# |
ODE |
ODE classification |
Solved? |
\[
{}y^{\prime } = y^{{1}/{3}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{{1}/{3}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \sqrt {x -y}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y y^{\prime } = x -1
\] |
[_separable] |
✓ |
|
\[
{}y y^{\prime } = x -1
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \ln \left (1+y^{2}\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }+1 = 2 y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 6 \,{\mathrm e}^{2 x -y}
\] |
[_separable] |
✓ |
|
\[
{}{y^{\prime }}^{2} = 4 y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }+y = 2
\] |
[_quadrature] |
✓ |
|
\[
{}\left (x +y\right ) y^{\prime } = x -y
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } x = y+2 \sqrt {x y}
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}\left (x -y\right ) y^{\prime } = x +y
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x \left (x +y\right ) y^{\prime } = y \left (x -y\right )
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}\left (x +2 y\right ) y^{\prime } = y
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x y^{2} y^{\prime } = x^{3}+y^{3}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x y^{\prime } y = x^{2}+3 y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}\left (x^{2}-y^{2}\right ) y^{\prime } = 2 x y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } x = y+\sqrt {x^{2}+y^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x \left (x +y\right ) y^{\prime }+y \left (3 x +y\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}\left (x +y\right ) y^{\prime } = 1
\] |
[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}2 x +3 y+\left (3 x +2 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}4 x -y+\left (6 y-x \right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}3 x^{2}+2 y^{2}+\left (4 x y+6 y^{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } = f \left (a x +b y+c \right )
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {x -y-1}{x +y+3}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {2 y-x +7}{4 x -3 y-18}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \sin \left (x -y\right )
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = -\frac {y \left (2 x^{3}-y^{3}\right )}{x \left (2 y^{3}-x^{3}\right )}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime }+2 x y = x^{2}+y^{2}+1
\] |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
|
\[
{}x^{\prime } = 1-x^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = 9-4 x^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}x^{3} y^{\prime } = x^{2} y-y^{3}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}2 x^{2} y-x^{3} y^{\prime } = y^{3}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } = -\frac {3 x^{2}+2 y^{2}}{4 x y}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } = \frac {x +3 y}{y-3 x}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime }+y^{2} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{{1}/{3}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{{1}/{3}}
\] |
[_quadrature] |
✓ |
|
\[
{}y y^{\prime } = x -1
\] |
[_separable] |
✓ |
|
\[
{}y y^{\prime } = x -1
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \ln \left (1+y^{2}\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }+1 = 2 y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 6 \,{\mathrm e}^{2 x -y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+y = 2
\] |
[_quadrature] |
✓ |
|
\[
{}\left (x +y\right ) y^{\prime } = x -y
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 x y^{\prime } y = x^{2}+y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } x = y+2 \sqrt {x y}
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}\left (x -y\right ) y^{\prime } = x +y
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x \left (x +y\right ) y^{\prime } = y \left (x -y\right )
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}\left (x +2 y\right ) y^{\prime } = y
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x y^{2} y^{\prime } = x^{3}+y^{3}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x y^{\prime } y = x^{2}+3 y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}\left (x^{2}-y^{2}\right ) y^{\prime } = 2 x y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } x = y+\sqrt {x^{2}+y^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x \left (x +y\right ) y^{\prime }+y \left (3 x +y\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}2 x +3 y+\left (3 x +2 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}4 x -y+\left (6 y-x \right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}3 x^{2}+2 y^{2}+\left (4 x y+6 y^{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}x^{3} y^{\prime } = x^{2} y-y^{3}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}2 x^{2} y-x^{3} y^{\prime } = y^{3}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } = \frac {-3 x^{2}-2 y^{2}}{4 x y}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } = \frac {x +3 y}{y-3 x}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {-2 x +1}{y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {b +a y}{d +c y}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {x^{2}+3 y^{2}}{2 x y}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } = \frac {4 y-3 x}{2 x -y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = -\frac {4 x +3 y}{2 x +y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {x +3 y}{x -y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {x^{2}-3 y^{2}}{2 x y}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } = \frac {3 y^{2}-x^{2}}{2 x y}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{3}+y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = a y+b y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = -1+{\mathrm e}^{y}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = -1+{\mathrm e}^{-y}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = -k \left (-1+y\right )^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = -b \sqrt {y}+a y
\] |
[_quadrature] |
✓ |
|
\[
{}3+2 x +\left (-2+2 y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}2 x +4 y+\left (2 x -2 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {-a x -b y}{b x +c y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {-a x +b y}{b x -c y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 x -y+\left (-x +2 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}3 x y+y^{2}+\left (x^{2}+x y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}x +y+\left (x +2 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{x +y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {x +y}{x -y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 x y+3 y^{2}-\left (x^{2}+2 x y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}y^{\prime } = 2 y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = a y^{\frac {a -1}{a}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }+a y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }+3 y = 1
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {2 x +3 y}{x -4 y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = y^{{2}/{5}}
\] |
[_quadrature] |
✓ |
|
\[
{}x y^{3} y^{\prime } = y^{4}+x^{4}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x y^{\prime } y = x^{2}+2 y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } = \frac {x +y}{x -y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {y^{3}+2 x y^{2}+x^{2} y+x^{3}}{x \left (x +y\right )^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {x +2 y}{2 x +y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{y-2 x}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {x y^{2}+2 y^{3}}{x^{3}+x^{2} y+x y^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {x^{3}+x^{2} y+3 y^{3}}{x^{3}+3 x y^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x y^{\prime } y = x^{2}-x y+y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {2 y^{2}-x y+2 x^{2}}{x y+2 x^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {x^{2}+x y+y^{2}}{x y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {-6 x +y-3}{2 x -y-1}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {2 x +y+1}{x +2 y-4}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {-x +3 y-14}{x +y-2}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}4 x +7 y+\left (3 x +4 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 x +y+\left (2 y+2 x \right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}7 x +4 y+\left (4 x +3 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x^{2}+y^{2}+2 x y^{\prime } y = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime }+y^{2}+k^{2} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }+y^{2}+4 x y+4 x^{2}+2 = 0
\] |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{3+t +y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } t = y+\sqrt {t^{2}+y^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}2 t y y^{\prime } = 3 y^{2}-t^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}\left (t -\sqrt {t y}\right ) y^{\prime } = y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {t +y}{t -y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}{\mathrm e}^{\frac {t}{y}} \left (y-t \right ) y^{\prime }+y \left (1+{\mathrm e}^{\frac {t}{y}}\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {t +y+1}{t -y+3}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}1+t -2 y+\left (4 t -3 y-6\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}t +2 y+3+\left (2 t +4 y-1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{\left (y-t \right )^{2}}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{3+t +y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } t = y+\sqrt {t^{2}+y^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}2 t y y^{\prime } = 3 y^{2}-t^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}\left (t -\sqrt {t y}\right ) y^{\prime } = y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {t +y}{t -y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}{\mathrm e}^{\frac {t}{y}} \left (y-t \right ) y^{\prime }+y \left (1+{\mathrm e}^{\frac {t}{y}}\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {t +y+1}{t -y+3}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}1+t -2 y+\left (4 t -3 y-6\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}t +2 y+3+\left (2 t +4 y-1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{\left (y-t \right )^{2}}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}x^{\prime } = x^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{y}
\] |
[_quadrature] |
✓ |
|
\[
{}{\mathrm e}^{y} \left (y^{\prime }+1\right ) = 1
\] |
[_quadrature] |
✓ |
|
\[
{}\left (x +y\right ) y^{\prime }+x = y
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } x -y = \sqrt {x y}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {2 x -y}{x +4 y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } x -y = \sqrt {x^{2}-y^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } x -y+\sqrt {y^{2}-x^{2}} = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}\left (x y-x^{2}\right ) y^{\prime }-y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}y^{\prime } x +y = 2 \sqrt {x y}
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x +y+\left (x -y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y \left (x^{2}-x y+y^{2}\right )+x y^{\prime } \left (x^{2}+x y+y^{2}\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } x -y-x \sin \left (\frac {y}{x}\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}\left (\frac {x}{y}+\frac {y}{x}\right ) y^{\prime }+1 = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{x -k \sqrt {x^{2}+y^{2}}}
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{2} \left (y y^{\prime }-x \right )+x^{3} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{x}+\tanh \left (\frac {y}{x}\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x +y-\left (x -y+2\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x +\left (x -2 y+2\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}2 x -y+1+\left (x +y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x -y+2+\left (x +y-1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x -y+\left (y-x +1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {x +y-1}{x -y-1}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x +y+\left (2 x +2 y-1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x -y+1+\left (x -y-1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x +2 y+\left (3 x +6 y+3\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x +2 y+2 = \left (2 x +y-1\right ) y^{\prime }
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}3 x -y+1+\left (x -3 y-5\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}6 x -3 y+6+\left (2 x -y+5\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x +y+4 = \left (2 x +2 y-1\right ) y^{\prime }
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 x +3 y-1+\left (2 x +3 y+2\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x -2 y+3+\left (1-x +2 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 x +y+\left (4 x +2 y+1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x +y+\left (x -2 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}3 x +y+\left (x +3 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}a_{1} x +b_{1} y+c_{1} +\left (b_{1} x +b_{2} y+c_{2} \right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 x y-\left (x^{2}+y^{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\frac {x^{2}+3 y^{2}}{x \left (3 x^{2}+4 y^{2}\right )}+\frac {\left (2 x^{2}+y^{2}\right ) y^{\prime }}{y \left (3 x^{2}+4 y^{2}\right )} = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}\frac {x^{2}-y^{2}}{x \left (2 x^{2}+y^{2}\right )}+\frac {\left (x^{2}+2 y^{2}\right ) y^{\prime }}{y \left (2 x^{2}+y^{2}\right )} = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}y+\left (2 x -3 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x y^{\prime } y = x^{2}-y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{2}+\left (x^{2}+x y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}2 x +y-\left (x -2 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x -2 y+1+\left (-2+y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x -3 y = \left (3 y-x +2\right ) y^{\prime }
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x^{2} y-\left (x^{3}+y^{3}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y+\left (3 x -2 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (3 x +4 y\right ) y^{\prime }+2 x +y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } x -y-\sqrt {x^{2}+y^{2}} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x +y+\left (2 x +3 y-1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}1+{\mathrm e}^{\frac {x}{y}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _dAlembert] |
✓ |
|
\[
{}y \sqrt {x^{2}+y^{2}}+x y = x^{2} y^{\prime }
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y \cos \left (\frac {x}{y}\right )-\left (y+x \cos \left (\frac {x}{y}\right )\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x -2 y+3 = \left (x -2 y+1\right ) y^{\prime }
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime }-y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x \left ({y^{\prime }}^{2}-1\right ) = 2 y y^{\prime }
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{2} {y^{\prime }}^{2}-2 x y^{\prime } y+2 y^{2} = x^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y = y^{\prime } x \left (y^{\prime }+1\right )
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y = x +3 \ln \left (y^{\prime }\right )
\] |
[_separable] |
✓ |
|
\[
{}y {y^{\prime }}^{2}-2 y^{\prime } x +y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2}+y^{2} = 1
\] |
[_quadrature] |
✓ |
|
\[
{}x \left ({y^{\prime }}^{2}-1\right ) = 2 y y^{\prime }
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}4 x -2 y y^{\prime }+x {y^{\prime }}^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y {y^{\prime }}^{2} = 3 y^{\prime } x +y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}8 x +1 = y {y^{\prime }}^{2}
\] |
[[_homogeneous, ‘class C‘], _rational, _dAlembert] |
✓ |
|
\[
{}y {y^{\prime }}^{2}+2 y^{\prime }+1 = 0
\] |
[_quadrature] |
✓ |
|
\[
{}\left (1+{y^{\prime }}^{2}\right ) x = \left (x +y\right ) y^{\prime }
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}2 y^{\prime } x +y = x {y^{\prime }}^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x = y-{y^{\prime }}^{3}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}x +2 y y^{\prime } = x {y^{\prime }}^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}4 x -2 y y^{\prime }+x {y^{\prime }}^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{3} = y y^{\prime }+1
\] |
[_dAlembert] |
✓ |
|
\[
{}y \left (1+{y^{\prime }}^{2}\right ) = 2 y^{\prime } x
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}2 x +x {y^{\prime }}^{2} = 2 y y^{\prime }
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x = y y^{\prime }+{y^{\prime }}^{2}
\] |
[_dAlembert] |
✓ |
|
\[
{}4 x {y^{\prime }}^{2}+2 y^{\prime } x = y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y = y^{\prime } x \left (y^{\prime }+1\right )
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}2 x {y^{\prime }}^{3}+1 = y {y^{\prime }}^{2}
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}3 {y^{\prime }}^{4} x = y {y^{\prime }}^{3}+1
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}2 {y^{\prime }}^{5}+2 y^{\prime } x = y
\] |
[_dAlembert] |
✓ |
|
\[
{}\frac {1}{{y^{\prime }}^{2}}+y^{\prime } x = 2 y
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}2 y = 3 y^{\prime } x +4+2 \ln \left (y^{\prime }\right )
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2}-y^{2} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 2 y-4
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = -1+y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 1-y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{3}-y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 1-y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = -y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 2 y
\] |
[_quadrature] |
✓ |
|
\[
{}\left (y-x \right ) y^{\prime }+2 x +3 y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {1}{x +2 y+1}
\] |
[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = -\frac {x +y}{3 x +3 y-4}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (5 x +y-7\right ) y^{\prime } = 3 x +3 y+3
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}{\mathrm e}^{x +y} y^{\prime }-1 = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (3 x -y\right ) y^{\prime } = 3 y
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } x = \sqrt {16 x^{2}-y^{2}}+y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } x -y = \sqrt {9 x^{2}+y^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x \left (x^{2}-y^{2}\right )-x \left (x^{2}+y^{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } x +y \ln \left (x \right ) = y \ln \left (y\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {y^{2}+2 x y-2 x^{2}}{x^{2}-x y+y^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}2 x \left (2 x +y\right ) y^{\prime } = y \left (4 x -y\right )
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}y^{\prime } x = x \tan \left (\frac {y}{x}\right )+y
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = -y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}{\mathrm e}^{x +y} y^{\prime }-1 = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {2 \sqrt {-1+y}}{3}
\] |
[_quadrature] |
✓ |
|
\[
{}m v^{\prime } = m g -k v^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}\left (3 x -y\right ) y^{\prime } = 3 y
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } x = \sqrt {16 x^{2}-y^{2}}+y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } x -y = \sqrt {9 x^{2}+y^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } x +y \ln \left (x \right ) = y \ln \left (y\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {y^{2}+2 x y-2 x^{2}}{x^{2}-x y+y^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}2 x \left (2 x +y\right ) y^{\prime } = y \left (4 x -y\right )
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}y^{\prime } x = x \tan \left (\frac {y}{x}\right )+y
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {y-\sqrt {x^{2}+y^{2}}}{x}
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } x -y = \sqrt {4 x^{2}-y^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {x +a y}{a x -y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \left (4 x +y+2\right )^{2}
\] |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
|
\[
{}y^{\prime } = \sin \left (3 x -3 y+1\right )^{2}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {x +2 y-1}{2 x -y+3}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\frac {y^{\prime }}{y}-\frac {2 \ln \left (y\right )}{x} = \frac {1-2 \ln \left (x \right )}{x}
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}5 x +2 y+1+\left (2 x +y+1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}3 x -y+1-\left (6 x -2 y-3\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x -2 y-3+\left (2 x +y-1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 x +3 y+1+\left (4 x +6 y+1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y = y^{\prime }+\frac {{y^{\prime }}^{2}}{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y-x = {y^{\prime }}^{2} \left (1-\frac {2 y^{\prime }}{3}\right )
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}x^{3}+y^{3}-x y^{2} y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime }+y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{x -2 y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {3 x -y+1}{3 y-x +5}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}3 y-7 x +7+\left (7 y-3 x +3\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{x -y}
\] |
[_separable] |
✓ |
|
\[
{}\left (x +y-1\right ) y^{\prime } = x -y+1
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x y^{\prime } y = 2 x^{2}-y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } = \sin \left (x -y+1\right )^{2}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {x +y+4}{x -y-6}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {x +y+4}{x +y-6}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (3 x^{2}-y^{2}\right ) y^{\prime }-2 x y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (x +y\right ) y^{\prime } = y-x
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 x +3 y+1+\left (2 y-3 x +5\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (x y-x^{2}\right ) y^{\prime } = y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}6 x +4 y+3+\left (3 x +2 y+2\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } \ln \left (x -y\right ) = 1+\ln \left (x -y\right )
\] |
[[_homogeneous, ‘class C‘], _exact, _dAlembert] |
✓ |
|
\[
{}y^{2}-3 x y-2 x^{2} = \left (x^{2}-x y\right ) y^{\prime }
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}x +y+\left (x -y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x \cos \left (\frac {y}{x}\right )^{2}-y+y^{\prime } x = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } x = y \left (1+\ln \left (y\right )-\ln \left (x \right )\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x y+\left (x^{2}+y^{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (1-{\mathrm e}^{-\frac {y}{x}}\right ) y^{\prime }+1-\frac {y}{x} = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x^{2}-x y+y^{2}-x y^{\prime } y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}\left (3+2 x +4 y\right ) y^{\prime } = x +2 y+1
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {2 x +y-1}{x -y-2}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y+2 = \left (2 x +y-4\right ) y^{\prime }
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \sin \left (x -y\right )^{2}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \left (x +1\right )^{2}+\left (4 y+1\right )^{2}+8 x y+1
\] |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
|
\[
{}2 x y+\left (x^{2}+2 x y+y^{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x -\sqrt {x^{2}+y^{2}}+\left (y-\sqrt {x^{2}+y^{2}}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class G‘], _dAlembert] |
✓ |
|
\[
{}x y^{\prime } \left (y^{\prime }+2\right ) = y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } x +y = 4 \sqrt {y^{\prime }}
\] |
[[_homogeneous, ‘class G‘], _dAlembert] |
✓ |
|
\[
{}2 y^{\prime } x -y = \ln \left (y^{\prime }\right )
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}2 \sqrt {x y}-y-y^{\prime } x = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{\frac {x y^{\prime }}{y}}
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } x -y = x \tan \left (\frac {y}{x}\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}4 x -2 y y^{\prime }+x {y^{\prime }}^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } x = y+\sqrt {x^{2}-y^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (y^{\prime }+1\right ) \ln \left (\frac {x +y}{3+x}\right ) = \frac {x +y}{3+x}
\] |
[[_homogeneous, ‘class C‘], _exact, _dAlembert] |
✓ |
|
\[
{}2 {y^{\prime }}^{3}-3 {y^{\prime }}^{2}+x = y
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = 3-3 x +3 y+\left (x -y\right )^{2}
\] |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
|
\[
{}y^{\prime } = \left (3+x -4 y\right )^{2}
\] |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
|
\[
{}y^{\prime } = \left (1+4 x +9 y\right )^{2}
\] |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
|
\[
{}y^{\prime } = a +b y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \operatorname {a0} +\operatorname {a1} y+\operatorname {a2} y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y \left (a +b y^{2}\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \operatorname {a0} +\operatorname {a1} y+\operatorname {a2} y^{2}+\operatorname {a3} y^{3}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \sqrt {a +b y^{2}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y \sqrt {a +b y}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = a +b \cos \left (A x +B y\right )
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = a +b \cos \left (y\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = a +b \sin \left (y\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \sqrt {a +b \cos \left (y\right )}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{x +y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = a f \left (y\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = f \left (a +b x +c y\right )
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}3 y^{\prime } = x +\sqrt {x^{2}-3 y}
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}y^{\prime } x = y+\sqrt {x^{2}+y^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } x = y+\sqrt {x^{2}-y^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } x = y+a \sqrt {y^{2}+b^{2} x^{2}}
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } x +x -y+x \cos \left (\frac {y}{x}\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } x = y-x \cos \left (\frac {y}{x}\right )^{2}
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } x = y+x \sin \left (\frac {y}{x}\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } x = y-x \tan \left (\frac {y}{x}\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } x = x +y+{\mathrm e}^{\frac {y}{x}} x
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } x = \left (1+\ln \left (x \right )-\ln \left (y\right )\right ) y
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } x = y-2 x \tanh \left (\frac {y}{x}\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x^{2} y^{\prime } = \left (x +a y\right ) y
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x^{2} y^{\prime } = \left (a x +b y\right ) y
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}\left (x -a \right )^{2} y^{\prime }+k \left (x +y-a \right )^{2}+y^{2} = 0
\] |
[[_homogeneous, ‘class C‘], _rational, _Riccati] |
✓ |
|
\[
{}a \,x^{2} y^{\prime } = x^{2}+y a x +b^{2} y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
|
\[
{}x^{3} y^{\prime } = \left (2 x^{2}+y^{2}\right ) y
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}2 x^{3} y^{\prime } = y \left (x^{2}-y^{2}\right )
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}2 x^{3} y^{\prime } = \left (3 x^{2}+a y^{2}\right ) y
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}\left (1+y\right ) y^{\prime } = x +y
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (x +y\right ) y^{\prime }+y = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (x -y\right ) y^{\prime } = y
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (x +y\right ) y^{\prime }+x -y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (x +y\right ) y^{\prime } = x -y
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (x -y\right ) y^{\prime } = \left ({\mathrm e}^{-\frac {x}{y}}+1\right ) y
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}\left (x +y+1\right ) y^{\prime }+1+4 x +3 y = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (x +y+2\right ) y^{\prime } = 1-x -y
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (3-x -y\right ) y^{\prime } = 1+x -3 y
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (3-x +y\right ) y^{\prime } = 11-4 x +3 y
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (2 x +y\right ) y^{\prime }+x -2 y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (2 x -y+2\right ) y^{\prime }+3+6 x -3 y = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (2 x -y+3\right ) y^{\prime }+2 = 0
\] |
[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}\left (4+2 x -y\right ) y^{\prime }+5+x -2 y = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (5-2 x -y\right ) y^{\prime }+4-x -2 y = 0
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (1-3 x +y\right ) y^{\prime } = 2 x -2 y
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (2-3 x +y\right ) y^{\prime }+5-2 x -3 y = 0
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (4 x -y\right ) y^{\prime }+2 x -5 y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (6-4 x -y\right ) y^{\prime } = 2 x -y
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (1+5 x -y\right ) y^{\prime }+5+x -5 y = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (a +b x +y\right ) y^{\prime }+a -b x -y = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (x -2 y\right ) y^{\prime } = y
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (x +2 y\right ) y^{\prime }+2 x -y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (x -2 y\right ) y^{\prime }+2 x +y = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (x -2 y+1\right ) y^{\prime } = 1+2 x -y
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (x +2 y+1\right ) y^{\prime }+1-x -2 y = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (x +2 y+1\right ) y^{\prime }+7+x -4 y = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (3+2 x -2 y\right ) y^{\prime } = 1+6 x -2 y
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (1-4 x -2 y\right ) y^{\prime }+2 x +y = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (6 x -2 y\right ) y^{\prime } = 2+3 x -y
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (19+9 x +2 y\right ) y^{\prime }+18-2 x -6 y = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (x -3 y\right ) y^{\prime }+4+3 x -y = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (4-x -3 y\right ) y^{\prime }+3-x -3 y = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (2 x +3 y+2\right ) y^{\prime } = 1-2 x -3 y
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (5-2 x -3 y\right ) y^{\prime }+1-2 x -3 y = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (1+9 x -3 y\right ) y^{\prime }+2+3 x -y = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (x +4 y\right ) y^{\prime }+4 x -y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (3+2 x +4 y\right ) y^{\prime } = x +2 y+1
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (5+2 x -4 y\right ) y^{\prime } = x -2 y+3
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (5+3 x -4 y\right ) y^{\prime } = 2+7 x -3 y
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}4 \left (1-x -y\right ) y^{\prime }+2-x = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}\left (11-11 x -4 y\right ) y^{\prime } = 62-8 x -25 y
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (6+3 x +5 y\right ) y^{\prime } = 2+x +7 y
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (7 x +5 y\right ) y^{\prime }+10 x +8 y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (5-x +6 y\right ) y^{\prime } = 3-x +4 y
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}3 \left (x +2 y\right ) y^{\prime } = 1-x -2 y
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}3 y-7 x +7+\left (7 y-3 x +3\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (1+x +9 y\right ) y^{\prime }+1+x +5 y = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (8+5 x -12 y\right ) y^{\prime } = 3+2 x -5 y
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (140+7 x -16 y\right ) y^{\prime }+25+8 x +y = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (a x +b y\right ) y^{\prime }+x = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}\left (a x +b y\right ) y^{\prime }+y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (a x +b y\right ) y^{\prime }+b x +a y = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (a x +b y\right ) y^{\prime } = b x +a y
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x y^{\prime } y+x^{2}+y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x y^{\prime } y = x^{2}-x y+y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}x y^{\prime } y+2 x^{2}-2 x y-y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}x y^{\prime } y+x^{2} {\mathrm e}^{-\frac {2 y}{x}}-y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x \left (y+2\right ) y^{\prime }+a x = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x \left (x +y\right ) y^{\prime }+y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}x \left (x -y\right ) y^{\prime }+y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}x \left (x +y\right ) y^{\prime } = x^{2}+y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}x \left (x -y\right ) y^{\prime }+2 x^{2}+3 x y-y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}x \left (2 x +y\right ) y^{\prime } = x^{2}+x y-y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}x \left (4 x -y\right ) y^{\prime }+4 x^{2}-6 x y-y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}x^{2}+y^{2}+2 x y^{\prime } y = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
|
\[
{}2 x y^{\prime } y = x^{2}+y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x \left (x -2 y\right ) y^{\prime }+y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}x \left (x +2 y\right ) y^{\prime }+\left (2 x -y\right ) y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}x \left (x -2 y\right ) y^{\prime }+\left (2 x -y\right ) y = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}x \left (2 x +3 y\right ) y^{\prime } = y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}x \left (2 x +3 y\right ) y^{\prime }+3 \left (x +y\right )^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}a x y y^{\prime } = x^{2}+y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}a x y y^{\prime }+x^{2}-y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x \left (x -a y\right ) y^{\prime } = y \left (y-a x \right )
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}x^{2} \left (x -2 y\right ) y^{\prime } = 2 x^{3}-4 x y^{2}+y^{3}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}x^{2} \left (4 x -3 y\right ) y^{\prime } = \left (6 x^{2}-3 x y+2 y^{2}\right ) y
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}8 x^{3} y y^{\prime }+3 x^{4}-6 x^{2} y^{2}-y^{4} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x y+\left (x^{2}+y^{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (x^{2}-y^{2}\right ) y^{\prime } = 2 x y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (x^{2}-y^{2}\right ) y^{\prime }+x \left (x +2 y\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}\left (x^{2}+y^{2}\right ) y^{\prime }+2 x \left (2 x +y\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}\left (3 x^{2}-y^{2}\right ) y^{\prime } = 2 x y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (x +y\right )^{2} y^{\prime } = a^{2}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}\left (x -y\right )^{2} y^{\prime } = a^{2}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}\left (x^{2}+2 x y-y^{2}\right ) y^{\prime }+x^{2}-2 x y+y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (x +y\right )^{2} y^{\prime } = x^{2}-2 x y+5 y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (2 x^{2}+4 x y-y^{2}\right ) y^{\prime } = x^{2}-4 x y-2 y^{2}
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}\left (3 x +y\right )^{2} y^{\prime } = 4 \left (3 x +2 y\right ) y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (2 x^{2}+3 y^{2}\right ) y^{\prime }+x \left (3 x +y\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (3 x^{2}+2 x y+4 y^{2}\right ) y^{\prime }+2 x^{2}+6 x y+y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}\left (x^{2}+x y+a y^{2}\right ) y^{\prime } = a \,x^{2}+x y+y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (a \,x^{2}+2 x y-a y^{2}\right ) y^{\prime }+x^{2}-2 y a x -y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (a \,x^{2}+2 b x y+c y^{2}\right ) y^{\prime }+k \,x^{2}+2 y a x +b y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}x \left (2 x^{2}+y^{2}\right ) y^{\prime } = \left (2 x^{2}+3 y^{2}\right ) y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x \left (x^{2}-x y+y^{2}\right ) y^{\prime }+\left (x^{2}+x y+y^{2}\right ) y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x \left (x^{2}-x y-y^{2}\right ) y^{\prime } = \left (x^{2}+x y-y^{2}\right ) y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x \left (x^{2}+y a x +y^{2}\right ) y^{\prime } = \left (x^{2}+b x y+y^{2}\right ) y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x \left (x^{2}-2 y^{2}\right ) y^{\prime } = \left (2 x^{2}-y^{2}\right ) y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x \left (x^{2}+2 y^{2}\right ) y^{\prime } = \left (2 x^{2}+3 y^{2}\right ) y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}2 x \left (5 x^{2}+y^{2}\right ) y^{\prime } = x^{2} y-y^{3}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x \left (x^{2}+y a x +2 y^{2}\right ) y^{\prime } = \left (a x +2 y\right ) y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x \left (x^{2}-6 y^{2}\right ) y^{\prime } = 4 \left (x^{2}+3 y^{2}\right ) y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (x^{3}-y^{3}\right ) y^{\prime }+x^{2} y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (x^{3}+y^{3}\right ) y^{\prime }+x^{2} \left (a x +3 y\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}\left (3 x^{2}+y^{2}\right ) y y^{\prime }+x \left (x^{2}+3 y^{2}\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}2 y^{3} y^{\prime } = x^{3}-x y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (3 x^{2}+2 y^{2}\right ) y y^{\prime }+x^{3} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (5 x^{2}+2 y^{2}\right ) y y^{\prime }+x \left (x^{2}+5 y^{2}\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}\left (x^{3}+a y^{3}\right ) y^{\prime } = x^{2} y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x \left (2 x^{3}+y^{3}\right ) y^{\prime } = \left (2 x^{3}-x^{2} y+y^{3}\right ) y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x \left (2 x^{3}-y^{3}\right ) y^{\prime } = \left (x^{3}-2 y^{3}\right ) y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x \left (x^{3}+3 x^{2} y+y^{3}\right ) y^{\prime } = \left (3 x^{2}+y^{2}\right ) y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x \left (x^{3}-2 y^{3}\right ) y^{\prime } = \left (2 x^{3}-y^{3}\right ) y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (a \,x^{3}+\left (a x +b y\right )^{3}\right ) y y^{\prime }+x \left (\left (a x +b y\right )^{3}+b y^{3}\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (1+a \left (x +y\right )\right )^{n} y^{\prime }+a \left (x +y\right )^{n} = 0
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } \sqrt {y} = \sqrt {x}
\] |
[_separable] |
✓ |
|
\[
{}\left (1+\sqrt {x +y}\right ) y^{\prime }+1 = 0
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } \sqrt {x y}+x -y = \sqrt {x y}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (x -2 \sqrt {x y}\right ) y^{\prime } = y
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x \left (x -y \tan \left (\frac {y}{x}\right )\right ) y^{\prime }+\left (x +y \tan \left (\frac {y}{x}\right )\right ) y = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2} = y
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2} = x -y
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2} = 1+y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2} = 1-y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2} = a^{2}-y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2} = a^{2} y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2} = a +b y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2} = \left (-1+y\right ) y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2} = a^{2} y^{n}
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}-2 y^{\prime }+a \left (x -y\right ) = 0
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2}-2 y^{\prime }-y^{2} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}+a y^{\prime }+b y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}-y^{\prime } x -y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2}+y^{\prime } x +x -y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2}+2 y^{\prime } x -y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2}+2 y^{\prime } x -y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2}+2 \left (1-x \right ) y^{\prime }-2 x +2 y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2}+3 y^{\prime } x -y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+x y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}-2 y y^{\prime }-2 x = 0
\] |
[_dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2}-2 \left (x -y\right ) y^{\prime }-4 x y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}-\left (4 y+1\right ) y^{\prime }+\left (4 y+1\right ) y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}-2 \left (1-3 y\right ) y^{\prime }-\left (4-9 y\right ) y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}+\left (a +6 y\right ) y^{\prime }+y \left (3 a +b +9 y\right ) = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}+a y y^{\prime }-a x = 0
\] |
[_dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2}-a y y^{\prime }-a x = 0
\] |
[_dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2}+\left (a x +b y\right ) y^{\prime }+a b x y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}-\left (4+y^{2}\right ) y^{\prime }+4+y^{2} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2} = {\mathrm e}^{4 x -2 y} \left (y^{\prime }-1\right )
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}2 {y^{\prime }}^{2}+y^{\prime } x -2 y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}2 {y^{\prime }}^{2}+2 \left (6 y-1\right ) y^{\prime }+3 y \left (6 y-1\right ) = 0
\] |
[_quadrature] |
✓ |
|
\[
{}3 {y^{\prime }}^{2}-2 y^{\prime } x +y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}4 {y^{\prime }}^{2}+2 \,{\mathrm e}^{2 x -2 y} y^{\prime }-{\mathrm e}^{2 x -2 y} = 0
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}5 {y^{\prime }}^{2}+3 y^{\prime } x -y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}5 {y^{\prime }}^{2}+6 y^{\prime } x -2 y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2} = y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}+x -2 y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}+y^{\prime } = y
\] |
[_rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}+2 y^{\prime }-y = 0
\] |
[_rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-2 y^{\prime }-y = 0
\] |
[_rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}+4 y^{\prime }-2 y = 0
\] |
[_rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}+y^{\prime } x -y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}+y y^{\prime }+a = 0
\] |
[[_homogeneous, ‘class G‘], _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-y y^{\prime }+a x = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-y y^{\prime }+a y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-\left (3 x -y\right ) y^{\prime }+y = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}+a +b x -y-b y = 0
\] |
[[_homogeneous, ‘class C‘], _rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-2 y y^{\prime }+a = 0
\] |
[[_homogeneous, ‘class G‘], _rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-2 y y^{\prime }+a x = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-2 y y^{\prime }+x +2 y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-a y y^{\prime }+b = 0
\] |
[[_homogeneous, ‘class G‘], _rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}+a y y^{\prime }+b x = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-\left (x y+1\right ) y^{\prime }+y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}\left (x +1\right ) {y^{\prime }}^{2} = y
\] |
[[_homogeneous, ‘class C‘], _rational, _dAlembert] |
✓ |
|
\[
{}2 x {y^{\prime }}^{2}+\left (2 x -y\right ) y^{\prime }+1-y = 0
\] |
[_rational, _dAlembert] |
✓ |
|
\[
{}3 x {y^{\prime }}^{2}-6 y y^{\prime }+x +2 y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (3 x +5\right ) {y^{\prime }}^{2}-\left (3+3 y\right ) y^{\prime }+y = 0
\] |
[_rational, _dAlembert] |
✓ |
|
\[
{}4 x {y^{\prime }}^{2}+2 y^{\prime } x -y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}4 x {y^{\prime }}^{2}-3 y y^{\prime }+3 = 0
\] |
[[_homogeneous, ‘class G‘], _rational, _dAlembert] |
✓ |
|
\[
{}4 x {y^{\prime }}^{2}+4 y y^{\prime } = 1
\] |
[[_homogeneous, ‘class G‘], _rational, _dAlembert] |
✓ |
|
\[
{}x^{2} {y^{\prime }}^{2}-x \left (x -2 y\right ) y^{\prime }+y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x^{2} {y^{\prime }}^{2}+\left (2 x +y\right ) y y^{\prime }+y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x^{2} {y^{\prime }}^{2}+\left (2 x -y\right ) y y^{\prime }+y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x^{2} {y^{\prime }}^{2}+\left (a +b \,x^{2} y^{3}\right ) y^{\prime }+a b y^{3} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}a \,x^{2} {y^{\prime }}^{2}-2 a x y y^{\prime }+x^{2} a \left (1-a \right )+y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (-a^{2}+1\right ) x^{2} {y^{\prime }}^{2}-2 x y^{\prime } y-a^{2} x^{2}+y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y {y^{\prime }}^{2} = a^{2} x
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y {y^{\prime }}^{2}+2 a x y^{\prime }-a y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y {y^{\prime }}^{2}-4 a^{2} x y^{\prime }+a^{2} y = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y {y^{\prime }}^{2}+a x y^{\prime }+b y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y {y^{\prime }}^{2}-\left (-2 b x +a \right ) y^{\prime }-b y = 0
\] |
[[_homogeneous, ‘class C‘], _rational, _dAlembert] |
✓ |
|
\[
{}y {y^{\prime }}^{2}-\left (x +y\right ) y^{\prime }+y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (x +y\right ) {y^{\prime }}^{2}+2 y^{\prime } x -y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (2 x -y\right ) {y^{\prime }}^{2}-2 \left (1-x \right ) y^{\prime }+2-y = 0
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}2 y {y^{\prime }}^{2}+\left (5-4 x \right ) y^{\prime }+2 y = 0
\] |
[[_homogeneous, ‘class C‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (1-a y\right ) {y^{\prime }}^{2} = a y
\] |
[_quadrature] |
✓ |
|
\[
{}x \left (x -2 y\right ) {y^{\prime }}^{2}-2 x y^{\prime } y-2 x y+y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x \left (x -2 y\right ) {y^{\prime }}^{2}+6 x y^{\prime } y-2 x y+y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{2} {y^{\prime }}^{2}-2 x y^{\prime } y-x^{2}+2 y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (a^{2}-y^{2}\right ) {y^{\prime }}^{2} = y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}\left (\left (1-a \right ) x^{2}+y^{2}\right ) {y^{\prime }}^{2}+2 a x y y^{\prime }+x^{2}+\left (1-a \right ) y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}\left (\left (-a^{2}+1\right ) x^{2}+y^{2}\right ) {y^{\prime }}^{2}+2 a^{2} x y y^{\prime }+x^{2}+\left (-a^{2}+1\right ) y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}\left (x +y\right )^{2} {y^{\prime }}^{2} = y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (x +y\right )^{2} {y^{\prime }}^{2}-\left (x^{2}-x y-2 y^{2}\right ) y^{\prime }-y \left (x -y\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (a^{2}-\left (x -y\right )^{2}\right ) {y^{\prime }}^{2}+2 a^{2} y^{\prime }+a^{2}-\left (x -y\right )^{2} = 0
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}3 y^{2} {y^{\prime }}^{2}-2 x y^{\prime } y-x^{2}+4 y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}\left (x^{2}-4 y^{2}\right ) {y^{\prime }}^{2}+6 x y^{\prime } y-4 x^{2}+y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}a^{2} \left (b^{2}-\left (c x -a y\right )^{2}\right ) {y^{\prime }}^{2}+2 a \,b^{2} c y^{\prime }+c^{2} \left (b^{2}-\left (c x -a y\right )^{2}\right ) = 0
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}4 x^{2} y^{2} {y^{\prime }}^{2} = \left (x^{2}+y^{2}\right )^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}{y^{\prime }}^{3}+x -y = 0
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{3} = \left (y-a \right )^{2} \left (y-b \right )^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3}+y^{\prime }-y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3}+y^{\prime } = {\mathrm e}^{y}
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3}-y^{\prime } x +a y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{3}+2 y^{\prime } x -y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{3}-2 y^{\prime } x -y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{3}-2 y y^{\prime }+y^{2} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3}+{\mathrm e}^{3 x -2 y} \left (y^{\prime }-1\right ) = 0
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{3}+{y^{\prime }}^{2}-y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3}-{y^{\prime }}^{2}+y^{2} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3}-a {y^{\prime }}^{2}+b y+a b x = 0
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{3}+\operatorname {a0} {y^{\prime }}^{2}+\operatorname {a1} y^{\prime }+\operatorname {a2} +\operatorname {a3} y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3}-y {y^{\prime }}^{2}+y^{2} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3}+\left (\cos \left (x \right ) \cot \left (x \right )-y\right ) {y^{\prime }}^{2}-\left (1+y \cos \left (x \right ) \cot \left (x \right )\right ) y^{\prime }+y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3}+\left (2 x -y^{2}\right ) {y^{\prime }}^{2}-2 x y^{2} y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}2 {y^{\prime }}^{3}+y^{\prime } x -2 y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}2 {y^{\prime }}^{3}+{y^{\prime }}^{2}-y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}8 {y^{\prime }}^{3}+12 {y^{\prime }}^{2} = 27 x +27 y
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}2 x {y^{\prime }}^{3}-3 y {y^{\prime }}^{2}-x = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}4 x {y^{\prime }}^{3}-6 y {y^{\prime }}^{2}-x +3 y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}8 x {y^{\prime }}^{3}-12 y {y^{\prime }}^{2}+9 y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}y {y^{\prime }}^{3}-3 y^{\prime } x +3 y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}2 y {y^{\prime }}^{3}-3 y^{\prime } x +2 y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}\left (x +2 y\right ) {y^{\prime }}^{3}+3 \left (x +y\right ) {y^{\prime }}^{2}+\left (2 x +y\right ) y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{4} = \left (y-a \right )^{3} \left (y-b \right )^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{4}+y^{\prime } x -3 y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{4}+4 y {y^{\prime }}^{3}+6 y^{2} {y^{\prime }}^{2}-\left (1-4 y^{3}\right ) y^{\prime }-\left (3-y^{3}\right ) y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}2 {y^{\prime }}^{4}-y y^{\prime }-2 = 0
\] |
[_quadrature] |
✓ |
|
\[
{}3 {y^{\prime }}^{5}-y y^{\prime }+1 = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{6} = \left (y-a \right )^{4} \left (y-b \right )^{3}
\] |
[_quadrature] |
✓ |
|
\[
{}\left (x -y\right ) \sqrt {y^{\prime }} = a \left (y^{\prime }+1\right )
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}\sqrt {1+{y^{\prime }}^{2}}+a y^{\prime } = y
\] |
[_quadrature] |
✓ |
|
\[
{}a x \sqrt {1+{y^{\prime }}^{2}}+y^{\prime } x -y = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } \sin \left (y^{\prime }\right )+\cos \left (y^{\prime }\right ) = y
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2} \left (x +\sin \left (y^{\prime }\right )\right ) = y
\] |
[_dAlembert] |
✓ |
|
\[
{}{\mathrm e}^{y^{\prime }-y}-{y^{\prime }}^{2}+1 = 0
\] |
[_quadrature] |
✓ |
|
\[
{}\ln \left (y^{\prime }\right )+4 y^{\prime } x -2 y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}a \left (\ln \left (y^{\prime }\right )-y^{\prime }\right )-x +y = 0
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {x +y-3}{x -y-1}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {2 x +y-1}{4 x +2 y+5}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\frac {2 x}{y^{3}}+\frac {\left (y^{2}-3 x^{2}\right ) y^{\prime }}{y^{4}} = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}y = x {y^{\prime }}^{2}+{y^{\prime }}^{2}
\] |
[[_homogeneous, ‘class C‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (y-x \right ) y^{\prime }+y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (2 \sqrt {x y}-x \right ) y^{\prime }+y = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } x -y-\sqrt {x^{2}+y^{2}} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (7 x +5 y\right ) y^{\prime }+10 x +8 y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 x -y+1+\left (2 y-1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}3 y-7 x +7+\left (7 y-3 x +3\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } x -y = \sqrt {x^{2}+y^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (7 x +5 y\right ) y^{\prime }+10 x +8 y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x^{2}+2 x y-y^{2}+\left (y^{2}+2 x y-x^{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{2}+\left (x^{2}+x y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}{y^{\prime }}^{2}+\frac {2 x y^{\prime }}{y}-1 = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y = a y^{\prime }+b {y^{\prime }}^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y = \sqrt {1+{y^{\prime }}^{2}}+a y^{\prime }
\] |
[_quadrature] |
✓ |
|
\[
{}y = y^{\prime } x +x \sqrt {1+{y^{\prime }}^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y = y^{\prime } x +a x \sqrt {1+{y^{\prime }}^{2}}
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x -y y^{\prime } = a {y^{\prime }}^{2}
\] |
[_dAlembert] |
✓ |
|
\[
{}y y^{\prime }+x = a \sqrt {1+{y^{\prime }}^{2}}
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}y-\frac {1}{\sqrt {1+{y^{\prime }}^{2}}} = x +\frac {y^{\prime }}{\sqrt {1+{y^{\prime }}^{2}}}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y-2 y^{\prime } x = x {y^{\prime }}^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}2 x y+\left (x^{2}+y^{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}\left (x +\sqrt {y^{2}-x y}\right ) y^{\prime }-y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x +y-\left (x -y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } x -y-x \sin \left (\frac {y}{x}\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}2 x^{2} y+y^{3}+\left (x y^{2}-2 x^{3}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{2}+\left (x \sqrt {y^{2}-x^{2}}-x y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class G‘], _dAlembert] |
✓ |
|
\[
{}\frac {y \cos \left (\frac {y}{x}\right )}{x}-\left (\frac {x \sin \left (\frac {y}{x}\right )}{y}+\cos \left (\frac {y}{x}\right )\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y+x \ln \left (\frac {y}{x}\right ) y^{\prime }-2 y^{\prime } x = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}2 y \,{\mathrm e}^{\frac {x}{y}}+\left (y-2 x \,{\mathrm e}^{\frac {x}{y}}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}{\mathrm e}^{\frac {y}{x}} x -y \sin \left (\frac {y}{x}\right )+x \sin \left (\frac {y}{x}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x +2 y-4-\left (2 x -4 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}3 x +2 y+1-\left (3 x +2 y-1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x +y-1+\left (2 x +2 y-3\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x +y-1-\left (x -y-1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x +y+\left (2 x +2 y-1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x +2 y+\left (3 x +6 y+3\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x +2 y+\left (-1+y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}3 x -2 y+4-\left (2 x +7 y-1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x +y+\left (3 x +3 y-4\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}3 x +2 y+3-\left (x +2 y-1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y+7+\left (2 x +y+3\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x +y+2-\left (x -y-4\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime }+a y = b
\] |
[_quadrature] |
✓ |
|
\[
{}{\mathrm e}^{y} \left (y^{\prime }+1\right ) = {\mathrm e}^{x}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}\left (x -y\right )^{2} y^{\prime } = 4
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } x -y = \sqrt {x^{2}+y^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (3 x +2 y+1\right ) y^{\prime }+4 x +3 y+2 = 0
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (x^{2}-y^{2}\right ) y^{\prime } = 2 x y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } x = x +y+{\mathrm e}^{\frac {y}{x}} x
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } x -y-x \sin \left (\frac {y}{x}\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{2}-3 x y-2 x^{2}+\left (x y-x^{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}x y^{\prime } y+x^{2}+y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}2 x y^{\prime } y+3 x^{2}-y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}\left (2 x y^{3}-x^{4}\right ) y^{\prime }+2 x^{3} y-y^{4} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (x^{2}+y^{2}\right ) y^{\prime }+2 x \left (2 x +y\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}2 y^{3} y^{\prime }+x y^{2}-x^{3} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y {y^{\prime }}^{2}+2 y^{\prime } x -y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime }+b^{2} y^{2} = a^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y
\] |
[_quadrature] |
✓ |
|
\[
{}\left (1+y\right ) y^{\prime } = y
\] |
[_quadrature] |
✓ |
|
\[
{}2 y^{\prime } = 3 \left (-2+y\right )^{{1}/{3}}
\] |
[_quadrature] |
✓ |
|
\[
{}\left (x -y\right ) y^{\prime }+x +y+1 = 0
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{2}-x y+\left (x^{2}+x y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}y^{\prime } = \cos \left (x +y\right )
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{x}-\tan \left (\frac {y}{x}\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}\left (2 x +y\right ) y^{\prime }-x +2 y = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime }-\sin \left (x +y\right ) = 0
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = y^{{1}/{3}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{{1}/{3}}
\] |
[_quadrature] |
✓ |
|
\[
{}u^{\prime } = \alpha \left (1-u\right )-\beta u
\] |
[_quadrature] |
✓ |
|
\[
{}\left (x y^{2}+x^{3}\right ) y^{\prime } = 2 y^{3}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (-x +2 y\right ) y^{\prime } = 2 x +y
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x y+y^{2}+\left (x^{2}-x y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}x^{3}+y^{3} = 3 x y^{2} y^{\prime }
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y-3 x +\left (3 x +4 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (x^{3}+3 x y^{2}\right ) y^{\prime } = y^{3}+3 x^{2} y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (3 x +3 y-4\right ) y^{\prime } = -x -y
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x -y-1+\left (4 y+x -1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}3 y-7 x +7+\left (7 y-3 x +3\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x^{2}-2 x y+5 y^{2} = \left (x^{2}+2 x y+y^{2}\right ) y^{\prime }
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {y^{2}+2 x y}{x^{2}+2 x y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}x^{2} y^{\prime } = y^{2}-x y^{\prime } y
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{3 x -2 y}
\] |
[_separable] |
✓ |
|
\[
{}x^{2} y^{\prime }+y^{2} = x y^{\prime } y
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}2 x y^{\prime } y = x^{2}-y^{2}
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } = \frac {x -2 y+1}{2 x -4 y}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 x^{3} y^{\prime } = y \left (3 x^{2}+y^{2}\right )
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x +y+1+\left (2 x +2 y+1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x +2 y+\left (2 x +3 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 y^{\prime } x -2 y = \sqrt {x^{2}+4 y^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}3 y-7 x +7+\left (7 y-3 x +3\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{2}-x^{2}+x y^{\prime } y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x^{3}+y^{3}+3 x y^{2} y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
|
\[
{}3 x +2 y+1-\left (3 x +2 y-1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = -2 \left (2 x +3 y\right )^{2}
\] |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
|
\[
{}x y^{\prime } y+x^{2}+y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x^{2}+y^{2}+2 x y^{\prime } y = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
|
\[
{}x +y+1-\left (x -y-3\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}4 x -2 y y^{\prime }+x {y^{\prime }}^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}8 y {y^{\prime }}^{2}-2 y^{\prime } x +y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-y y^{\prime }-y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2}-y^{\prime } x -y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}y = x \left (y^{\prime }+1\right )+{y^{\prime }}^{2}
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}y = 2 y^{\prime }+\sqrt {1+{y^{\prime }}^{2}}
\] |
[_quadrature] |
✓ |
|
\[
{}y {y^{\prime }}^{2}-y^{\prime } x +3 y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}4 x -2 y y^{\prime }+x {y^{\prime }}^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-2 y y^{\prime }+x +2 y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}2 y = {y^{\prime }}^{2}+4 y^{\prime } x
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}\left (1+{y^{\prime }}^{2}\right ) \left (x -y\right )^{2} = \left (y y^{\prime }+x \right )^{2}
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}\sin \left (y^{\prime }\right ) = x +y
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}2 y^{\prime }+y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }+20 y = 24
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 25+y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}2 y+y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}5 y^{\prime } = 2 y
\] |
[_quadrature] |
✓ |
|
\[
{}\left (-1+y\right ) y^{\prime } = 1
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2} = 4 y
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2} = 9-y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}-2 y^{\prime }+4 y = 4 x -1
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \sqrt {1-y^{2}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 5-y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 4+y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 3 y^{{2}/{3}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{{2}/{3}}
\] |
[_quadrature] |
✓ |
|
\[
{}\left (x^{2}+y^{2}\right ) y^{\prime } = y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (y-x \right ) y^{\prime } = x +y
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \sqrt {y^{2}-9}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \sqrt {y^{2}-9}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 2 y-4
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{2}-y^{3}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y \ln \left (y+2\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \left ({\mathrm e}^{y} y-9 y\right ) {\mathrm e}^{-y}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {2 y}{\pi }-\sin \left (y\right )
\] |
[_quadrature] |
✓ |
|
\[
{}m v^{\prime } = m g -k v^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{3 x +2 y}
\] |
[_separable] |
✓ |
|
\[
{}s^{\prime } = k s
\] |
[_quadrature] |
✓ |
|
\[
{}q^{\prime } = k \left (q-70\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }+2 y = 1
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {3 x +1}{2 y}
\] |
[_separable] |
✓ |
|
\[
{}{\mathrm e}^{y}-{\mathrm e}^{-x} y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = y^{2}-4
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{2}-4
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {1}{y-3}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {1}{y-3}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{{2}/{3}}-y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}+y^{2} = 1
\] |
[_quadrature] |
✓ |
|
\[
{}u^{\prime } = a \sqrt {1+u^{2}}
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = k \left (A -x\right )^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 5 y
\] |
[_quadrature] |
✓ |
|
\[
{}2 y+y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}3 y^{\prime }+12 y = 4
\] |
[_quadrature] |
✓ |
|
\[
{}L i^{\prime }+R i = E
\] |
[_quadrature] |
✓ |
|
\[
{}T^{\prime } = k \left (T-T_{m} \right )
\] |
[_quadrature] |
✓ |
|
\[
{}e^{\prime } = -\frac {e}{r c}
\] |
[_quadrature] |
✓ |
|
\[
{}2 x -1+\left (3 y+7\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 3 y^{{2}/{3}}
\] |
[_quadrature] |
✓ |
|
\[
{}\left (1+z^{\prime }\right ) {\mathrm e}^{-z} = 1
\] |
[_quadrature] |
✓ |
|
\[
{}\frac {1}{\sqrt {x}}+\frac {y^{\prime }}{\sqrt {y}} = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{x -y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {\sqrt {y}}{\sqrt {x}}
\] |
[_separable] |
✓ |
|
\[
{}z^{\prime } = 10^{x +z}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \cos \left (x -y\right )
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}\left (x +2 y\right ) y^{\prime } = 1
\] |
[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \cos \left (x -y-1\right )
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime }+\sin \left (x +y\right )^{2} = 0
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \left (x +y+1\right )^{2}
\] |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
|
\[
{}\left (x +y\right ) y^{\prime }+x -y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x^{2} y^{\prime }+y^{2} = x y^{\prime } y
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}\left (x^{2}+y^{2}\right ) y^{\prime } = 2 x y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } x -y = x \tan \left (\frac {y}{x}\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } x -y = \left (x +y\right ) \ln \left (\frac {x +y}{x}\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } x = y \cos \left (\frac {y}{x}\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y+\sqrt {x y}-y^{\prime } x = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } x -\sqrt {x^{2}-y^{2}}-y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x +y-\left (x -y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x^{2}+2 x y-y^{2}+\left (y^{2}+2 x y-x^{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } x -y = y y^{\prime }
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{2}+\left (x^{2}-x y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}\frac {1}{x^{2}-x y+y^{2}} = \frac {y^{\prime }}{2 y^{2}-x y}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {2 x y}{3 x^{2}-y^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } x = y+\sqrt {y^{2}-x^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (2 \sqrt {x y}-x \right ) y^{\prime }+y = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } x = y \ln \left (\frac {y}{x}\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}\left (y^{\prime } x +y\right )^{2} = y^{2} y^{\prime }
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } x -y = \sqrt {x^{2}+y^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y {y^{\prime }}^{2}+2 y^{\prime } x -y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{x +y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {x +y-2}{y-x -4}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 x -4 y+6+\left (x +y-2\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {2 y-x +5}{2 x -y-4}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = -\frac {4 x +3 y+15}{2 x +y+7}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {x +3 y-5}{x -y-1}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 x +y+1-\left (4 x +2 y-3\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x -y-1+\left (y-x +2\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (x +4 y\right ) y^{\prime } = 2 x +3 y-5
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y+2 = \left (2 x +y-4\right ) y^{\prime }
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (y^{\prime }+1\right ) \ln \left (\frac {x +y}{3+x}\right ) = \frac {x +y}{3+x}
\] |
[[_homogeneous, ‘class C‘], _exact, _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {x -2 y+5}{y-2 x -4}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {3 x -y+1}{2 x +y+4}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}3+2 x +\left (-2+2 y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}2 x +4 y+\left (2 x -2 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } x -2 \sqrt {x y} = y
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {x +y-1}{x -y+3}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x +y-\left (x -y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y y^{\prime }+x = a {y^{\prime }}^{2}
\] |
[_dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2}-a^{2} y^{2} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y+\sqrt {x^{2}+y^{2}}-y^{\prime } x = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2} = a^{2}-y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}x^{2}+y^{2}-2 x y^{\prime } y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x^{2}-y^{2}+2 x y^{\prime } y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x +y y^{\prime }+y-y^{\prime } x = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime }+5 y = 2
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = k y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }-2 y = 1
\] |
[_quadrature] |
✓ |
|
\[
{}L y^{\prime }+R y = E
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 1+y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 2 \sqrt {y}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {x +y}{x -y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {y^{2}}{x^{2}+x y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {x -y+2}{x +y-1}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {2 x +3 y+1}{x -2 y-1}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {x +y+1}{2 x +2 y-1}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = k y
\] |
[_quadrature] |
✓ |
|
\[
{}2 x y^{\prime } y = x^{2}+y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } = \frac {y^{2}}{x y-x^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}x^{2}-2 y^{2}+x y^{\prime } y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x -y-\left (x +y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x^{3}+y^{3}-x y^{2} y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } = \frac {x +y+4}{x -y-6}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {x +y+4}{x +y-6}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 x -2 y+\left (-1+y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {x +y-1}{x +4 y+2}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \sin \left (\frac {y}{x}\right )-\cos \left (\frac {y}{x}\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}{\mathrm e}^{\frac {x}{y}}-\frac {y y^{\prime }}{x} = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {x^{2}-x y}{y^{2} \cos \left (\frac {x}{y}\right )}
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {y \tan \left (\frac {y}{x}\right )}{x}
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {x^{2}+y^{2}}{x^{2}-y^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {x +2 y}{2 x -y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {x^{2}+2 y^{2}}{x^{2}-2 y^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime }+y = 1
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }-y = 2
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }+y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }-y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-\left (x y+1\right ) y^{\prime }+y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}\left (x +y\right )^{2} {y^{\prime }}^{2} = y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (4 x -y\right ) {y^{\prime }}^{2}+6 \left (x -y\right ) y^{\prime }+2 x -5 y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}\left (x -y\right )^{2} {y^{\prime }}^{2} = y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (x^{2}+y^{2}\right )^{2} {y^{\prime }}^{2} = 4 x^{2} y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (x +y\right )^{2} {y^{\prime }}^{2}+\left (2 y^{2}+x y-x^{2}\right ) y^{\prime }+y \left (y-x \right ) = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x y \left (x^{2}+y^{2}\right ) \left ({y^{\prime }}^{2}-1\right ) = y^{\prime } \left (x^{4}+x^{2} y^{2}+y^{4}\right )
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}4 x -2 y y^{\prime }+x {y^{\prime }}^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2}-y^{\prime } x -y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{3}+x {y^{\prime }}^{2}-y = 0
\] |
[_dAlembert] |
✓ |
|
\[
{}4 x -2 y y^{\prime }+x {y^{\prime }}^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2}-y^{\prime } x -y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}2 {y^{\prime }}^{3}+y^{\prime } x -2 y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}2 {y^{\prime }}^{2}+y^{\prime } x -2 y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{3}+2 y^{\prime } x -y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}4 x {y^{\prime }}^{2}-3 y y^{\prime }+3 = 0
\] |
[[_homogeneous, ‘class G‘], _rational, _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{3}-y^{\prime } x +2 y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}5 {y^{\prime }}^{2}+6 y^{\prime } x -2 y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}2 x {y^{\prime }}^{2}+\left (2 x -y\right ) y^{\prime }+1-y = 0
\] |
[_rational, _dAlembert] |
✓ |
|
\[
{}5 {y^{\prime }}^{2}+3 y^{\prime } x -y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2}+3 y^{\prime } x -y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}5 {y^{\prime }}^{2}+6 y^{\prime } x -2 y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{4}+y^{\prime } x -3 y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{3}-2 y^{\prime } x -y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}y {y^{\prime }}^{2}-\left (x +y\right ) y^{\prime }+y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } = 1+y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y
\] |
[_quadrature] |
✓ |
|
\[
{}x^{2} y^{\prime }+y^{2} = x y^{\prime } y
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}y = x {y^{\prime }}^{2}+{y^{\prime }}^{2}
\] |
[[_homogeneous, ‘class C‘], _rational, _dAlembert] |
✓ |
|
\[
{}2 t +3 x+\left (x+2\right ) x^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {1}{1-y}
\] |
[_quadrature] |
✓ |
|
\[
{}y = x {y^{\prime }}^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y y^{\prime } = 1-x {y^{\prime }}^{3}
\] |
[_dAlembert] |
✓ |
|
\[
{}y^{\prime } = -4 \sin \left (x -y\right )-4
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime }+\sin \left (x -y\right ) = 0
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}\frac {y^{\prime } y}{1+\frac {\sqrt {1+{y^{\prime }}^{2}}}{2}} = -x
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}\frac {y^{\prime } y}{1+\frac {\sqrt {1+{y^{\prime }}^{2}}}{2}} = -x
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = 2 \sqrt {y}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \sqrt {1-y^{2}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{-\frac {y}{x}}
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}\left (y-2 y^{\prime } x \right )^{2} = {y^{\prime }}^{3}
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = b y
\] |
[_quadrature] |
✓ |
|
\[
{}c y^{\prime } = y
\] |
[_quadrature] |
✓ |
|
\[
{}c y^{\prime } = b y
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2} = x +y
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2} = \frac {y}{x}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \left (a +b x +y\right )^{4}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \left (\pi +x +7 y\right )^{{7}/{2}}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \left (a +b x +c y\right )^{6}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{x +y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 10+{\mathrm e}^{x +y}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \left (x +y\right )^{4}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = y^{{1}/{3}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }+y^{2}-1 = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }+a y^{2}-b = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }-\left (A y-a \right ) \left (B y-b \right ) = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }-\operatorname {a3} y^{3}-\operatorname {a2} y^{2}-\operatorname {a1} y-\operatorname {a0} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }-a \cos \left (y\right )+b = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }-\cos \left (b x +a y\right ) = 0
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime }+a \sin \left (\alpha y+\beta x \right )+b = 0
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime }-f \left (a x +b y\right ) = 0
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } x -y-\sqrt {x^{2}+y^{2}} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } x +a \sqrt {x^{2}+y^{2}}-y = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } x -{\mathrm e}^{\frac {y}{x}} x -y-x = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } x -y-x \sin \left (\frac {y}{x}\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } x +x -y+x \cos \left (\frac {y}{x}\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } x +x \tan \left (\frac {y}{x}\right )-y = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y y^{\prime }-x \,{\mathrm e}^{\frac {x}{y}} = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}\left (1+y\right ) y^{\prime }-y-x = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (x +y-1\right ) y^{\prime }-y+2 x +3 = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (y+2 x -2\right ) y^{\prime }-y+x +1 = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (1-2 x +y\right ) y^{\prime }+y+x = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (x +2 y+1\right ) y^{\prime }+1-x -2 y = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (2 y+x +7\right ) y^{\prime }-y+2 x +4 = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (-x +2 y\right ) y^{\prime }-y-2 x = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (2 y-6 x \right ) y^{\prime }-y+3 x +2 = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (3+2 x +4 y\right ) y^{\prime }-2 y-x -1 = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (4 y-2 x -3\right ) y^{\prime }+2 y-x -1 = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (4 y-3 x -5\right ) y^{\prime }-3 y+7 x +2 = 0
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (4 y+11 x -11\right ) y^{\prime }-25 y-8 x +62 = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (12 y-5 x -8\right ) y^{\prime }-5 y+2 x +3 = 0
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (a y+b x +c \right ) y^{\prime }+\alpha y+\beta x +\gamma = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x y^{\prime } y+x^{2}+y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{2}-3 x y-2 x^{2}+\left (x y-x^{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}2 x y^{\prime } y-y^{2}+a \,x^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x \left (2 x +3 y\right ) y^{\prime }+3 \left (x +y\right )^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}\left (2 x^{2} y-x^{3}\right ) y^{\prime }+y^{3}-4 x y^{2}+2 x^{3} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}\left (x^{2}+y^{2}\right ) y^{\prime }+2 x \left (2 x +y\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}\left (x^{2}+y^{2}\right ) y^{\prime }-y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (y^{2}-x^{2}\right ) y^{\prime }+2 x y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (x +y\right )^{2} y^{\prime }-a^{2} = 0
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}x^{2}+2 x y-y^{2}+\left (y^{2}+2 x y-x^{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (3 x^{2}+2 x y+4 y^{2}\right ) y^{\prime }+2 x^{2}+6 x y+y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}\left (2 y-4 x +1\right )^{2} y^{\prime }-\left (y-2 x \right )^{2} = 0
\] |
[[_homogeneous, ‘class C‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (a y^{2}+2 b x y+c \,x^{2}\right ) y^{\prime }+b y^{2}+2 c x y+d \,x^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}x \left (y^{2}+x y-x^{2}\right ) y^{\prime }-y^{3}+x y^{2}+x^{2} y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}2 x \left (5 x^{2}+y^{2}\right ) y^{\prime }+y^{3}-x^{2} y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (y^{3}-x^{3}\right ) y^{\prime }-x^{2} y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (2 y^{3}+5 x^{2} y\right ) y^{\prime }+5 x y^{2}+x^{3} = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}\left (2 x y^{3}-x^{4}\right ) y^{\prime }+2 x^{3} y-y^{4} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y \left (y^{3}-2 x^{3}\right ) y^{\prime }+\left (2 y^{3}-x^{3}\right ) x = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y \left (\left (b x +a y\right )^{3}+b \,x^{3}\right ) y^{\prime }+x \left (\left (b x +a y\right )^{3}+a y^{3}\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (f \left (x +y\right )+1\right ) y^{\prime }+f \left (x +y\right ) = 0
\] |
[[_homogeneous, ‘class C‘], _exact, _dAlembert] |
✓ |
|
\[
{}\left (1+\sqrt {x +y}\right ) y^{\prime }+1 = 0
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2}+y^{2}-a^{2} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}-y^{3}+y^{2} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}-4 y^{3}+a y+b = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}-2 y^{\prime }-y^{2} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}+a y^{\prime }+b y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}+2 y^{\prime } x -y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2}-2 y^{\prime } x +y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2}-2 y y^{\prime }-2 x = 0
\] |
[_dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2}-\left (4 y+1\right ) y^{\prime }+\left (4 y+1\right ) y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}+a y y^{\prime }-b x -c = 0
\] |
[_dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2}+\left (b x +a y\right ) y^{\prime }+a b x y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}3 {y^{\prime }}^{2}-2 y^{\prime } x +y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}a {y^{\prime }}^{2}+b y^{\prime }-y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}a {y^{\prime }}^{2}+y y^{\prime }-x = 0
\] |
[_dAlembert] |
✓ |
|
\[
{}a {y^{\prime }}^{2}-y y^{\prime }-x = 0
\] |
[_dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}+x -2 y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-2 y^{\prime }-y = 0
\] |
[_rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}+4 y^{\prime }-2 y = 0
\] |
[_rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}+y^{\prime } x -y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}+y y^{\prime }+a = 0
\] |
[[_homogeneous, ‘class G‘], _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}+\left (y-3 x \right ) y^{\prime }+y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-y y^{\prime }+a y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}+2 y y^{\prime }-x = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-2 y y^{\prime }+a = 0
\] |
[[_homogeneous, ‘class G‘], _rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-2 y y^{\prime }-x = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}4 x -2 y y^{\prime }+x {y^{\prime }}^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-2 y y^{\prime }+x +2 y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}+a y y^{\prime }+b x = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (\operatorname {a2} x +\operatorname {c2} \right ) {y^{\prime }}^{2}+\left (\operatorname {a1} x +\operatorname {b1} y+\operatorname {c1} \right ) y^{\prime }+\operatorname {a0} x +\operatorname {b0} y+\operatorname {c0} = 0
\] |
[_dAlembert] |
✓ |
|
\[
{}x^{2} {y^{\prime }}^{2}-y \left (y-2 x \right ) y^{\prime }+y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x^{2} {y^{\prime }}^{2}+\left (a \,x^{2} y^{3}+b \right ) y^{\prime }+a b y^{3} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}\left (a^{2}-1\right ) x^{2} {y^{\prime }}^{2}+2 x y^{\prime } y-y^{2}+a^{2} x^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}a \,x^{2} {y^{\prime }}^{2}-2 a x y y^{\prime }+y^{2}-a \left (a -1\right ) x^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y {y^{\prime }}^{2}+2 y^{\prime } x -y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y {y^{\prime }}^{2}+2 y^{\prime } x -9 y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y {y^{\prime }}^{2}-2 y^{\prime } x +y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y {y^{\prime }}^{2}-4 y^{\prime } x +y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y {y^{\prime }}^{2}-4 a^{2} x y^{\prime }+a^{2} y = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y {y^{\prime }}^{2}+a x y^{\prime }+b y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (x +y\right ) {y^{\prime }}^{2}+2 y^{\prime } x -y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (y-2 x \right ) {y^{\prime }}^{2}-2 \left (x -1\right ) y^{\prime }+y-2 = 0
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}2 y {y^{\prime }}^{2}-\left (4 x -5\right ) y^{\prime }+2 y = 0
\] |
[[_homogeneous, ‘class C‘], _rational, _dAlembert] |
✓ |
|
\[
{}4 y {y^{\prime }}^{2}+2 y^{\prime } x -y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}a y {y^{\prime }}^{2}+\left (2 x -b \right ) y^{\prime }-y = 0
\] |
[[_homogeneous, ‘class C‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (b +a y\right ) \left (1+{y^{\prime }}^{2}\right )-c = 0
\] |
[_quadrature] |
✓ |
|
\[
{}\left (b_{2} y+a_{2} x +c_{2} \right ) {y^{\prime }}^{2}+\left (a_{1} x +b_{1} y+c_{1} \right ) y^{\prime }+a_{0} x +b_{0} y+c_{0} = 0
\] |
[_rational, _dAlembert] |
✓ |
|
\[
{}\left (2 x y-x^{2}\right ) {y^{\prime }}^{2}+2 x y^{\prime } y+2 x y-y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}\left (2 x y-x^{2}\right ) {y^{\prime }}^{2}-6 x y^{\prime } y-y^{2}+2 x y = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}\left (y^{2}-a^{2}\right ) {y^{\prime }}^{2}+y^{2} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}\left (y^{2}-a^{2} x^{2}\right ) {y^{\prime }}^{2}+2 x y^{\prime } y+\left (-a^{2}+1\right ) x^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}\left (\left (1-a \right ) x^{2}+y^{2}\right ) {y^{\prime }}^{2}+2 a x y y^{\prime }+x^{2}+\left (1-a \right ) y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}\left (y-x \right )^{2} \left (1+{y^{\prime }}^{2}\right )-a^{2} \left (y^{\prime }+1\right )^{2} = 0
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}3 y^{2} {y^{\prime }}^{2}-2 x y^{\prime } y-x^{2}+4 y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}\left (3 y-2\right ) {y^{\prime }}^{2}-4+4 y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}\left (-a^{2}+1\right ) y^{2} {y^{\prime }}^{2}-2 a^{2} x y y^{\prime }+y^{2}-a^{2} x^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (a y-b x \right )^{2} \left (a^{2} {y^{\prime }}^{2}+b^{2}\right )-c^{2} \left (a y^{\prime }+b \right )^{2} = 0
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2} \left (a \cos \left (y\right )+b \right )-c \cos \left (y\right )+d = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3}-\left (y-a \right )^{2} \left (y-b \right )^{2} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3}+y^{\prime }-y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3}-2 y y^{\prime }+y^{2} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3}+a {y^{\prime }}^{2}+b y+a b x = 0
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{3}+x {y^{\prime }}^{2}-y = 0
\] |
[_dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{3}-y {y^{\prime }}^{2}+y^{2} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}a {y^{\prime }}^{3}+b {y^{\prime }}^{2}+c y^{\prime }-y-d = 0
\] |
[_quadrature] |
✓ |
|
\[
{}4 x {y^{\prime }}^{3}-6 y {y^{\prime }}^{2}-x +3 y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}8 x {y^{\prime }}^{3}-12 y {y^{\prime }}^{2}+9 y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{3} \sin \left (x \right )-\left (y \sin \left (x \right )-\cos \left (x \right )^{2}\right ) {y^{\prime }}^{2}-\left (\cos \left (x \right )^{2} y+\sin \left (x \right )\right ) y^{\prime }+y \sin \left (x \right ) = 0
\] |
[_quadrature] |
✓ |
|
\[
{}2 y {y^{\prime }}^{3}-y {y^{\prime }}^{2}+2 y^{\prime } x -x = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{4}-\left (y-a \right )^{3} \left (y-b \right )^{2} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{4}+3 \left (x -1\right ) {y^{\prime }}^{2}-3 \left (2 y-1\right ) y^{\prime }+3 x = 0
\] |
[_dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{6}-\left (y-a \right )^{4} \left (y-b \right )^{3} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}a {y^{\prime }}^{m}+b {y^{\prime }}^{n}-y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}\sqrt {1+{y^{\prime }}^{2}}+x {y^{\prime }}^{2}+y = 0
\] |
[_dAlembert] |
✓ |
|
\[
{}x \left (\sqrt {1+{y^{\prime }}^{2}}+y^{\prime }\right )-y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}a x \sqrt {1+{y^{\prime }}^{2}}+y^{\prime } x -y = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}a \left (1+{y^{\prime }}^{3}\right )^{{1}/{3}}+b x y^{\prime }-y = 0
\] |
[_dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2} \sin \left (y^{\prime }\right )-y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {x^{3}+3 a \,x^{2}+3 a^{2} x +a^{3}+x y^{2}+a y^{2}+y^{3}}{\left (x +a \right )^{3}}
\] |
[[_homogeneous, ‘class C‘], _rational, _Abel] |
✓ |
|
\[
{}y^{\prime } = \frac {-b^{3}+6 b^{2} x -12 b \,x^{2}+8 x^{3}-4 b y^{2}+8 x y^{2}+8 y^{3}}{\left (2 x -b \right )^{3}}
\] |
[[_homogeneous, ‘class C‘], _rational, _Abel] |
✓ |
|
\[
{}y^{\prime } = \frac {-125+300 x -240 x^{2}+64 x^{3}-80 y^{2}+64 x y^{2}+64 y^{3}}{\left (4 x -5\right )^{3}}
\] |
[[_homogeneous, ‘class C‘], _rational, _Abel] |
✓ |
|
\[
{}y^{\prime } = \frac {b^{3}+y^{2} b^{3}+2 y b^{2} a x +x^{2} b \,a^{2}+y^{3} b^{3}+3 y^{2} b^{2} a x +3 y b \,a^{2} x^{2}+a^{3} x^{3}}{b^{3}}
\] |
[[_homogeneous, ‘class C‘], _Abel] |
✓ |
|
\[
{}y^{\prime } = \frac {\alpha ^{3}+y^{2} \alpha ^{3}+2 y \alpha ^{2} \beta x +\alpha \,\beta ^{2} x^{2}+y^{3} \alpha ^{3}+3 y^{2} \alpha ^{2} \beta x +3 y \alpha \,\beta ^{2} x^{2}+\beta ^{3} x^{3}}{\alpha ^{3}}
\] |
[[_homogeneous, ‘class C‘], _Abel] |
✓ |
|
\[
{}y^{\prime } = \frac {a^{3}+y^{2} a^{3}+2 a^{2} b x y+a \,b^{2} x^{2}+y^{3} a^{3}+3 y^{2} a^{2} b x +3 y a \,b^{2} x^{2}+b^{3} x^{3}}{a^{3}}
\] |
[[_homogeneous, ‘class C‘], _Abel] |
✓ |
|
\[
{}y^{\prime } = f \left (y\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = f \left (\frac {y}{x}\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y y^{\prime }-y = A x +B
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (A y+B x +a \right ) y^{\prime }+B y+k x +b = 0
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (y+a x +b \right ) y^{\prime } = \alpha y+\beta x +\gamma
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\frac {y^{2}-2 x^{2}}{x y^{2}-x^{3}}+\frac {\left (2 y^{2}-x^{2}\right ) y^{\prime }}{y^{3}-x^{2} y} = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}\frac {1}{\sqrt {x^{2}+y^{2}}}+\left (\frac {1}{y}-\frac {x}{y \sqrt {x^{2}+y^{2}}}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}6 x -2 y+1+\left (2 y-2 x -3\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 x^{2} y+3 y^{3}-\left (x^{3}+2 x y^{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}2 x^{2} y+y^{3}-x^{3} y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}\left (x +y+1\right ) y^{\prime }+1+4 x +3 y = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}4 x -y+2+\left (x +y+3\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 x +y-\left (4 x +2 y-1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x +y-\left (x -y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x^{2}+y^{2}-2 x y^{\prime } y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}3 x^{2}+6 x y+3 y^{2}+\left (2 x^{2}+3 x y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}y^{2}-x^{2}+2 m x y+\left (m y^{2}-m \,x^{2}-2 x y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (x +y\right ) y^{\prime }-1 = 0
\] |
[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}x +y y^{\prime }+y-y^{\prime } x = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (y-x \right )^{2} y^{\prime } = 1
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}\left (y-x \right ) y^{\prime }+y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } x -y = \sqrt {x^{2}+y^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } x -y = \sqrt {x^{2}-y^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (4+2 x -y\right ) y^{\prime }+5+x -2 y = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 x +3 y-1+\left (2 x +3 y-5\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{3}-2 x^{2} y+\left (2 x y^{2}-x^{3}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}1+{\mathrm e}^{\frac {y}{x}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}\left (2 \sqrt {x y}-x \right ) y^{\prime }+y = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+x y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-2 y y^{\prime }-x = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2}+y^{2} = 1
\] |
[_quadrature] |
✓ |
|
\[
{}2 y^{\prime } x -y+\ln \left (y^{\prime }\right ) = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}4 x {y^{\prime }}^{2}+2 y^{\prime } x -y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-2 y y^{\prime }-x = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2}+2 y^{\prime } x -y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}a^{2} y {y^{\prime }}^{2}-2 y^{\prime } x +y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-2 y y^{\prime }-x = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}4 \,{\mathrm e}^{2 y} {y^{\prime }}^{2}+2 \,{\mathrm e}^{2 x} y^{\prime }-{\mathrm e}^{2 x} = 0
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}\left (x^{2}+y^{2}\right ) \left (y^{\prime }+1\right )^{2}-2 \left (x +y\right ) \left (y^{\prime }+1\right ) \left (y y^{\prime }+x \right )+\left (y y^{\prime }+x \right )^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}a^{2} y {y^{\prime }}^{2}-2 y^{\prime } x +y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}3 x {y^{\prime }}^{2}-6 y y^{\prime }+x +2 y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y = \left (x +1\right ) {y^{\prime }}^{2}
\] |
[[_homogeneous, ‘class C‘], _rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-2 y y^{\prime }-x = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}8 \left (y^{\prime }+1\right )^{3} = 27 \left (x +y\right ) \left (1-y^{\prime }\right )^{3}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}x^{\prime } = -x^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = {\mathrm e}^{-x}
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = \sqrt {x}
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = {\mathrm e}^{-2 x}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 1+y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}u^{\prime } = \frac {1}{5-2 u}
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = a x+b
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = {\mathrm e}^{x^{2}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = r \left (a -y\right )
\] |
[_quadrature] |
✓ |
|
\[
{}\left (2 u+1\right ) u^{\prime }-1-t = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {1}{2 y+1}
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = {\mathrm e}^{t +x}
\] |
[_separable] |
✓ |
|
\[
{}x^{\prime } = \frac {4 t^{2}+3 x^{2}}{2 t x}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x^{\prime } = a x+b
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = \frac {2 x}{3 t}+\frac {2 t}{x}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x^{\prime } = a x+b x^{3}
\] |
[_quadrature] |
✓ |
|
\[
{}x^{2}+y^{2}+2 x y^{\prime } y = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
|
\[
{}{y^{\prime }}^{2}-4 y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{{1}/{3}}
\] |
[_quadrature] |
✓ |
|
\[
{}3 x +2 y+\left (2 x +y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 x y+3 y^{2}-\left (x^{2}+2 x y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}v^{3}+\left (u^{3}-u v^{2}\right ) v^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x \tan \left (\frac {y}{x}\right )+y-y^{\prime } x = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}\left (2 s^{2}+2 s t +t^{2}\right ) s^{\prime }+s^{2}+2 s t -t^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}\sqrt {x +y}+\sqrt {x -y}+\left (\sqrt {x -y}-\sqrt {x +y}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}\left (4 x -y\right ) y^{\prime }+2 x -5 y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x +2 y+\left (2 x -y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}3 x -y-\left (x +y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x^{2}+2 y^{2}+\left (4 x y-y^{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}2 x^{2}+2 x y+y^{2}+\left (x^{2}+2 x y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}3 x -5 y+\left (x +y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {2 x -7 y}{3 y-8 x}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {2 x^{2}+y^{2}}{2 x y-x^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}x^{2}+y^{2}-2 x y^{\prime } y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } = \frac {2 x +7 y}{2 x -2 y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x y+x^{2} y^{\prime } = \frac {y^{3}}{x}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}5 x +2 y+1+\left (2 x +y+1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}3 x -y+1-\left (6 x -2 y-3\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x -2 y-3+\left (2 x +y-1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}10 x -4 y+12-\left (x +5 y+3\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 x +3 y+1+\left (4 x +6 y+1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (x +y+1\right ) y^{\prime }+1+4 x +3 y = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x^{\prime } = 1-x
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = \left (1+x\right ) \left (2-x\right ) \sin \left (x\right )
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = -x^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime }+p x = q
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = \lambda x
\] |
[_quadrature] |
✓ |
|
\[
{}m v^{\prime } = -m g +k v^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = k x-x^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}12 x +6 y-9+\left (5 x +2 y-3\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } x = y+\sqrt {x^{2}+y^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{x -y}
\] |
[_separable] |
✓ |
|
\[
{}x \left (\ln \left (x \right )-\ln \left (y\right )\right ) y^{\prime }-y = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2} = 9 y^{4}
\] |
[_quadrature] |
✓ |
|
\[
{}y = {y^{\prime }}^{4}-{y^{\prime }}^{3}-2
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}+y^{2} = 4
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {2 y-x -4}{2 x -y+5}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 x +2 y-1+\left (x +y-2\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y = 5 y^{\prime } x -{y^{\prime }}^{2}
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {3 x -4 y-2}{3 x -4 y-3}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {x +y-3}{y-x +1}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (3+2 x +4 y\right ) y^{\prime }-2 y-x -1 = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (y^{2}-x^{2}\right ) y^{\prime }+2 x y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2}-2 y^{\prime } x +y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \cos \left (x +y\right )
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y {y^{\prime }}^{2}+2 y^{\prime } x -y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y-x +\left (x +y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x +y+\left (y-x \right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } x -y = \sqrt {x^{2}+y^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (7 x +5 y\right ) y^{\prime }+10 x +8 y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 \sqrt {s t}-s+t s^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x y^{2} y^{\prime } = x^{3}+y^{3}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}3 y-7 x +7-\left (3 x -7 y-3\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x +2 y+1-\left (3+2 x +4 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\frac {y-y^{\prime } x}{\sqrt {x^{2}+y^{2}}} = m
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}\frac {y y^{\prime }+x}{\sqrt {x^{2}+y^{2}}} = m
\] |
[[_homogeneous, ‘class A‘], _exact, _dAlembert] |
✓ |
|
\[
{}y+\frac {x}{y^{\prime }} = \sqrt {x^{2}+y^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\frac {1}{x^{2}}+\frac {3 y^{2}}{x^{4}} = \frac {2 y y^{\prime }}{x^{3}}
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
|
\[
{}y = 2 y^{\prime } x +{y^{\prime }}^{2}
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}y = x {y^{\prime }}^{2}+{y^{\prime }}^{2}
\] |
[[_homogeneous, ‘class C‘], _rational, _dAlembert] |
✓ |
|
\[
{}y = x \left (y^{\prime }+1\right )+{y^{\prime }}^{2}
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}y = y {y^{\prime }}^{2}+2 y^{\prime } x
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y = y y^{\prime }+y^{\prime }-{y^{\prime }}^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y = x {y^{\prime }}^{2}+{y^{\prime }}^{2}
\] |
[[_homogeneous, ‘class C‘], _rational, _dAlembert] |
✓ |
|
\[
{}2 x +2 y-1+\left (x +y-2\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime }-y^{2} = 1
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }+3 y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}-4 y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 3 y^{{2}/{3}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 1-y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 1+y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{2}-4
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 4-y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 1+y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{x -y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \ln \left (x +y\right )
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {2 x -y}{x +3 y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \ln \left (-1+y\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{y-x}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \sqrt {\frac {y-4}{x}}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = 4 y-5
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }+3 y = 1
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = b +a y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 3 y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 1-y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 1-y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = -\frac {y \left (2 x +y\right )}{x \left (x +2 y\right )}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}y^{\prime } = 4 y+1
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{3}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{y-x}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{y-x}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = 2 y+1
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 2-y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{-y}
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = x^{2}+1
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {1}{2 y+1}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{2}-4
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \sec \left (y\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = -y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = -y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 2 y+1
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {1}{2 y+3}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 1-2 y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 4 y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}S^{\prime } = S^{3}-2 S^{2}+S
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{3}+y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}\theta ^{\prime } = \frac {9}{10}-\frac {11 \cos \left (\theta \right )}{10}
\] |
[_quadrature] |
✓ |
|
\[
{}\theta ^{\prime } = \frac {11}{10}-\frac {9 \cos \left (\theta \right )}{10}
\] |
[_quadrature] |
✓ |
|
\[
{}v^{\prime } = -\frac {v}{R C}
\] |
[_quadrature] |
✓ |
|
\[
{}v^{\prime } = \frac {K -v}{R C}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 2 y+1
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \sqrt {y}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 2-y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = -y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}w^{\prime } = w \cos \left (w\right )
\] |
[_quadrature] |
✓ |
|
\[
{}w^{\prime } = w \cos \left (w\right )
\] |
[_quadrature] |
✓ |
|
\[
{}w^{\prime } = \left (1-w\right ) \sin \left (w\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {1}{-2+y}
\] |
[_quadrature] |
✓ |
|
\[
{}w^{\prime } = 3 w^{3}-12 w^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 1+\cos \left (y\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \tan \left (y\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y \cos \left (\frac {\pi y}{2}\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y \sin \left (\frac {\pi y}{2}\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{3}-y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \cos \left (\frac {\pi y}{2}\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y \sin \left (\frac {\pi y}{2}\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{2}-y^{3}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 3 y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = -\sin \left (y\right )^{5}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \sin \left (y\right )^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 3-2 y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 3+y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 1-y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 3-y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 3-\sin \left (y\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }-y^{3} = 8
\] |
[_quadrature] |
✓ |
|
\[
{}\left (-2+y\right ) y^{\prime } = x -3
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 2 \sqrt {y}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }+4 y = 8
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \sin \left (x +y\right )
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = y^{2}+9
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{2 x -3 y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }-4 y = 2
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \sin \left (y\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \tan \left (y\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{-y}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{-y}+1
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }-2 y = -10
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 4 y+8
\] |
[_quadrature] |
✓ |
|
\[
{}2 y+y^{\prime } = 6
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }-3 y = 6
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }-3 y = 6
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {1}{\left (3 x +3 y+2\right )^{2}}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {\left (3 x -2 y\right )^{2}+1}{3 x -2 y}+\frac {3}{2}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {x -y}{x +y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{x}+\frac {x^{2}}{y^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}3 y^{\prime } = -2+\sqrt {2 x +3 y+4}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = 4+\frac {1}{\sin \left (4 x -y\right )}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}\left (y-x \right ) y^{\prime } = 1
\] |
[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}\left (x +y\right ) y^{\prime } = y
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = 2 \sqrt {2 x +y-3}-2
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } x -y = \sqrt {x^{2}+x y}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \left (x -y+3\right )^{2}
\] |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
|
\[
{}2 x y+y^{2}+\left (x^{2}+2 x y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}4 x^{3} y+\left (x^{4}-y^{4}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}x^{3}+y^{3}+x y^{2} y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x y^{\prime } y = 2 x^{2}+2 y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } = \frac {x +2 y}{x +2 y+3}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {x +2 y}{2 x -y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{x}+\tan \left (\frac {y}{x}\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}1-\left (x +2 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{2}+1-y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x y^{\prime } y = x^{2}+x y+y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}\left (3-x +y\right )^{2} \left (y^{\prime }-1\right ) = 1
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{4 x +3 y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \tan \left (6 x +3 y+1\right )-2
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{4 x +3 y}
\] |
[_separable] |
✓ |
|
\[
{}{y^{\prime }}^{2}+y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}2 y+y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}2 y+y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}2 x -3 y+\left (2 y-3 x \right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = y^{{1}/{5}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 6 y^{{2}/{3}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \sqrt {y^{2}-1}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \sqrt {y^{2}-1}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \sqrt {25-y^{2}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \sqrt {25-y^{2}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = -y^{3}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }+k y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{2 y+10 t}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{3 y+2 t}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = y^{3}+1
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{3}-1
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{3}-y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}1 = y^{\prime } \cos \left (y\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \sqrt {\frac {y}{t}}
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{t -y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{x -y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{2 x -y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {x +y+3}{3 x +3 y+1}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {x -y+2}{2 x -2 y-1}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \left (x +y-4\right )^{2}
\] |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
|
\[
{}y^{\prime } = 3 y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = -y
\] |
[_quadrature] |
✓ |
|
\[
{}-y+y^{\prime } = 10
\] |
[_quadrature] |
✓ |
|
\[
{}2 t y+\left (t^{2}+y^{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}3 t^{2}+3 y^{2}+6 t y y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
|
\[
{}-\frac {y^{2} {\mathrm e}^{\frac {y}{t}}}{t^{2}}+1+{\mathrm e}^{\frac {y}{t}} \left (1+\frac {y}{t}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _dAlembert] |
✓ |
|
\[
{}1+5 t -y-\left (t +2 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\frac {9 t}{5}+2 y+\left (2 t +2 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 t +\frac {19 y}{10}+\left (\frac {19 t}{10}+2 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}t y-y^{2}+t \left (t -3 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}t^{2}+t y+y^{2}-t y y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}t^{3}+y^{3}-t y^{2} y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } = \frac {t +4 y}{4 t +y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y+\left (t +y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 t^{2}-7 t y+5 y^{2}+t y y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}y+2 \sqrt {t^{2}+y^{2}}-y^{\prime } t = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{2} = \left (t y-4 t^{2}\right ) y^{\prime }
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}y-\left (3 \sqrt {t y}+t \right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}t y y^{\prime }-t^{2} {\mathrm e}^{-\frac {y}{t}}-y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {1}{\frac {2 y \,{\mathrm e}^{-\frac {t}{y}}}{t}+\frac {t}{y}}
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}t \left (\ln \left (t \right )-\ln \left (y\right )\right ) y^{\prime } = y
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } t -y-\sqrt {t^{2}+y^{2}} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}1+t -2 y+\left (4 t -3 y-6\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}5 t +2 y+1+\left (2 t +y+1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}3 t -y+1-\left (6 t -2 y-3\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 t +3 y+1+\left (4 t +6 y+1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y = -y^{\prime } t +\frac {{y^{\prime }}^{5}}{5}
\] |
[_dAlembert] |
✓ |
|
\[
{}y = t {y^{\prime }}^{2}+3 {y^{\prime }}^{2}-2 {y^{\prime }}^{3}
\] |
[_dAlembert] |
✓ |
|
\[
{}y = t \left (2-y^{\prime }\right )+2 {y^{\prime }}^{2}+1
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}3 t +\left (t -4 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y-t +\left (t +y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{2}+\left (t^{2}+t y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}x^{\prime } = \frac {5 t x}{x^{2}+t^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y+y^{\prime } = 5
\] |
[_quadrature] |
✓ |
|
\[
{}2 x -y-2+\left (-x +2 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \sqrt {x -y}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \sqrt {x^{2}-y}-x
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \sqrt {1-y^{2}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {1+y}{x -y}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \left (3 x -y\right )^{{1}/{3}}-1
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \cos \left (x -y\right )
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {x +y}{x -y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}{\mathrm e}^{-y} y^{\prime } = 1
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = a^{x +y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \sin \left (x -y\right )
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}\left (x +y\right )^{2} y^{\prime } = a^{2}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}{\mathrm e}^{y} = {\mathrm e}^{4 y} y^{\prime }+1
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } x = y+x \cos \left (\frac {y}{x}\right )^{2}
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } x = y \left (\ln \left (y\right )-\ln \left (x \right )\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } x = y+\sqrt {y^{2}-x^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}4 x -3 y+\left (2 y-3 x \right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y-x +\left (x +y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}3 y-7 x +7-\left (3 x -7 y-3\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x +y-2+\left (x -y+4\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x +y+\left (x -y-2\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 x +3 y-5+\left (3 x +2 y-5\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}8 x +4 y+1+\left (4 x +2 y+1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x -2 y-1+\left (3 x -6 y+2\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x +y+\left (x +y-1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}3 x y^{2} y^{\prime }-2 y^{3} = x^{3}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x \left (2 x^{2}+y^{2}\right )+y \left (x^{2}+2 y^{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}\frac {2 x}{y^{3}}+\frac {\left (y^{2}-3 x^{2}\right ) y^{\prime }}{y^{4}} = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}3 x^{2} y+y^{3}+\left (x^{3}+3 x y^{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{3} = y {y^{\prime }}^{2}-x^{2} y^{\prime }+x^{2} y
\] |
[_quadrature] |
✓ |
|
\[
{}y = {y^{\prime }}^{2} {\mathrm e}^{y^{\prime }}
\] |
[_quadrature] |
✓ |
|
\[
{}y = y^{\prime } \ln \left (y^{\prime }\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y = \left (y^{\prime }-1\right ) {\mathrm e}^{y^{\prime }}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{{2}/{5}}+{y^{\prime }}^{{2}/{5}} = a^{{2}/{5}}
\] |
[_quadrature] |
✓ |
|
\[
{}y = y^{\prime } \left (1+y^{\prime } \cos \left (y^{\prime }\right )\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y = \arcsin \left (y^{\prime }\right )+\ln \left (1+{y^{\prime }}^{2}\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y = 2 y^{\prime } x +\ln \left (y^{\prime }\right )
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}y = x \left (y^{\prime }+1\right )+{y^{\prime }}^{2}
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}y = 2 y^{\prime } x +\sin \left (y^{\prime }\right )
\] |
[_dAlembert] |
✓ |
|
\[
{}y = x {y^{\prime }}^{2}-\frac {1}{y^{\prime }}
\] |
[_dAlembert] |
✓ |
|
\[
{}y = \frac {3 y^{\prime } x}{2}+{\mathrm e}^{y^{\prime }}
\] |
[_dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2}-4 y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}-y^{2} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}8 {y^{\prime }}^{3}-12 {y^{\prime }}^{2} = 27 y-27 x
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}\left (y^{\prime }-1\right )^{2} = y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y = {y^{\prime }}^{2}-y^{\prime } x +x
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}\left (y^{\prime } x +y\right )^{2} = y^{2} y^{\prime }
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}3 x {y^{\prime }}^{2}-6 y y^{\prime }+x +2 y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \left (x -y\right )^{2}+1
\] |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
|
\[
{}x^{3}-3 x y^{2}+\left (y^{3}-3 x^{2} y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}5 x y-4 y^{2}-6 x^{2}+\left (y^{2}-8 x y+\frac {5 x^{2}}{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}\frac {1}{x^{2}-x y+y^{2}} = \frac {y^{\prime }}{2 y^{2}-x y}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x -y+3+\left (3 x +y+1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x -y+2+\left (x -y+3\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime }-1 = {\mathrm e}^{x +2 y}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}\left (3 x +3 y+a^{2}\right ) y^{\prime } = 4 x +4 y+b^{2}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (5 x -7 y+1\right ) y^{\prime }+x +y-1 = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x +y+1+\left (2 x +2 y-1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime }+x {y^{\prime }}^{2}-y = 0
\] |
[_rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {3-2 x}{y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {b +a y}{d +c y}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {t -y}{2 t +5 y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = y^{{1}/{3}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{3}+y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}3+2 x +\left (-2+2 y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}2 x +4 y+\left (2 x -2 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = -\frac {4 x +2 y}{2 x +3 y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = -\frac {4 x -2 y}{2 x -3 y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 x -y+\left (-x +2 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}3 x y+y^{2}+\left (x^{2}+x y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}\frac {\left (3 x^{3}-x y^{2}\right ) y^{\prime }}{y^{3}+3 x^{2} y} = 1
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y+\sqrt {x^{2}-y^{2}} = y^{\prime } x
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x y^{\prime } y = \left (x +y\right )^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {4 y-7 x}{5 x -y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } x -4 \sqrt {y^{2}-x^{2}} = y
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {y^{4}+2 x y^{3}-3 x^{2} y^{2}-2 x^{3} y}{2 x^{2} y^{2}-2 x^{3} y-2 x^{4}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (y+x \,{\mathrm e}^{\frac {x}{y}}\right ) y^{\prime } = y \,{\mathrm e}^{\frac {x}{y}}
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = r y-k^{2} y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = a y+b y^{3}
\] |
[_quadrature] |
✓ |
|
\[
{}\left (3 x-y \right ) x^{\prime }+9 y -2 x = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x^{\prime } = \frac {2 x y +x^{2}}{3 y^{2}+2 x y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}4 x y^{\prime } y = 8 x^{2}+5 y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } = \frac {2 x y}{x^{2}+y^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {y \left (1+\ln \left (y\right )-\ln \left (x \right )\right )}{x}
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x^{2} y^{\prime }+y^{2} = x y^{\prime } y
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}\left (x +y\right ) y^{\prime } = y-x
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}3 y-7 x +7 = \left (3 x -7 y-3\right ) y^{\prime }
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (x +2 y+1\right ) y^{\prime } = 3+2 x +4 y
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (x +y\right )^{2} y^{\prime } = a^{2}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}\frac {2 x}{y^{3}}+\frac {\left (y^{2}-3 x^{2}\right ) y^{\prime }}{y^{4}} = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}+2 y^{\prime } x -y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{3}+y^{3}-3 y y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y = {y^{\prime }}^{2} {\mathrm e}^{y^{\prime }}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{2} \left (y^{\prime }-1\right ) = \left (2-y^{\prime }\right )^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}x = y y^{\prime }+a {y^{\prime }}^{2}
\] |
[_dAlembert] |
✓ |
|
\[
{}y = x {y^{\prime }}^{2}+{y^{\prime }}^{3}
\] |
[_dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2}+2 y^{\prime } x +2 y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \sqrt {y-x}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \sqrt {y-x}+1
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \sqrt {y}
\] |
[_quadrature] |
✓ |
|
\[
{}4 x -2 y y^{\prime }+x {y^{\prime }}^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}+2 y^{\prime } x -y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{2} \left (y^{\prime }-1\right ) = \left (2-y^{\prime }\right )^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}x^{2} {y^{\prime }}^{2}-2 x y^{\prime } y+2 x y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } = k y
\] |
[_quadrature] |
✓ |
|
\[
{}2 x y^{\prime } y = x^{2}+y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } = \frac {y^{2}}{x y-x^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{3 x -2 y}
\] |
[_separable] |
✓ |
|
\[
{}v^{\prime } = g -\frac {k v^{2}}{m}
\] |
[_quadrature] |
✓ |
|
\[
{}x^{2}-2 y^{2}+x y^{\prime } y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x -y-\left (x +y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x^{3}+y^{3}-x y^{2} y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } = \sin \left (x -y+1\right )^{2}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {x +y+4}{x -y-6}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {x +y+4}{x +y-6}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 x -2 y+\left (-1+y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {x +y-1}{x +4 y+2}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\frac {4 y^{2}-2 x^{2}}{4 x y^{2}-x^{3}}+\frac {\left (8 y^{2}-x^{2}\right ) y^{\prime }}{4 y^{3}-x^{2} y} = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}\left (3 x^{2}-y^{2}\right ) y^{\prime }-2 x y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (x +y\right ) y^{\prime } = y-x
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } x +y = y^{\prime } \sqrt {x y}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}2 x +3 y+1+\left (2 y-3 x +5\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x y^{\prime } y = x^{2} y^{\prime }+y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}6 x +4 y+3+\left (3 x +2 y+2\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } \ln \left (x -y\right ) = 1+\ln \left (x -y\right )
\] |
[[_homogeneous, ‘class C‘], _exact, _dAlembert] |
✓ |
|
\[
{}y^{2}-3 x y-2 x^{2} = \left (x^{2}-x y\right ) y^{\prime }
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}x^{2} y^{4}+x^{6}-x^{3} y^{3} y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } = \frac {2 x y \,{\mathrm e}^{\frac {x^{2}}{y^{2}}}}{y^{2}+y^{2} {\mathrm e}^{\frac {x^{2}}{y^{2}}}+2 x^{2} {\mathrm e}^{\frac {x^{2}}{y^{2}}}}
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {x +2 y+2}{y-2 x}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}3 x^{2} y-y^{3}-\left (3 x y^{2}-x^{3}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {-3 x -2 y-1}{2 x +3 y-1}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}3 x y+y^{2}+\left (3 x y+x^{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}x^{\prime } = b \,{\mathrm e}^{x}
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = \sqrt {x^{2}-1}
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = 2 \sqrt {x}
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = \tan \left (x\right )
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = \cos \left (\frac {x}{t}\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x^{\prime } = -\lambda x
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }+c y = a
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = k \left (A -n x\right ) \left (M -m x\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{2} = x \left (y-x \right ) y^{\prime }
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}2 x^{2} y+y^{3}-x^{3} y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}2 a x +b y+\left (2 c y+b x +e \right ) y^{\prime } = g
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\frac {2 x}{y^{3}}+\left (\frac {1}{y^{2}}-\frac {3 x^{2}}{y^{4}}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}+2 y^{\prime }-y = 0
\] |
[_rational, _dAlembert] |
✓ |
|
\[
{}2 {y^{\prime }}^{3}+{y^{\prime }}^{2}-y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 1+\frac {2 y}{x -y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y-2 y^{\prime } x -y {y^{\prime }}^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x \left (x -2 y\right ) y^{\prime }+x^{2}+2 y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}5 x y^{\prime } y-x^{2}-y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}\left (x^{2}+3 x y-y^{2}\right ) y^{\prime }-3 y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (x^{2}+2 x y\right ) y^{\prime }-3 x^{2}+2 x y-y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}5 x y^{\prime } y-4 x^{2}-y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}\left (3 x +2 y-7\right ) y^{\prime } = 2 x -3 y+6
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (6 x -5 y+4\right ) y^{\prime } = 1+2 x -y
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (5 x -2 y+7\right ) y^{\prime } = x -3 y+2
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (x -3 y+4\right ) y^{\prime } = 5 x -7 y
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (x -3 y+4\right ) y^{\prime } = 2 x -6 y+7
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (5 x -2 y+7\right ) y^{\prime } = 10 x -4 y+6
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (2 x -2 y+5\right ) y^{\prime } = x -y+3
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (6 x -4 y+1\right ) y^{\prime } = 3 x -2 y+1
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x = {y^{\prime }}^{2}+y
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}x^{2}+y^{2}-2 x y^{\prime } y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{2}+\left (x^{2}+x y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}x^{2} y-\left (x^{3}+y^{3}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (3 x +4 y\right ) y^{\prime }+y-2 x = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}3 y-7 x +7+\left (7 y-3 x +3\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (y-3 x +3\right ) y^{\prime } = 2 y-x -4
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x^{2}-4 x y-2 y^{2}+\left (y^{2}-4 x y-2 x^{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}2 a x +b y+g +\left (2 c y+b x +e \right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x^{2} y-2 x y^{2}-\left (x^{3}-3 x^{2} y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}y^{3}-2 x^{2} y+\left (2 x y^{2}-x^{3}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (x +y\right )^{2} y^{\prime } = a^{2}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } x -y = \sqrt {x^{2}+y^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}2 x -y+1+\left (2 y-x -1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x^{2} y-\left (x^{3}+y^{3}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y y^{\prime }+x = m \left (y^{\prime } x -y\right )
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (x +y\right ) y^{\prime }+x -y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (y^{2}-x^{2}\right ) y^{\prime }+2 x y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}3 y+2 x +4-\left (4 x +6 y+5\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x^{2} y^{\prime }+y^{2} = x y^{\prime } y
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}\left (x -y\right )^{2} y^{\prime } = a^{2}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{3}+2 x {y^{\prime }}^{2}-y^{2} {y^{\prime }}^{2}-2 x y^{2} y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}\left (x +2 y\right ) {y^{\prime }}^{3}+3 \left (x +y\right ) {y^{\prime }}^{2}+\left (2 x +y\right ) y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x -y y^{\prime } = a {y^{\prime }}^{2}
\] |
[_dAlembert] |
✓ |
|
\[
{}y = -a y^{\prime }+\frac {c +a \arcsin \left (y^{\prime }\right )}{\sqrt {1-{y^{\prime }}^{2}}}
\] |
[_quadrature] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-2 y y^{\prime }+a x = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y = 2 y^{\prime }+3 {y^{\prime }}^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{2} = a^{2} \left (1+{y^{\prime }}^{2}\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y = y {y^{\prime }}^{2}+2 y^{\prime } x
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y = x \left (y^{\prime }+1\right )+{y^{\prime }}^{2}
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}{\mathrm e}^{4 x} \left (y^{\prime }-1\right )+{\mathrm e}^{2 y} {y^{\prime }}^{2} = 0
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}x^{2} {y^{\prime }}^{2}-2 x y^{\prime } y+2 y^{2}-x^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}a y {y^{\prime }}^{2}+\left (2 x -b \right ) y^{\prime }-y = 0
\] |
[[_homogeneous, ‘class C‘], _rational, _dAlembert] |
✓ |
|
\[
{}3 y^{2} {y^{\prime }}^{2}-2 x y^{\prime } y-x^{2}+4 y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}\left (x^{2}+y^{2}\right ) \left (y^{\prime }+1\right )^{2}-2 \left (x +y\right ) \left (y^{\prime }+1\right ) \left (y y^{\prime }+x \right )+\left (y y^{\prime }+x \right )^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}\left (y y^{\prime }+n x \right )^{2} = \left (y^{2}+n \,x^{2}\right ) \left (1+{y^{\prime }}^{2}\right )
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left ({y^{\prime }}^{2}-\frac {1}{a^{2}-x^{2}}\right ) \left (y^{\prime }-\sqrt {\frac {y}{x}}\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{3}+m {y^{\prime }}^{2} = a \left (y+m x \right )
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}{\mathrm e}^{3 x} \left (y^{\prime }-1\right )+{\mathrm e}^{2 y} {y^{\prime }}^{3} = 0
\] |
[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], _dAlembert] |
✓ |
|
\[
{}y-\frac {1}{\sqrt {1+{y^{\prime }}^{2}}} = b
\] |
[_quadrature] |
✓ |
|
\[
{}\sqrt {x}\, y^{\prime } = \sqrt {y}
\] |
[_separable] |
✓ |
|
\[
{}\left (y^{\prime }+1\right )^{3} = \frac {7 \left (x +y\right ) \left (1-y^{\prime }\right )^{3}}{4 a}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2}+2 y^{\prime } x -y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}a {y^{\prime }}^{3} = 27 y
\] |
[_quadrature] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-2 y y^{\prime }+a x = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (8 {y^{\prime }}^{3}-27\right ) x = 12 y {y^{\prime }}^{2}
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}y-x +\left (x +y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x^{3}+3 x y^{2}+\left (y^{3}+3 x^{2} y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}y y^{\prime }+x = m \left (y^{\prime } x -y\right )
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (x +y-1\right ) y^{\prime } = x +y+1
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (2 x +2 y+1\right ) y^{\prime } = x +y+1
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 x +3 y-1+\left (2 x +3 y-5\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (x^{2}+y^{2}\right ) y^{\prime } = x^{2}+x y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x^{2}-y^{2}+2 x y^{\prime } y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{x}+\tan \left (\frac {y}{x}\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}\left (2 x -2 y+5\right ) y^{\prime }-x +y-3 = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x +y+1-\left (2 x +2 y+1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{2} = \left (x y-x^{2}\right ) y^{\prime }
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}\left (6 x -5 y+4\right ) y^{\prime }+y-2 x -1 = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (x -3 y+4\right ) y^{\prime }+7 y-5 x = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (3+2 x +4 y\right ) y^{\prime } = x +2 y+1
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } x -y = \sqrt {x^{2}+y^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (3 x^{2}+y^{2}\right ) y y^{\prime }+x \left (x^{2}+3 y^{2}\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}x^{2}+3 y^{2}-2 x y^{\prime } y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } = \frac {1+2 x -y}{x +2 y-3}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (x -y\right ) y^{\prime } = x +y+1
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x -y-2-\left (2 x -2 y-3\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x^{2} y-2 x y^{2}-\left (x^{3}-3 x^{2} y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}x^{2}+y^{2}-2 x y^{\prime } y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}\frac {\left (x +y-a \right ) y^{\prime }}{x +y-b} = \frac {x +y+a}{x +y+b}
\] |
[[_homogeneous, ‘class C‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (x -y\right )^{2} y^{\prime } = a^{2}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}\left (x +y\right )^{2} y^{\prime } = a^{2}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \left (4 x +y+1\right )^{2}
\] |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
|
\[
{}y^{\prime } x -y = \sqrt {x^{2}+y^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y y^{\prime }+x = m \left (y^{\prime } x -y\right )
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}{x^{\prime }}^{2} = k^{2} \left (1-{\mathrm e}^{-\frac {2 g x}{k^{2}}}\right )
\] |
[_quadrature] |
✓ |
|
\[
{}\left (2 x +2 y+3\right ) y^{\prime } = x +y+1
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \sin \left (x +y\right )+\cos \left (x +y\right )
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}x^{2} y^{\prime }+y^{2} = x y^{\prime } y
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}y^{\prime }+\frac {a x +b y+c}{b x +f y+e} = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}{y^{\prime }}^{2}+y^{\prime } x +y y^{\prime }+x y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3}+2 x {y^{\prime }}^{2}-y^{2} {y^{\prime }}^{2}-2 x y^{2} y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y = 3 x +a \ln \left (y^{\prime }\right )
\] |
[_separable] |
✓ |
|
\[
{}{y^{\prime }}^{2}-y y^{\prime }+x = 0
\] |
[_dAlembert] |
✓ |
|
\[
{}y = x +a \arctan \left (y^{\prime }\right )
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}3 {y^{\prime }}^{5}-y y^{\prime }+1 = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y = x {y^{\prime }}^{2}+y^{\prime }
\] |
[_rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}+a x = 2 y y^{\prime }
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{3}+y^{\prime } = {\mathrm e}^{y}
\] |
[_quadrature] |
✓ |
|
\[
{}y = \sin \left (y^{\prime }\right )-y^{\prime } \cos \left (y^{\prime }\right )
\] |
[_quadrature] |
✓ |
|
\[
{}x = y y^{\prime }-{y^{\prime }}^{2}
\] |
[_dAlembert] |
✓ |
|
\[
{}\left (2 x -b \right ) y^{\prime } = y-a y {y^{\prime }}^{2}
\] |
[[_homogeneous, ‘class C‘], _rational, _dAlembert] |
✓ |
|
\[
{}x = y+a \ln \left (y^{\prime }\right )
\] |
[_separable] |
✓ |
|
\[
{}y {y^{\prime }}^{2}+2 y^{\prime } x = y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}4 y {y^{\prime }}^{2}+2 y^{\prime } x -y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y {y^{\prime }}^{2}+2 y^{\prime } x -y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x^{2} {y^{\prime }}^{2}-2 x y^{\prime } y+2 y^{2} = x^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y = y^{\prime } x +x \sqrt {1+{y^{\prime }}^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y = \frac {2 a {y^{\prime }}^{2}}{\left (1+{y^{\prime }}^{2}\right )^{2}}
\] |
[_quadrature] |
✓ |
|
\[
{}y-y^{\prime } x = y y^{\prime }+x
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}a^{2} y {y^{\prime }}^{2}-4 y^{\prime } x +y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left ({y^{\prime }}^{2}-\frac {1}{a^{2}-x^{2}}\right ) \left (y^{\prime }-\sqrt {\frac {y}{x}}\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y y^{\prime }+x = a {y^{\prime }}^{2}
\] |
[_dAlembert] |
✓ |
|
\[
{}2 y = y^{\prime } x +\frac {a}{y^{\prime }}
\] |
[[_homogeneous, ‘class G‘], _rational, _dAlembert] |
✓ |
|
\[
{}y = \sqrt {1+{y^{\prime }}^{2}}+a y^{\prime }
\] |
[_quadrature] |
✓ |
|
\[
{}y = a y^{\prime }+b {y^{\prime }}^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3}-\left (y+2 x -{\mathrm e}^{x -y}\right ) {y^{\prime }}^{2}+\left (2 x y-2 x \,{\mathrm e}^{x -y}-y \,{\mathrm e}^{x -y}\right ) y^{\prime }+2 x y \,{\mathrm e}^{x -y} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-2 y y^{\prime }+a x = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2}+y^{2} = 1
\] |
[_quadrature] |
✓ |
|
\[
{}y {y^{\prime }}^{2}-2 y^{\prime } x +y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}3 x {y^{\prime }}^{2}-6 y y^{\prime }+x +2 y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2} = \left (4 y+1\right ) \left (y^{\prime }-y\right )
\] |
[_quadrature] |
✓ |
|
\[
{}8 x {y^{\prime }}^{3} = y \left (12 {y^{\prime }}^{2}-9\right )
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}y^{2}+\left (x^{2}+x y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {6 x -2 y-7}{2 x +3 y-6}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 x +y+1+\left (4 x +2 y-1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x^{2} y-\left (x^{3}+y^{3}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{3}-2 x^{2} y+\left (2 x y^{2}-x^{3}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (x +2 y\right ) {y^{\prime }}^{3}+3 \left (x +y\right ) {y^{\prime }}^{2}+\left (2 x +y\right ) y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y-\frac {1}{\sqrt {1+{y^{\prime }}^{2}}} = b
\] |
[_quadrature] |
✓ |
|
\[
{}y = \frac {x}{y^{\prime }}-a y^{\prime }
\] |
[_dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{3}+m {y^{\prime }}^{2} = a \left (y+m x \right )
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}a y {y^{\prime }}^{2}+\left (2 x -b \right ) y^{\prime }-y = 0
\] |
[[_homogeneous, ‘class C‘], _rational, _dAlembert] |
✓ |
|
\[
{}y = x \left (y^{\prime }+1\right )+{y^{\prime }}^{2}
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}{\mathrm e}^{3 x} \left (y^{\prime }-1\right )+{\mathrm e}^{2 y} {y^{\prime }}^{3} = 0
\] |
[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], _dAlembert] |
✓ |
|
\[
{}y-2 y^{\prime } x +a y {y^{\prime }}^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (y y^{\prime }+n x \right )^{2} = \left (y^{2}+n \,x^{2}\right ) \left (1+{y^{\prime }}^{2}\right )
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (x^{2}+y^{2}\right ) \left (y^{\prime }+1\right )^{2}-2 \left (x +y\right ) \left (y^{\prime }+1\right ) \left (y y^{\prime }+x \right )+\left (y y^{\prime }+x \right )^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2}+2 y^{\prime } x -y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}x^{2} {y^{\prime }}^{3}+\left (2 x +y\right ) y y^{\prime }+y^{2} = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-2 y y^{\prime }+x +2 y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2} y^{2} \cos \left (a \right )^{2}-2 y^{\prime } x y \sin \left (a \right )^{2}+y^{2}-x^{2} \sin \left (a \right )^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|