_quadrature]

15894

\[ {}-y+y^{\prime } = 10 \]

[_quadrature]

15968

\[ {}2 t y+\left (t^{2}+y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

15971

\[ {}3 t^{2}+3 y^{2}+6 t y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

15980

\[ {}-\frac {y^{2} {\mathrm e}^{\frac {y}{t}}}{t^{2}}+1+{\mathrm e}^{\frac {y}{t}} \left (1+\frac {y}{t}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

15985

\[ {}1+5 t -y-\left (t +2 y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16005

\[ {}\frac {9 t}{5}+2 y+\left (2 t +2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16006

\[ {}2 t +\frac {19 y}{10}+\left (\frac {19 t}{10}+2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16025

\[ {}t y-y^{2}+t \left (t -3 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

16026

\[ {}t^{2}+t y+y^{2}-t y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

16027

\[ {}t^{3}+y^{3}-t y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

16028

\[ {}y^{\prime } = \frac {t +4 y}{4 t +y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16030

\[ {}y+\left (t +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16031

\[ {}2 t^{2}-7 t y+5 y^{2}+t y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

16032

\[ {}y+2 \sqrt {t^{2}+y^{2}}-y^{\prime } t = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

16033

\[ {}y^{2} = \left (t y-4 t^{2}\right ) y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

16034

\[ {}y-\left (3 \sqrt {t y}+t \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

16036

\[ {}t y y^{\prime }-t^{2} {\mathrm e}^{-\frac {y}{t}}-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

16037

\[ {}y^{\prime } = \frac {1}{\frac {2 y \,{\mathrm e}^{-\frac {t}{y}}}{t}+\frac {t}{y}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

16038

\[ {}t \left (\ln \left (t \right )-\ln \left (y\right )\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _dAlembert]

16043

\[ {}y^{\prime } t -y-\sqrt {t^{2}+y^{2}} = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

16048

\[ {}1+t -2 y+\left (4 t -3 y-6\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16049

\[ {}5 t +2 y+1+\left (2 t +y+1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16050

\[ {}3 t -y+1-\left (6 t -2 y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16051

\[ {}2 t +3 y+1+\left (4 t +6 y+1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16059

\[ {}y = -y^{\prime } t +\frac {{y^{\prime }}^{5}}{5} \]

[_dAlembert]

16060

\[ {}y = t {y^{\prime }}^{2}+3 {y^{\prime }}^{2}-2 {y^{\prime }}^{3} \]

[_dAlembert]

16062

\[ {}y = t \left (2-y^{\prime }\right )+2 {y^{\prime }}^{2}+1 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

16075

\[ {}3 t +\left (t -4 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

16076

\[ {}y-t +\left (t +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16078

\[ {}y^{2}+\left (t^{2}+t y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

16080

\[ {}x^{\prime } = \frac {5 t x}{x^{2}+t^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

16085

\[ {}y+y^{\prime } = 5 \]

[_quadrature]

16095

\[ {}2 x -y-2+\left (-x +2 y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16596

\[ {}y^{\prime } = \sqrt {x -y} \]

[[_homogeneous, ‘class C‘], _dAlembert]

16597

\[ {}y^{\prime } = \sqrt {x^{2}-y}-x \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

16598

\[ {}y^{\prime } = \sqrt {1-y^{2}} \]

[_quadrature]

16599

\[ {}y^{\prime } = \frac {1+y}{x -y} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16602

\[ {}y^{\prime } = \left (3 x -y\right )^{{1}/{3}}-1 \]

[[_homogeneous, ‘class C‘], _dAlembert]

16614

\[ {}y^{\prime } = \cos \left (x -y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

16618

\[ {}y^{\prime } = \frac {x +y}{x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16625

\[ {}y^{\prime } = y \]

[_quadrature]

16626

\[ {}y^{\prime } = y^{2} \]

[_quadrature]

16638

\[ {}{\mathrm e}^{-y} y^{\prime } = 1 \]

[_quadrature]

16640

\[ {}y^{\prime } = a^{x +y} \]

[_separable]

16645

\[ {}y^{\prime } = \sin \left (x -y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

16647

\[ {}\left (x +y\right )^{2} y^{\prime } = a^{2} \]

[[_homogeneous, ‘class C‘], _dAlembert]

16662

\[ {}{\mathrm e}^{y} = {\mathrm e}^{4 y} y^{\prime }+1 \]

[_quadrature]

16666

\[ {}y^{\prime } x = y+x \cos \left (\frac {y}{x}\right )^{2} \]

[[_homogeneous, ‘class A‘], _dAlembert]

16668

\[ {}y^{\prime } x = y \left (\ln \left (y\right )-\ln \left (x \right )\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

16670

\[ {}y^{\prime } x = y+\sqrt {y^{2}-x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

16672

\[ {}4 x -3 y+\left (2 y-3 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16673

\[ {}y-x +\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16675

\[ {}3 y-7 x +7-\left (3 x -7 y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16676

\[ {}x +y-2+\left (x -y+4\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16677

\[ {}x +y+\left (x -y-2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16678

\[ {}2 x +3 y-5+\left (3 x +2 y-5\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16679

\[ {}8 x +4 y+1+\left (4 x +2 y+1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16680

\[ {}x -2 y-1+\left (3 x -6 y+2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16681

\[ {}x +y+\left (x +y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16710

\[ {}3 x y^{2} y^{\prime }-2 y^{3} = x^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

16723

\[ {}x \left (2 x^{2}+y^{2}\right )+y \left (x^{2}+2 y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

16733

\[ {}\frac {2 x}{y^{3}}+\frac {\left (y^{2}-3 x^{2}\right ) y^{\prime }}{y^{4}} = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

16735

\[ {}3 x^{2} y+y^{3}+\left (x^{3}+3 x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

16752

\[ {}{y^{\prime }}^{3} = y {y^{\prime }}^{2}-x^{2} y^{\prime }+x^{2} y \]

[_quadrature]

16755

\[ {}y = {y^{\prime }}^{2} {\mathrm e}^{y^{\prime }} \]

[_quadrature]

16759

\[ {}y = y^{\prime } \ln \left (y^{\prime }\right ) \]

[_quadrature]

16760

\[ {}y = \left (y^{\prime }-1\right ) {\mathrm e}^{y^{\prime }} \]

[_quadrature]

16763

\[ {}y^{{2}/{5}}+{y^{\prime }}^{{2}/{5}} = a^{{2}/{5}} \]

[_quadrature]

16765

\[ {}y = y^{\prime } \left (1+y^{\prime } \cos \left (y^{\prime }\right )\right ) \]

[_quadrature]

16766

\[ {}y = \arcsin \left (y^{\prime }\right )+\ln \left (1+{y^{\prime }}^{2}\right ) \]

[_quadrature]

16767

\[ {}y = 2 y^{\prime } x +\ln \left (y^{\prime }\right ) \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

16768

\[ {}y = x \left (y^{\prime }+1\right )+{y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

16769

\[ {}y = 2 y^{\prime } x +\sin \left (y^{\prime }\right ) \]

[_dAlembert]

16770

\[ {}y = x {y^{\prime }}^{2}-\frac {1}{y^{\prime }} \]

[_dAlembert]

16771

\[ {}y = \frac {3 y^{\prime } x}{2}+{\mathrm e}^{y^{\prime }} \]

[_dAlembert]

16782

\[ {}{y^{\prime }}^{2}-4 y = 0 \]

[_quadrature]

16784

\[ {}{y^{\prime }}^{2}-y^{2} = 0 \]

[_quadrature]

16788

\[ {}8 {y^{\prime }}^{3}-12 {y^{\prime }}^{2} = 27 y-27 x \]

[[_homogeneous, ‘class C‘], _dAlembert]

16789

\[ {}\left (y^{\prime }-1\right )^{2} = y^{2} \]

[_quadrature]

16790

\[ {}y = {y^{\prime }}^{2}-y^{\prime } x +x \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

16791

\[ {}\left (y^{\prime } x +y\right )^{2} = y^{2} y^{\prime } \]

[[_homogeneous, ‘class A‘], _dAlembert]

16794

\[ {}3 x {y^{\prime }}^{2}-6 y y^{\prime }+x +2 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

16796

\[ {}y^{\prime } = \left (x -y\right )^{2}+1 \]

[[_homogeneous, ‘class C‘], _Riccati]

16799

\[ {}x^{3}-3 x y^{2}+\left (y^{3}-3 x^{2} y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

16800

\[ {}5 x y-4 y^{2}-6 x^{2}+\left (y^{2}-8 x y+\frac {5 x^{2}}{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

16807

\[ {}\frac {1}{x^{2}-x y+y^{2}} = \frac {y^{\prime }}{2 y^{2}-x y} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

16809

\[ {}x -y+3+\left (3 x +y+1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16815

\[ {}x -y+2+\left (x -y+3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16821

\[ {}y^{\prime }-1 = {\mathrm e}^{x +2 y} \]

[[_homogeneous, ‘class C‘], _dAlembert]

16824

\[ {}\left (3 x +3 y+a^{2}\right ) y^{\prime } = 4 x +4 y+b^{2} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16829

\[ {}\left (5 x -7 y+1\right ) y^{\prime }+x +y-1 = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16830

\[ {}x +y+1+\left (2 x +2 y-1\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16834

\[ {}y^{\prime }+x {y^{\prime }}^{2}-y = 0 \]

[_rational, _dAlembert]

17242

\[ {}y^{\prime } = \frac {3-2 x}{y} \]
i.c.

[_separable]

17265

\[ {}y^{\prime } = \frac {b +a y}{d +c y} \]

[_quadrature]

17307

\[ {}y^{\prime } = \frac {t -y}{2 t +5 y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

17313

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

17317

\[ {}y^{3}+y^{\prime } = 0 \]
i.c.

[_quadrature]

17324

\[ {}3+2 x +\left (-2+2 y\right ) y^{\prime } = 0 \]

[_separable]

17325

\[ {}2 x +4 y+\left (2 x -2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

17328

\[ {}y^{\prime } = -\frac {4 x +2 y}{2 x +3 y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

17329

\[ {}y^{\prime } = -\frac {4 x -2 y}{2 x -3 y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

17336

\[ {}2 x -y+\left (-x +2 y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

17349

\[ {}3 x y+y^{2}+\left (x^{2}+x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

17352

\[ {}\frac {\left (3 x^{3}-x y^{2}\right ) y^{\prime }}{y^{3}+3 x^{2} y} = 1 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

17354

\[ {}y+\sqrt {x^{2}-y^{2}} = y^{\prime } x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

17355

\[ {}x y^{\prime } y = \left (x +y\right )^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

17356

\[ {}y^{\prime } = \frac {4 y-7 x}{5 x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

17357

\[ {}y^{\prime } x -4 \sqrt {y^{2}-x^{2}} = y \]

[[_homogeneous, ‘class A‘], _dAlembert]

17358

\[ {}y^{\prime } = \frac {y^{4}+2 x y^{3}-3 x^{2} y^{2}-2 x^{3} y}{2 x^{2} y^{2}-2 x^{3} y-2 x^{4}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

17359

\[ {}\left (y+x \,{\mathrm e}^{\frac {x}{y}}\right ) y^{\prime } = y \,{\mathrm e}^{\frac {x}{y}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

17369

\[ {}y^{\prime } = r y-k^{2} y^{2} \]

[_quadrature]

17370

\[ {}y^{\prime } = a y+b y^{3} \]

[_quadrature]

17372

\[ {}\left (3 x-y \right ) x^{\prime }+9 y -2 x = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

17382

\[ {}x^{\prime } = \frac {2 x y +x^{2}}{3 y^{2}+2 x y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

17383

\[ {}4 x y^{\prime } y = 8 x^{2}+5 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

17826

\[ {}y^{\prime } = \frac {2 x y}{x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

17827

\[ {}y^{\prime } = \frac {y \left (1+\ln \left (y\right )-\ln \left (x \right )\right )}{x} \]

[[_homogeneous, ‘class A‘], _dAlembert]

17828

\[ {}x^{2} y^{\prime }+y^{2} = x y^{\prime } y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

17829

\[ {}\left (x +y\right ) y^{\prime } = y-x \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

17831

\[ {}3 y-7 x +7 = \left (3 x -7 y-3\right ) y^{\prime } \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

17832

\[ {}\left (x +2 y+1\right ) y^{\prime } = 3+2 x +4 y \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

17834

\[ {}\left (x +y\right )^{2} y^{\prime } = a^{2} \]

[[_homogeneous, ‘class C‘], _dAlembert]

17855

\[ {}\frac {2 x}{y^{3}}+\frac {\left (y^{2}-3 x^{2}\right ) y^{\prime }}{y^{4}} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

17868

\[ {}x {y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

17871

\[ {}{y^{\prime }}^{3}+y^{3}-3 y y^{\prime } = 0 \]

[_quadrature]

17872

\[ {}y = {y^{\prime }}^{2} {\mathrm e}^{y^{\prime }} \]

[_quadrature]

17873

\[ {}y^{2} \left (y^{\prime }-1\right ) = \left (2-y^{\prime }\right )^{2} \]

[_quadrature]

17878

\[ {}x = y y^{\prime }+a {y^{\prime }}^{2} \]

[_dAlembert]

17879

\[ {}y = x {y^{\prime }}^{2}+{y^{\prime }}^{3} \]

[_dAlembert]

17883

\[ {}{y^{\prime }}^{2}+2 y^{\prime } x +2 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

17884

\[ {}y^{\prime } = \sqrt {y-x} \]

[[_homogeneous, ‘class C‘], _dAlembert]

17885

\[ {}y^{\prime } = \sqrt {y-x}+1 \]

[[_homogeneous, ‘class C‘], _dAlembert]

17886

\[ {}y^{\prime } = \sqrt {y} \]

[_quadrature]

17891

\[ {}4 x -2 y y^{\prime }+x {y^{\prime }}^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

17892

\[ {}x {y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

17893

\[ {}y^{2} \left (y^{\prime }-1\right ) = \left (2-y^{\prime }\right )^{2} \]

[_quadrature]

17895

\[ {}x^{2} {y^{\prime }}^{2}-2 x y^{\prime } y+2 x y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

17988

\[ {}y^{\prime } = k y \]

[_quadrature]

17994

\[ {}2 x y^{\prime } y = x^{2}+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

17996

\[ {}y^{\prime } = \frac {y^{2}}{x y-x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18023

\[ {}y^{\prime } = {\mathrm e}^{3 x -2 y} \]
i.c.

[_separable]

18032

\[ {}v^{\prime } = g -\frac {k v^{2}}{m} \]

[_quadrature]

18033

\[ {}x^{2}-2 y^{2}+x y^{\prime } y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

18038

\[ {}x -y-\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18042

\[ {}x^{3}+y^{3}-x y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

18044

\[ {}y^{\prime } = \sin \left (x -y+1\right )^{2} \]

[[_homogeneous, ‘class C‘], _dAlembert]

18045

\[ {}y^{\prime } = \frac {x +y+4}{x -y-6} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18046

\[ {}y^{\prime } = \frac {x +y+4}{x +y-6} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18047

\[ {}2 x -2 y+\left (-1+y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18048

\[ {}y^{\prime } = \frac {x +y-1}{x +4 y+2} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18072

\[ {}\frac {4 y^{2}-2 x^{2}}{4 x y^{2}-x^{3}}+\frac {\left (8 y^{2}-x^{2}\right ) y^{\prime }}{4 y^{3}-x^{2} y} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

18073

\[ {}\left (3 x^{2}-y^{2}\right ) y^{\prime }-2 x y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

18087

\[ {}\left (x +y\right ) y^{\prime } = y-x \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18091

\[ {}y^{\prime } x +y = y^{\prime } \sqrt {x y} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

18130

\[ {}2 x +3 y+1+\left (2 y-3 x +5\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18136

\[ {}x y^{\prime } y = x^{2} y^{\prime }+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18141

\[ {}6 x +4 y+3+\left (3 x +2 y+2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18145

\[ {}y^{\prime } \ln \left (x -y\right ) = 1+\ln \left (x -y\right ) \]

[[_homogeneous, ‘class C‘], _exact, _dAlembert]

18147

\[ {}y^{2}-3 x y-2 x^{2} = \left (x^{2}-x y\right ) y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18153

\[ {}x^{2} y^{4}+x^{6}-x^{3} y^{3} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

18156

\[ {}y^{\prime } = \frac {2 x y \,{\mathrm e}^{\frac {x^{2}}{y^{2}}}}{y^{2}+y^{2} {\mathrm e}^{\frac {x^{2}}{y^{2}}}+2 x^{2} {\mathrm e}^{\frac {x^{2}}{y^{2}}}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

18157

\[ {}y^{\prime } = \frac {x +2 y+2}{y-2 x} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18163

\[ {}3 x^{2} y-y^{3}-\left (3 x y^{2}-x^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

18165

\[ {}y^{\prime } = \frac {-3 x -2 y-1}{2 x +3 y-1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18169

\[ {}3 x y+y^{2}+\left (3 x y+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18424

\[ {}x^{\prime } = b \,{\mathrm e}^{x} \]
i.c.

[_quadrature]

18426

\[ {}x^{\prime } = \sqrt {x^{2}-1} \]
i.c.

[_quadrature]

18427

\[ {}x^{\prime } = 2 \sqrt {x} \]
i.c.

[_quadrature]

18428

\[ {}x^{\prime } = \tan \left (x\right ) \]
i.c.

[_quadrature]

18431

\[ {}x^{\prime } = \cos \left (\frac {x}{t}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

18443

\[ {}x^{\prime } = -\lambda x \]

[_quadrature]

18461

\[ {}y^{\prime }+c y = a \]

[_quadrature]

18472

\[ {}x^{\prime } = k \left (A -n x\right ) \left (M -m x\right ) \]

[_quadrature]

18474

\[ {}y^{2} = x \left (y-x \right ) y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18475

\[ {}2 x^{2} y+y^{3}-x^{3} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

18476

\[ {}2 a x +b y+\left (2 c y+b x +e \right ) y^{\prime } = g \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18479

\[ {}\frac {2 x}{y^{3}}+\left (\frac {1}{y^{2}}-\frac {3 x^{2}}{y^{4}}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

18488

\[ {}x {y^{\prime }}^{2}+2 y^{\prime }-y = 0 \]

[_rational, _dAlembert]

18489

\[ {}2 {y^{\prime }}^{3}+{y^{\prime }}^{2}-y = 0 \]

[_quadrature]

18504

\[ {}y^{\prime } = 1+\frac {2 y}{x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18532

\[ {}y-2 y^{\prime } x -y {y^{\prime }}^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

18569

\[ {}x \left (x -2 y\right ) y^{\prime }+x^{2}+2 y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18570

\[ {}5 x y^{\prime } y-x^{2}-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

18571

\[ {}\left (x^{2}+3 x y-y^{2}\right ) y^{\prime }-3 y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

18572

\[ {}\left (x^{2}+2 x y\right ) y^{\prime }-3 x^{2}+2 x y-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18573

\[ {}5 x y^{\prime } y-4 x^{2}-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

18576

\[ {}\left (3 x +2 y-7\right ) y^{\prime } = 2 x -3 y+6 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18577

\[ {}\left (6 x -5 y+4\right ) y^{\prime } = 1+2 x -y \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18578

\[ {}\left (5 x -2 y+7\right ) y^{\prime } = x -3 y+2 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18579

\[ {}\left (x -3 y+4\right ) y^{\prime } = 5 x -7 y \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18580

\[ {}\left (x -3 y+4\right ) y^{\prime } = 2 x -6 y+7 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18581

\[ {}\left (5 x -2 y+7\right ) y^{\prime } = 10 x -4 y+6 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18582

\[ {}\left (2 x -2 y+5\right ) y^{\prime } = x -y+3 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18583

\[ {}\left (6 x -4 y+1\right ) y^{\prime } = 3 x -2 y+1 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18636

\[ {}x = {y^{\prime }}^{2}+y \]

[[_homogeneous, ‘class C‘], _dAlembert]

18660

\[ {}x^{2}+y^{2}-2 x y^{\prime } y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

18661

\[ {}y^{2}+\left (x^{2}+x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18662

\[ {}x^{2} y-\left (x^{3}+y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

18663

\[ {}\left (3 x +4 y\right ) y^{\prime }+y-2 x = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18664

\[ {}3 y-7 x +7+\left (7 y-3 x +3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18665

\[ {}\left (y-3 x +3\right ) y^{\prime } = 2 y-x -4 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18666

\[ {}x^{2}-4 x y-2 y^{2}+\left (y^{2}-4 x y-2 x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

18669

\[ {}2 a x +b y+g +\left (2 c y+b x +e \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18676

\[ {}x^{2} y-2 x y^{2}-\left (x^{3}-3 x^{2} y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18682

\[ {}y^{3}-2 x^{2} y+\left (2 x y^{2}-x^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

18695

\[ {}\left (x +y\right )^{2} y^{\prime } = a^{2} \]

[[_homogeneous, ‘class C‘], _dAlembert]

18696

\[ {}y^{\prime } x -y = \sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

18702

\[ {}2 x -y+1+\left (2 y-x -1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18707

\[ {}x^{2} y-\left (x^{3}+y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

18710

\[ {}y y^{\prime }+x = m \left (y^{\prime } x -y\right ) \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18720

\[ {}\left (x +y\right ) y^{\prime }+x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18722

\[ {}\left (y^{2}-x^{2}\right ) y^{\prime }+2 x y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

18724

\[ {}3 y+2 x +4-\left (4 x +6 y+5\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18727

\[ {}x^{2} y^{\prime }+y^{2} = x y^{\prime } y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18729

\[ {}\left (x -y\right )^{2} y^{\prime } = a^{2} \]

[[_homogeneous, ‘class C‘], _dAlembert]

18730

\[ {}{y^{\prime }}^{3}+2 x {y^{\prime }}^{2}-y^{2} {y^{\prime }}^{2}-2 x y^{2} y^{\prime } = 0 \]

[_quadrature]

18732

\[ {}\left (x +2 y\right ) {y^{\prime }}^{3}+3 \left (x +y\right ) {y^{\prime }}^{2}+\left (2 x +y\right ) y^{\prime } = 0 \]

[_quadrature]

18736

\[ {}x -y y^{\prime } = a {y^{\prime }}^{2} \]

[_dAlembert]

18737

\[ {}y = -a y^{\prime }+\frac {c +a \arcsin \left (y^{\prime }\right )}{\sqrt {1-{y^{\prime }}^{2}}} \]

[_quadrature]

18739

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+a x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

18740

\[ {}y = 2 y^{\prime }+3 {y^{\prime }}^{2} \]

[_quadrature]

18743

\[ {}y^{2} = a^{2} \left (1+{y^{\prime }}^{2}\right ) \]

[_quadrature]

18745

\[ {}y = y {y^{\prime }}^{2}+2 y^{\prime } x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

18746

\[ {}y = x \left (y^{\prime }+1\right )+{y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

18749

\[ {}{\mathrm e}^{4 x} \left (y^{\prime }-1\right )+{\mathrm e}^{2 y} {y^{\prime }}^{2} = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

18752

\[ {}x^{2} {y^{\prime }}^{2}-2 x y^{\prime } y+2 y^{2}-x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

18757

\[ {}a y {y^{\prime }}^{2}+\left (2 x -b \right ) y^{\prime }-y = 0 \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

18760

\[ {}3 y^{2} {y^{\prime }}^{2}-2 x y^{\prime } y-x^{2}+4 y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

18761

\[ {}\left (x^{2}+y^{2}\right ) \left (y^{\prime }+1\right )^{2}-2 \left (x +y\right ) \left (y^{\prime }+1\right ) \left (y y^{\prime }+x \right )+\left (y y^{\prime }+x \right )^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

18762

\[ {}\left (y y^{\prime }+n x \right )^{2} = \left (y^{2}+n \,x^{2}\right ) \left (1+{y^{\prime }}^{2}\right ) \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

18766

\[ {}\left ({y^{\prime }}^{2}-\frac {1}{a^{2}-x^{2}}\right ) \left (y^{\prime }-\sqrt {\frac {y}{x}}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

18771

\[ {}{y^{\prime }}^{3}+m {y^{\prime }}^{2} = a \left (y+m x \right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

18772

\[ {}{\mathrm e}^{3 x} \left (y^{\prime }-1\right )+{\mathrm e}^{2 y} {y^{\prime }}^{3} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], _dAlembert]

18774

\[ {}y-\frac {1}{\sqrt {1+{y^{\prime }}^{2}}} = b \]

[_quadrature]

18779

\[ {}\sqrt {x}\, y^{\prime } = \sqrt {y} \]

[_separable]

18781

\[ {}\left (y^{\prime }+1\right )^{3} = \frac {7 \left (x +y\right ) \left (1-y^{\prime }\right )^{3}}{4 a} \]

[[_homogeneous, ‘class C‘], _dAlembert]

18784

\[ {}{y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

18785

\[ {}a {y^{\prime }}^{3} = 27 y \]

[_quadrature]

18786

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+a x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

18793

\[ {}\left (8 {y^{\prime }}^{3}-27\right ) x = 12 y {y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

18979

\[ {}y-x +\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18981

\[ {}x^{3}+3 x y^{2}+\left (y^{3}+3 x^{2} y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

18985

\[ {}y y^{\prime }+x = m \left (y^{\prime } x -y\right ) \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

19002

\[ {}\left (x +y-1\right ) y^{\prime } = x +y+1 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

19003

\[ {}\left (2 x +2 y+1\right ) y^{\prime } = x +y+1 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

19004

\[ {}2 x +3 y-1+\left (2 x +3 y-5\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

19005

\[ {}\left (x^{2}+y^{2}\right ) y^{\prime } = x^{2}+x y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

19007

\[ {}x^{2}-y^{2}+2 x y^{\prime } y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

19008

\[ {}y^{\prime } = \frac {y}{x}+\tan \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

19009

\[ {}\left (2 x -2 y+5\right ) y^{\prime }-x +y-3 = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

19010

\[ {}x +y+1-\left (2 x +2 y+1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

19011

\[ {}y^{2} = \left (x y-x^{2}\right ) y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

19016

\[ {}\left (6 x -5 y+4\right ) y^{\prime }+y-2 x -1 = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

19017

\[ {}\left (x -3 y+4\right ) y^{\prime }+7 y-5 x = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

19018

\[ {}\left (3+2 x +4 y\right ) y^{\prime } = x +2 y+1 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

19019

\[ {}y^{\prime } x -y = \sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

19020

\[ {}\left (3 x^{2}+y^{2}\right ) y y^{\prime }+x \left (x^{2}+3 y^{2}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

19021

\[ {}x^{2}+3 y^{2}-2 x y^{\prime } y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

19022

\[ {}y^{\prime } = \frac {1+2 x -y}{x +2 y-3} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

19023

\[ {}\left (x -y\right ) y^{\prime } = x +y+1 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

19024

\[ {}x -y-2-\left (2 x -2 y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

19048

\[ {}x^{2} y-2 x y^{2}-\left (x^{3}-3 x^{2} y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

19052

\[ {}x^{2}+y^{2}-2 x y^{\prime } y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

19057

\[ {}\frac {\left (x +y-a \right ) y^{\prime }}{x +y-b} = \frac {x +y+a}{x +y+b} \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

19058

\[ {}\left (x -y\right )^{2} y^{\prime } = a^{2} \]

[[_homogeneous, ‘class C‘], _dAlembert]

19059

\[ {}\left (x +y\right )^{2} y^{\prime } = a^{2} \]

[[_homogeneous, ‘class C‘], _dAlembert]

19060

\[ {}y^{\prime } = \left (4 x +y+1\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

19063

\[ {}y^{\prime } x -y = \sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

19066

\[ {}y y^{\prime }+x = m \left (y^{\prime } x -y\right ) \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

19069

\[ {}{x^{\prime }}^{2} = k^{2} \left (1-{\mathrm e}^{-\frac {2 g x}{k^{2}}}\right ) \]
i.c.

[_quadrature]

19075

\[ {}\left (2 x +2 y+3\right ) y^{\prime } = x +y+1 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

19079

\[ {}y^{\prime } = \sin \left (x +y\right )+\cos \left (x +y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

19083

\[ {}x^{2} y^{\prime }+y^{2} = x y^{\prime } y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

19087

\[ {}y^{\prime }+\frac {a x +b y+c}{b x +f y+e} = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

19151

\[ {}{y^{\prime }}^{2}+y^{\prime } x +y y^{\prime }+x y = 0 \]

[_quadrature]

19156

\[ {}{y^{\prime }}^{3}+2 x {y^{\prime }}^{2}-y^{2} {y^{\prime }}^{2}-2 x y^{2} y^{\prime } = 0 \]

[_quadrature]

19158

\[ {}y = 3 x +a \ln \left (y^{\prime }\right ) \]

[_separable]

19159

\[ {}{y^{\prime }}^{2}-y y^{\prime }+x = 0 \]

[_dAlembert]

19160

\[ {}y = x +a \arctan \left (y^{\prime }\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

19161

\[ {}3 {y^{\prime }}^{5}-y y^{\prime }+1 = 0 \]

[_quadrature]

19162

\[ {}y = x {y^{\prime }}^{2}+y^{\prime } \]

[_rational, _dAlembert]

19163

\[ {}x {y^{\prime }}^{2}+a x = 2 y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

19164

\[ {}{y^{\prime }}^{3}+y^{\prime } = {\mathrm e}^{y} \]

[_quadrature]

19165

\[ {}y = \sin \left (y^{\prime }\right )-y^{\prime } \cos \left (y^{\prime }\right ) \]

[_quadrature]

19168

\[ {}x = y y^{\prime }-{y^{\prime }}^{2} \]

[_dAlembert]

19169

\[ {}\left (2 x -b \right ) y^{\prime } = y-a y {y^{\prime }}^{2} \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

19170

\[ {}x = y+a \ln \left (y^{\prime }\right ) \]

[_separable]

19171

\[ {}y {y^{\prime }}^{2}+2 y^{\prime } x = y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

19183

\[ {}4 y {y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

19184

\[ {}y {y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

19186

\[ {}x^{2} {y^{\prime }}^{2}-2 x y^{\prime } y+2 y^{2} = x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

19187

\[ {}y = y^{\prime } x +x \sqrt {1+{y^{\prime }}^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

19189

\[ {}y = \frac {2 a {y^{\prime }}^{2}}{\left (1+{y^{\prime }}^{2}\right )^{2}} \]

[_quadrature]

19194

\[ {}y-y^{\prime } x = y y^{\prime }+x \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

19195

\[ {}a^{2} y {y^{\prime }}^{2}-4 y^{\prime } x +y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

19197

\[ {}\left ({y^{\prime }}^{2}-\frac {1}{a^{2}-x^{2}}\right ) \left (y^{\prime }-\sqrt {\frac {y}{x}}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

19199

\[ {}y y^{\prime }+x = a {y^{\prime }}^{2} \]

[_dAlembert]

19201

\[ {}2 y = y^{\prime } x +\frac {a}{y^{\prime }} \]

[[_homogeneous, ‘class G‘], _rational, _dAlembert]

19202

\[ {}y = \sqrt {1+{y^{\prime }}^{2}}+a y^{\prime } \]

[_quadrature]

19204

\[ {}y = a y^{\prime }+b {y^{\prime }}^{2} \]

[_quadrature]

19205

\[ {}{y^{\prime }}^{3}-\left (y+2 x -{\mathrm e}^{x -y}\right ) {y^{\prime }}^{2}+\left (2 x y-2 x \,{\mathrm e}^{x -y}-y \,{\mathrm e}^{x -y}\right ) y^{\prime }+2 x y \,{\mathrm e}^{x -y} = 0 \]

[_quadrature]

19212

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+a x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

19219

\[ {}{y^{\prime }}^{2}+y^{2} = 1 \]

[_quadrature]

19223

\[ {}y {y^{\prime }}^{2}-2 y^{\prime } x +y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

19224

\[ {}3 x {y^{\prime }}^{2}-6 y y^{\prime }+x +2 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

19234

\[ {}{y^{\prime }}^{2} = \left (4 y+1\right ) \left (y^{\prime }-y\right ) \]

[_quadrature]

19238

\[ {}8 x {y^{\prime }}^{3} = y \left (12 {y^{\prime }}^{2}-9\right ) \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

19444

\[ {}y^{2}+\left (x^{2}+x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

19445

\[ {}y^{\prime } = \frac {6 x -2 y-7}{2 x +3 y-6} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

19446

\[ {}2 x +y+1+\left (4 x +2 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

19453

\[ {}x^{2} y-\left (x^{3}+y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

19457

\[ {}y^{3}-2 x^{2} y+\left (2 x y^{2}-x^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

19476

\[ {}\left (x +2 y\right ) {y^{\prime }}^{3}+3 \left (x +y\right ) {y^{\prime }}^{2}+\left (2 x +y\right ) y^{\prime } = 0 \]

[_quadrature]

19477

\[ {}y-\frac {1}{\sqrt {1+{y^{\prime }}^{2}}} = b \]

[_quadrature]

19478

\[ {}y = \frac {x}{y^{\prime }}-a y^{\prime } \]

[_dAlembert]

19479

\[ {}{y^{\prime }}^{3}+m {y^{\prime }}^{2} = a \left (y+m x \right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

19482

\[ {}a y {y^{\prime }}^{2}+\left (2 x -b \right ) y^{\prime }-y = 0 \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

19483

\[ {}y = x \left (y^{\prime }+1\right )+{y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

19484

\[ {}{\mathrm e}^{3 x} \left (y^{\prime }-1\right )+{\mathrm e}^{2 y} {y^{\prime }}^{3} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], _dAlembert]

19487

\[ {}y-2 y^{\prime } x +a y {y^{\prime }}^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

19492

\[ {}\left (y y^{\prime }+n x \right )^{2} = \left (y^{2}+n \,x^{2}\right ) \left (1+{y^{\prime }}^{2}\right ) \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

19494

\[ {}\left (x^{2}+y^{2}\right ) \left (y^{\prime }+1\right )^{2}-2 \left (x +y\right ) \left (y^{\prime }+1\right ) \left (y y^{\prime }+x \right )+\left (y y^{\prime }+x \right )^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

19501

\[ {}{y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

19503

\[ {}x^{2} {y^{\prime }}^{3}+\left (2 x +y\right ) y y^{\prime }+y^{2} = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

19504

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+x +2 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

19505

\[ {}{y^{\prime }}^{2} y^{2} \cos \left (a \right )^{2}-2 y^{\prime } x y \sin \left (a \right )^{2}+y^{2}-x^{2} \sin \left (a \right )^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]