2.5.2 problem 3
Internal
problem
ID
[18236]
Book
:
Elementary
Differential
Equations.
By
Thornton
C.
Fry.
D
Van
Nostrand.
NY.
First
Edition
(1929)
Section
:
Chapter
IV.
Methods
of
solution:
First
order
equations.
section
32.
Problems
at
page
89
Problem
number
:
3
Date
solved
:
Monday, December 23, 2024 at 09:17:24 PM
CAS
classification
:
[_quadrature]
Solve
\begin{align*} 2 {y^{\prime }}^{3}+{y^{\prime }}^{2}-y&=0 \end{align*}
Solving for the derivative gives these ODE’s to solve
\begin{align*}
\tag{1} y^{\prime }&=\frac {\left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}{6}+\frac {1}{6 \left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}-\frac {1}{6} \\
\tag{2} y^{\prime }&=-\frac {\left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}{12}-\frac {1}{12 \left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}-\frac {1}{6}+\frac {i \sqrt {3}\, \left (\frac {\left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}{6}-\frac {1}{6 \left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}\right )}{2} \\
\tag{3} y^{\prime }&=-\frac {\left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}{12}-\frac {1}{12 \left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}-\frac {1}{6}-\frac {i \sqrt {3}\, \left (\frac {\left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}{6}-\frac {1}{6 \left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}\right )}{2} \\
\end{align*}
Now each of the above is solved
separately.
Solving Eq. (1)
Unable to integrate (or intergal too complicated), and since no initial conditions
are given, then the result can be written as
\[ \int _{}^{y}\frac {6 \left (-1+54 \tau +6 \sqrt {81 \tau ^{2}-3 \tau }\right )^{{1}/{3}}}{\left (-1+54 \tau +6 \sqrt {81 \tau ^{2}-3 \tau }\right )^{{2}/{3}}-\left (-1+54 \tau +6 \sqrt {81 \tau ^{2}-3 \tau }\right )^{{1}/{3}}+1}d \tau = x +c_1 \]
We now need to find the singular
solutions, these are found by finding for what values \((\frac {\left (-1+54 y +6 \sqrt {81 y^{2}-3 y}\right )^{{1}/{3}}}{6}+\frac {1}{6 \left (-1+54 y +6 \sqrt {81 y^{2}-3 y}\right )^{{1}/{3}}}-\frac {1}{6})\) is zero. These give
\begin{align*}
y&=\operatorname {RootOf}\left (-\left (-1+54 \textit {\_Z} +6 \sqrt {3}\, \sqrt {27 \textit {\_Z}^{2}-\textit {\_Z}}\right )^{{2}/{3}}+\left (-1+54 \textit {\_Z} +6 \sqrt {3}\, \sqrt {27 \textit {\_Z}^{2}-\textit {\_Z}}\right )^{{1}/{3}}-1\right ) \\
\end{align*}
Now
we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be
used.
The solution \(\operatorname {RootOf}\left (-\left (-1+54 \textit {\_Z} +6 \sqrt {3}\, \sqrt {27 \textit {\_Z}^{2}-\textit {\_Z}}\right )^{{2}/{3}}+\left (-1+54 \textit {\_Z} +6 \sqrt {3}\, \sqrt {27 \textit {\_Z}^{2}-\textit {\_Z}}\right )^{{1}/{3}}-1\right )\) will not be used
Solving Eq. (2)
Unable to integrate (or intergal too complicated), and since no initial conditions
are given, then the result can be written as
\[ \int _{}^{y}\frac {12 \left (-1+54 \tau +6 \sqrt {81 \tau ^{2}-3 \tau }\right )^{{1}/{3}}}{i \left (-1+54 \tau +6 \sqrt {81 \tau ^{2}-3 \tau }\right )^{{2}/{3}} \sqrt {3}-\left (-1+54 \tau +6 \sqrt {81 \tau ^{2}-3 \tau }\right )^{{2}/{3}}-i \sqrt {3}-2 \left (-1+54 \tau +6 \sqrt {81 \tau ^{2}-3 \tau }\right )^{{1}/{3}}-1}d \tau = x +c_2 \]
We now need to find the singular
solutions, these are found by finding for what values \((-\frac {\left (-1+54 y +6 \sqrt {81 y^{2}-3 y}\right )^{{1}/{3}}}{12}-\frac {1}{12 \left (-1+54 y +6 \sqrt {81 y^{2}-3 y}\right )^{{1}/{3}}}-\frac {1}{6}+\frac {i \sqrt {3}\, \left (\frac {\left (-1+54 y +6 \sqrt {81 y^{2}-3 y}\right )^{{1}/{3}}}{6}-\frac {1}{6 \left (-1+54 y +6 \sqrt {81 y^{2}-3 y}\right )^{{1}/{3}}}\right )}{2})\) is zero. These give
\begin{align*}
y&=\operatorname {RootOf}\left (i \left (-1+54 \textit {\_Z} +6 \sqrt {3}\, \sqrt {27 \textit {\_Z}^{2}-\textit {\_Z}}\right )^{{2}/{3}} \sqrt {3}-\left (-1+54 \textit {\_Z} +6 \sqrt {3}\, \sqrt {27 \textit {\_Z}^{2}-\textit {\_Z}}\right )^{{2}/{3}}-i \sqrt {3}-2 \left (-1+54 \textit {\_Z} +6 \sqrt {3}\, \sqrt {27 \textit {\_Z}^{2}-\textit {\_Z}}\right )^{{1}/{3}}-1\right ) \\
\end{align*}
Now
we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be
used.
The solution \(\operatorname {RootOf}\left (i \left (-1+54 \textit {\_Z} +6 \sqrt {3}\, \sqrt {27 \textit {\_Z}^{2}-\textit {\_Z}}\right )^{{2}/{3}} \sqrt {3}-\left (-1+54 \textit {\_Z} +6 \sqrt {3}\, \sqrt {27 \textit {\_Z}^{2}-\textit {\_Z}}\right )^{{2}/{3}}-i \sqrt {3}-2 \left (-1+54 \textit {\_Z} +6 \sqrt {3}\, \sqrt {27 \textit {\_Z}^{2}-\textit {\_Z}}\right )^{{1}/{3}}-1\right )\) will not be used
Solving Eq. (3)
Unable to integrate (or intergal too complicated), and since no initial conditions
are given, then the result can be written as
\[ \int _{}^{y}-\frac {12 \left (-1+54 \tau +6 \sqrt {81 \tau ^{2}-3 \tau }\right )^{{1}/{3}}}{i \left (-1+54 \tau +6 \sqrt {81 \tau ^{2}-3 \tau }\right )^{{2}/{3}} \sqrt {3}+\left (-1+54 \tau +6 \sqrt {81 \tau ^{2}-3 \tau }\right )^{{2}/{3}}-i \sqrt {3}+2 \left (-1+54 \tau +6 \sqrt {81 \tau ^{2}-3 \tau }\right )^{{1}/{3}}+1}d \tau = x +c_3 \]
We now need to find the singular
solutions, these are found by finding for what values \((-\frac {\left (-1+54 y +6 \sqrt {81 y^{2}-3 y}\right )^{{1}/{3}}}{12}-\frac {1}{12 \left (-1+54 y +6 \sqrt {81 y^{2}-3 y}\right )^{{1}/{3}}}-\frac {1}{6}-\frac {i \sqrt {3}\, \left (\frac {\left (-1+54 y +6 \sqrt {81 y^{2}-3 y}\right )^{{1}/{3}}}{6}-\frac {1}{6 \left (-1+54 y +6 \sqrt {81 y^{2}-3 y}\right )^{{1}/{3}}}\right )}{2})\) is zero. These give
\begin{align*}
y&=\operatorname {RootOf}\left (i \left (-1+54 \textit {\_Z} +6 \sqrt {3}\, \sqrt {27 \textit {\_Z}^{2}-\textit {\_Z}}\right )^{{2}/{3}} \sqrt {3}+\left (-1+54 \textit {\_Z} +6 \sqrt {3}\, \sqrt {27 \textit {\_Z}^{2}-\textit {\_Z}}\right )^{{2}/{3}}-i \sqrt {3}+2 \left (-1+54 \textit {\_Z} +6 \sqrt {3}\, \sqrt {27 \textit {\_Z}^{2}-\textit {\_Z}}\right )^{{1}/{3}}+1\right ) \\
\end{align*}
Now
we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be
used.
The solution \(\operatorname {RootOf}\left (i \left (-1+54 \textit {\_Z} +6 \sqrt {3}\, \sqrt {27 \textit {\_Z}^{2}-\textit {\_Z}}\right )^{{2}/{3}} \sqrt {3}+\left (-1+54 \textit {\_Z} +6 \sqrt {3}\, \sqrt {27 \textit {\_Z}^{2}-\textit {\_Z}}\right )^{{2}/{3}}-i \sqrt {3}+2 \left (-1+54 \textit {\_Z} +6 \sqrt {3}\, \sqrt {27 \textit {\_Z}^{2}-\textit {\_Z}}\right )^{{1}/{3}}+1\right )\) will not be used
Maple step by step solution
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & 2 {y^{\prime }}^{3}+{y^{\prime }}^{2}-y=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & y^{\prime } \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \left [y^{\prime }=\frac {\left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}{6}+\frac {1}{6 \left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}-\frac {1}{6}, y^{\prime }=-\frac {\left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}{12}-\frac {1}{12 \left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}-\frac {1}{6}-\frac {\mathrm {I} \sqrt {3}\, \left (\frac {\left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}{6}-\frac {1}{6 \left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}\right )}{2}, y^{\prime }=-\frac {\left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}{12}-\frac {1}{12 \left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}-\frac {1}{6}+\frac {\mathrm {I} \sqrt {3}\, \left (\frac {\left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}{6}-\frac {1}{6 \left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}\right )}{2}\right ] \\ \square & {} & \textrm {Solve the equation}\hspace {3pt} y^{\prime }=\frac {\left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}{6}+\frac {1}{6 \left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}-\frac {1}{6} \\ {} & \circ & \textrm {Separate variables}\hspace {3pt} \\ {} & {} & \frac {y^{\prime }}{\frac {\left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}{6}+\frac {1}{6 \left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}-\frac {1}{6}}=1 \\ {} & \circ & \textrm {Integrate both sides with respect to}\hspace {3pt} x \\ {} & {} & \int \frac {y^{\prime }}{\frac {\left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}{6}+\frac {1}{6 \left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}-\frac {1}{6}}d x =\int 1d x +\textit {\_C1} \\ {} & \circ & \textrm {Cannot compute integral}\hspace {3pt} \\ {} & {} & \int \frac {y^{\prime }}{\frac {\left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}{6}+\frac {1}{6 \left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}-\frac {1}{6}}d x =x +\textit {\_C1} \\ \square & {} & \textrm {Solve the equation}\hspace {3pt} y^{\prime }=-\frac {\left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}{12}-\frac {1}{12 \left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}-\frac {1}{6}-\frac {\mathrm {I} \sqrt {3}\, \left (\frac {\left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}{6}-\frac {1}{6 \left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}\right )}{2} \\ {} & \circ & \textrm {Separate variables}\hspace {3pt} \\ {} & {} & \frac {y^{\prime }}{-\frac {\left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}{12}-\frac {1}{12 \left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}-\frac {1}{6}-\frac {\mathrm {I} \sqrt {3}\, \left (\frac {\left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}{6}-\frac {1}{6 \left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}\right )}{2}}=1 \\ {} & \circ & \textrm {Integrate both sides with respect to}\hspace {3pt} x \\ {} & {} & \int \frac {y^{\prime }}{-\frac {\left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}{12}-\frac {1}{12 \left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}-\frac {1}{6}-\frac {\mathrm {I} \sqrt {3}\, \left (\frac {\left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}{6}-\frac {1}{6 \left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}\right )}{2}}d x =\int 1d x +\textit {\_C1} \\ {} & \circ & \textrm {Cannot compute integral}\hspace {3pt} \\ {} & {} & \int \frac {y^{\prime }}{-\frac {\left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}{12}-\frac {1}{12 \left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}-\frac {1}{6}-\frac {\mathrm {I} \sqrt {3}\, \left (\frac {\left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}{6}-\frac {1}{6 \left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}\right )}{2}}d x =x +\textit {\_C1} \\ \square & {} & \textrm {Solve the equation}\hspace {3pt} y^{\prime }=-\frac {\left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}{12}-\frac {1}{12 \left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}-\frac {1}{6}+\frac {\mathrm {I} \sqrt {3}\, \left (\frac {\left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}{6}-\frac {1}{6 \left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}\right )}{2} \\ {} & \circ & \textrm {Separate variables}\hspace {3pt} \\ {} & {} & \frac {y^{\prime }}{-\frac {\left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}{12}-\frac {1}{12 \left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}-\frac {1}{6}+\frac {\mathrm {I} \sqrt {3}\, \left (\frac {\left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}{6}-\frac {1}{6 \left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}\right )}{2}}=1 \\ {} & \circ & \textrm {Integrate both sides with respect to}\hspace {3pt} x \\ {} & {} & \int \frac {y^{\prime }}{-\frac {\left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}{12}-\frac {1}{12 \left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}-\frac {1}{6}+\frac {\mathrm {I} \sqrt {3}\, \left (\frac {\left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}{6}-\frac {1}{6 \left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}\right )}{2}}d x =\int 1d x +\textit {\_C1} \\ {} & \circ & \textrm {Cannot compute integral}\hspace {3pt} \\ {} & {} & \int \frac {y^{\prime }}{-\frac {\left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}{12}-\frac {1}{12 \left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}-\frac {1}{6}+\frac {\mathrm {I} \sqrt {3}\, \left (\frac {\left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}{6}-\frac {1}{6 \left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}\right )}{2}}d x =x +\textit {\_C1} \\ \bullet & {} & \textrm {Set of solutions}\hspace {3pt} \\ {} & {} & \left \{\int \frac {y^{\prime }}{\frac {\left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}{6}+\frac {1}{6 \left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}-\frac {1}{6}}d x =x +\mathit {C1} , \int \frac {y^{\prime }}{-\frac {\left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}{12}-\frac {1}{12 \left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}-\frac {1}{6}-\frac {\mathrm {I} \sqrt {3}\, \left (\frac {\left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}{6}-\frac {1}{6 \left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}\right )}{2}}d x =x +\mathit {C1} , \int \frac {y^{\prime }}{-\frac {\left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}{12}-\frac {1}{12 \left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}-\frac {1}{6}+\frac {\mathrm {I} \sqrt {3}\, \left (\frac {\left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}{6}-\frac {1}{6 \left (-1+54 y+6 \sqrt {-3 y+81 y^{2}}\right )^{{1}/{3}}}\right )}{2}}d x =x +\mathit {C1} \right \} \end {array} \]
Maple trace
`Methods for first order ODEs:
*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing x successful`
Maple dsolve solution
Solving time : 0.019
(sec)
Leaf size : 387
dsolve(2*diff(y(x),x)^3+diff(y(x),x)^2-y(x) = 0,
y(x),singsol=all)
\begin{align*}
y &= 0 \\
-6 \sqrt {3}\, \left (\int _{}^{y}\frac {\left (18 \sqrt {27 \textit {\_a}^{2}-\textit {\_a}}+\left (54 \textit {\_a} -1\right ) \sqrt {3}\right )^{{1}/{3}}}{3^{{2}/{3}}-\sqrt {3}\, \left (18 \sqrt {27 \textit {\_a}^{2}-\textit {\_a}}+\left (54 \textit {\_a} -1\right ) \sqrt {3}\right )^{{1}/{3}}+3^{{1}/{3}} \left (18 \sqrt {27 \textit {\_a}^{2}-\textit {\_a}}+\left (54 \textit {\_a} -1\right ) \sqrt {3}\right )^{{2}/{3}}}d \textit {\_a} \right )+x -c_1 &= 0 \\
\frac {-72 \left (\int _{}^{y}\frac {\left (18 \sqrt {27 \textit {\_a}^{2}-\textit {\_a}}+\left (54 \textit {\_a} -1\right ) \sqrt {3}\right )^{{1}/{3}}}{\left (i 3^{{5}/{6}}+3^{{1}/{3}}-2 \,3^{{1}/{6}} \left (18 \sqrt {27 \textit {\_a}^{2}-\textit {\_a}}+\left (54 \textit {\_a} -1\right ) \sqrt {3}\right )^{{1}/{3}}\right ) \left (3^{{1}/{3}}+3^{{1}/{6}} \left (18 \sqrt {27 \textit {\_a}^{2}-\textit {\_a}}+\left (54 \textit {\_a} -1\right ) \sqrt {3}\right )^{{1}/{3}}\right )}d \textit {\_a} \right )+\left (-c_1 +x \right ) \sqrt {3}+3 i x -3 i c_1}{\sqrt {3}+3 i} &= 0 \\
\frac {-72 \left (\int _{}^{y}\frac {\left (18 \sqrt {27 \textit {\_a}^{2}-\textit {\_a}}+\left (54 \textit {\_a} -1\right ) \sqrt {3}\right )^{{1}/{3}}}{\left (i 3^{{5}/{6}}-3^{{1}/{3}}+2 \,3^{{1}/{6}} \left (18 \sqrt {27 \textit {\_a}^{2}-\textit {\_a}}+\left (54 \textit {\_a} -1\right ) \sqrt {3}\right )^{{1}/{3}}\right ) \left (3^{{1}/{3}}+3^{{1}/{6}} \left (18 \sqrt {27 \textit {\_a}^{2}-\textit {\_a}}+\left (54 \textit {\_a} -1\right ) \sqrt {3}\right )^{{1}/{3}}\right )}d \textit {\_a} \right )+\left (c_1 -x \right ) \sqrt {3}+3 i x -3 i c_1}{-\sqrt {3}+3 i} &= 0 \\
\end{align*}
Mathematica DSolve solution
Solving time : 0.0
(sec)
Leaf size : 0
DSolve[{2*D[y[x],x]^3+D[y[x],x]^2-y[x]==0,{}},
y[x],x,IncludeSingularSolutions->True]
Timed out