2.1.3 Problem 3

Solved as first order ode of type dAlembert
Maple
Mathematica
Sympy

Internal problem ID [4089]
Book : Applied Differential equations, Newby Curle. Van Nostrand Reinhold. 1972
Section : Examples, page 35
Problem number : 3
Date solved : Tuesday, March 04, 2025 at 05:25:26 PM
CAS classification : [[_homogeneous, `class C`], _dAlembert]

Solve

yx=y2(12y3)

Solved as first order ode of type dAlembert

Time used: 0.708 (sec)

Let p=y the ode becomes

yx=p2(12p3)

Solving for y from the above results in

(1)y=p223p3+x

This has the form

(*)y=xf(p)+g(p)

Where f,g are functions of p=y(x). The above ode is dAlembert ode which is now solved.

Taking derivative of (*) w.r.t. x gives

p=f+(xf+g)dpdx(2)pf=(xf+g)dpdx

Comparing the form y=xf+g to (1A) shows that

f=1g=p223p3

Hence (2) becomes

(2A)p1=(2p2+2p)p(x)

The singular solution is found by setting dpdx=0 in the above which gives

p1=0

Solving the above for p results in

p1=1

Substituting these in (1A) and keeping singular solution that verifies the ode gives

y=13+x

The general solution is found when dpdx0. From eq. (2A). This results in

(3)p(x)=p(x)12p(x)2+2p(x)

This ODE is now solved for p(x). No inversion is needed.

Integrating gives

2pdp=dxp2=x+c1

Substituing the above solution for p in (2A) gives

y=c12(c1x)3/23

Summary of solutions found

y=13+xy=c12(c1x)3/23
Maple. Time used: 0.034 (sec). Leaf size: 49
ode:=y(x)-x = diff(y(x),x)^2*(1-2/3*diff(y(x),x)); 
dsolve(ode,y(x), singsol=all);
 
y(x)=x+13y(x)=(2x2c1)x+c13+c1y(x)=(2x+2c1)x+c13+c1

Maple trace

`Methods for first order ODEs: 
   *** Sublevel 2 *** 
   Methods for first order ODEs: 
   -> Solving 1st order ODE of high degree, 1st attempt 
   trying 1st order WeierstrassP solution for high degree ODE 
   trying 1st order WeierstrassPPrime solution for high degree ODE 
   trying 1st order JacobiSN solution for high degree ODE 
   trying 1st order ODE linearizable_by_differentiation 
   trying differential order: 1; missing variables 
   trying dAlembert 
   <- dAlembert successful`
 

Maple step by step

Let’s solvey(x)x=(ddxy(x))2(12ddxy(x)3)Highest derivative means the order of the ODE is1ddxy(x)Solve for the highest derivative[ddxy(x)=(16y(x)+6x+23y(x)+3x+9y(x)218xy(x)+9x2)1/32+12(16y(x)+6x+23y(x)+3x+9y(x)218xy(x)+9x2)1/3+12,ddxy(x)=(16y(x)+6x+23y(x)+3x+9y(x)218xy(x)+9x2)1/3414(16y(x)+6x+23y(x)+3x+9y(x)218xy(x)+9x2)1/3+12I3((16y(x)+6x+23y(x)+3x+9y(x)218xy(x)+9x2)1/3212(16y(x)+6x+23y(x)+3x+9y(x)218xy(x)+9x2)1/3)2,ddxy(x)=(16y(x)+6x+23y(x)+3x+9y(x)218xy(x)+9x2)1/3414(16y(x)+6x+23y(x)+3x+9y(x)218xy(x)+9x2)1/3+12+I3((16y(x)+6x+23y(x)+3x+9y(x)218xy(x)+9x2)1/3212(16y(x)+6x+23y(x)+3x+9y(x)218xy(x)+9x2)1/3)2]Solve the equationddxy(x)=(16y(x)+6x+23y(x)+3x+9y(x)218xy(x)+9x2)1/32+12(16y(x)+6x+23y(x)+3x+9y(x)218xy(x)+9x2)1/3+12Solve the equationddxy(x)=(16y(x)+6x+23y(x)+3x+9y(x)218xy(x)+9x2)1/3414(16y(x)+6x+23y(x)+3x+9y(x)218xy(x)+9x2)1/3+12I3((16y(x)+6x+23y(x)+3x+9y(x)218xy(x)+9x2)1/3212(16y(x)+6x+23y(x)+3x+9y(x)218xy(x)+9x2)1/3)2Solve the equationddxy(x)=(16y(x)+6x+23y(x)+3x+9y(x)218xy(x)+9x2)1/3414(16y(x)+6x+23y(x)+3x+9y(x)218xy(x)+9x2)1/3+12+I3((16y(x)+6x+23y(x)+3x+9y(x)218xy(x)+9x2)1/3212(16y(x)+6x+23y(x)+3x+9y(x)218xy(x)+9x2)1/3)2Set of solutions{workingODE,workingODE,workingODE}
Mathematica. Time used: 176.55 (sec). Leaf size: 14234
ode=y[x]-x==D[y[x],x]^2*(1-2/3* D[y[x],x]); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Too large to display

Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x - (1 - 2*Derivative(y(x), x)/3)*Derivative(y(x), x)**2 + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out