1.3.1 Miscellaneous PDE’s

Table 1.6: Miscellaneous PDE’s breakdown of results. Time in seconds

#

PDE

description

Mathematica
Maple

hand solved?

Animated?

result

time

result

time

1

General first order

Transport equation \(u_t+ u_x = 0\)

0.031

0.097

Yes

2

General first order

Transport equation \(u_t-3 u_x = 0\) IC \(u(0,x)=e^{-x^2}\). Peter Olver textbook, 2.2.2 (a)

0.005

0.128

Yes

Yes

3

General first order

Transport equation \(u_t+2 u_x = 0\) IC \(u(-1,x)=\frac {x}{1+x^2}\). Peter Olver textbook, 2.2.2 (b)

0.006

0.125

Yes

Yes

4

General first order

Transport equation \(u_t+u_x+\frac {1}{2}u = 0\) IC \(u(0,x)=\arctan (x)\). Peter Olver textbook, 2.2.2 (c)

0.004

0.149

Yes

Yes

5

General first order

Transport equation \(u_t-4u_x+u = 0\) IC \(u(0,x)=\frac {1}{1+x^2}\). Peter Olver textbook, 2.2.2 (d)

0.004

0.161

Yes

Yes

6

General first order

Transport equation \(u_t+2 u_x= \sin x\) IC \(u(0,x)=\sin x\). Peter Olver textbook, 2.2.5

0.046

0.21

Yes

Yes

7

General first order

Transport equation \(u_t+\frac {1}{1+x^2} u_x= 0\) IC \(u(x,0)=\frac {1}{1+(3+x)^2}\). Peter Olver textbook, page 27

0.012

0.228

Yes

Yes

8

General first order

Transport equation \(u_t-x u_x= 0\) IC \(u(x,0)=\frac {1}{1+x^2}\). Peter Olver textbook, problem 2.2.17

0.005

0.215

Yes

Yes

9

General first order

Transport equation \(u_t+(1-2 t) u_x= 0\) IC \(u(x,0)=\frac {1}{1+x^2}\). Peter Olver textbook, problem 2.2.29

0.048

0.29

Yes

Yes

10

General first order

Transport equation \(u_t+\frac {1}{x^2+4} u_x= 0\) IC \(u(x,0)=e^{x^3+12 x}\)

0.008

0.275

Yes

Yes

11

General first order

\(3 u_x + 5 u_y = x\)

0.005

0.113

Yes

12

General first order

\(x u_y + y u_x = -4 x y u\) and \(u(x,0)=e^{-x^2}\)

0.019

0.241

Yes

13

General first order

\(u_t + u_x = 0\) and \(u(x,0)=\sin x\) and \(u(0,t)=0\)

0.122

0.384

Yes

14

General first order

\(u_t+ c u_x = 0\) and \(u(x,0)=e^{-x^2}\)

0.005

0.128

Yes

15

General first order

(Haberman 12.2.2) \(\omega _t -3 \omega _x = 0\) and \(\omega (x,0)=\cos x\)

0.005

0.141

Yes

16

General first order

(Haberman 12.2.4) \(\omega _t +c \omega _x = 0\) and \(\omega (x,0)=f(x)\) and \(\omega (0,t)=h(t)\)

1.75


Solution contains unresolved invlaplace calls

0.418

Yes

17

General first order

(Haberman 12.2.5 (a)) \(\omega _t +c \omega _x = e^{2 x}\) and \(\omega (x,0)=f(x)\)

0.057

0.169

Yes

18

General first order

(Haberman 12.2.5 (d)) \(\omega _t +3 t \omega _x = \omega (x,t)\) and \(\omega (x,0)=f(x)\)

0.392

0.281

Yes

19

General first order

\( 2 u_x + 5 u_y = u^2(x,y) + 1\)

0.087

0.214

Yes

20

General first order

Clairaut equation \(x u_x + y u_y + \frac {1}{2} ( (u_x)^2+ (u_y)^2 ) = 0\)

0.041

0.224

Yes

21

General first order

Clairaut equation. \(x u_x + y u_y + \frac {1}{2} ( (u_x)^2+ (u_y)^2 ) = 0\) with \(u(x,0)= \frac {1}{2} (1-x^2)\)

0.009

0.829

22

General first order

Clairaut equation. \(u = x u_x+ y u_y + \sin ( u_x + u_y )\)

0.034

0.067

23

General first order

Recover a function from its gradient vector

0.045

0.267

24

General first order

\(x f_y - f_x = \frac {g(x)}{h(y)} f^2\)

0.034

0.174

Yes

25

General first order

\(f_x + (f_y)^2 = f(x,y,z)+z\)

0.067

0.627

26

General first order

\(x u_x+y u_y=u\) (Example 3.5.1 in Lokenath Debnath)

0.017

0.104

Yes

27

General first order

\(x u_x+y u_y=n u\) Example 3.5.2 in Lokenath Debnath

0.013

0.105

Yes

28

General first order

\(x^2 u_x+y^2 u_y=(x+y) u\) Example 3.5.3 in Lokenath Debnath

0.069

0.153

Yes

29

General first order

\((y-z) u_x + (z-x) u_y + (x-y) u_z = 0\) (Example 3.5.4 in Lokenath Debnath)

9.864

4.685

Yes

30

General first order

\(u(x+y) u_x+u(x-y) u_y=x^2+y^2\) (Example 3.5.5 in Lokenath Debnath)

0.257

0.858

Yes

31

General first order

\(u_x-u_y=1\) with \(u(x,0)=x^2\) Example 3.5.6 in Lokenath Debnath

0.006

0.11

32

General first order

\(y u_x+x u_y=u\) with \(u(x,0)=x^3\) and \(u(0,y)=y^3\) Example 3.5.8 in Lokenath Debnath

1.238

0.589

33

General first order

\(x u_x+y u_y=x e^{-u}\) with \(u=0\) on \(y=x^2\) Example 3.5.10 in Lokenath Debnath

0.105

0.16

34

General first order

\(u_t+u u_x=x\) with \(u(x,0)=f(x)\) Example 3.5.11 in Lokenath Debnath.

2.793

0.517

35

General first order

\(u_x=0\) Problem 3.3(a) Lokenath Debnath

0.004

0.07

36

General first order

\(a u_x+b u_y=0\) Problem 3.3(b) Lokenath Debnath

0.007

0.155

37

General first order

\(u_x+y u_y=0\) Problem 3.3(c) Lokenath Debnath

0.021

0.238

38

General first order

\((1+x^2) u_x+ u_y=0\) Problem 3.3(d) Lokenath Debnath

0.009

0.198

39

General first order

\(2 x y u_x+(x^2+y^2)u_y=0\) Problem 3.3(e) Lokenath Debnath

0.073

0.373

40

General first order

\((y+u) u_x+y u_y=x-y\) Problem 3.3(f) Lokenath Debnath

7.176

0.912

41

General first order

\(y^2 u_x- x y u_y=x(u-2 y)\) Problem 3.3(g) Lokenath Debnath

0.07

0.421

42

General first order

\(y u_y - x u_x = 1\) Problem 3.3(h) Lokenath Debnath

0.014

0.202

43

General first order

\(u_x+2 x y^2 u_y=0\) Problem 3.4 Lokenath Debnath

0.048

0.22

44

General first order

\(3 u_x+2 u_y=0\) with \(u(x,0)=\sin x\). Problem 3.5(a) Lokenath Debnath

0.004

0.195

45

General first order

\(y u_x+x u_y=0\) with \(u(0,y)=e^{-y^2}\). Problem 3.5(b) Lokenath Debnath

0.017

0.492

46

General first order

\(x u_x+y u_y=2 x y\) with \(u=2\) on \(y=x^2\). Problem 3.5(c) Lokenath Debnath

0.011

0.179

47

General first order

\(u_x+x u_y=0\) with \(u(0,y)=\sin y\). Problem 3.5(d) Lokenath Debnath

0.006

0.237

48

General first order

\(y u_x+x u_y=x y\) with \(u(0,y)=e^{-y^2},u(x,0)=e^{-x^2}\). Problem 3.5(e) Lokenath Debnath

2.921

0.812

49

General first order

\(u_x+x u_y=(y-\frac {1}{2}x^2)^2\) with \(u(0,y)=e^{y}\). Problem 3.5(f) Lokenath Debnath

0.008

0.314

50

General first order

\(x u_x+y u_y=u+1\) with \(u=x^2\) on \(y=x^2\) Problem 3.5(g) Lokenath Debnath

0.014

0.179

51

General first order

\(u u_x - u u_y= u^2 + (x+y)^2\) with \(u(x,0)=1\) Problem 3.5(h) Lokenath Debnath

0.031

0.417

52

General first order

\(x u_x+(x+y)u_y=u+1\) with \(u(x,0)=x^2\) Problem 3.5(i) Lokenath Debnath

0.021

0.402

53

General first order

\(x u_x+y u_y+z u_z=0\) Problem 3.8(a) .Lokenath Debnath

0.023

0.17

54

General first order

\(x^2 u_x+y^2 u_y+z(x+y)u_z=0\) Problem 3.8(b) Lokenath Debnath

0.051

0.307

55

General first order

\(x(y-z)u_x+y(z-x)u_y+z(x-y)u_z=0\) Problem 3.8(c) Lokenath Debnath

0.023

1.173

56

General first order

\(y z u_x - x z u_y+ x y (x^2+y^2) u_z=0\) Problem 3.8(d) Lokenath Debnath

0.058

0.379

57

General first order

\(x(y^2-z^2) u_x + y(z^2-y^2) u_y+ z (x^2-y^2) u_z=0\) Problem 3.8(e) Lokenath Debnath

35.91

0.457

58

General first order

\(u_x+x u_y=y\) with \(u(0,y)=y^2\) Problem 3.9(a) Lokenath Debnath

0.006

0.219

59

General first order

\(u_x+x u_y=y\) with \(u(1,y)=2 y\) Problem 3.9(b) Lokenath Debnath

0.007

0.189

60

General first order

\((u_x+u_y)^2-u^2=0\). Problem 3.10 Lokenath Debnath

0.009

0.189

61

General first order

\((y+u)u_x+y u_y=x-y\) with \(u(x,1)=1+x\). Problem 3.11 Lokenath Debnath

14.71

1.484

62

General first order

\(2 x u_x+(x+1) u_y=y\) with \(u(1,y)=2 y\). Problem 3.14(d) Lokenath Debnath

0.022

0.297

63

General first order

\(x u_x+y u_y=x^2+y^2\) with \(u(x,1)=x^2\). Problem 3.14(e) Lokenath Debnath

0.022

0.28

64

General first order

\(y^2 u_x+(x y) u_y=x\) with \(u(x,1)=x^2\). Problem 3.14(f) Lokenath Debnath

0.023

0.387

65

General first order

\(x u_x+y u_y=x y\) with \(u=\frac {x^2}{2}\) at \(y=x\). Problem 3.14(g) Lokenath Debnath

0.016

0.178

66

General first order

\(u_x+u u_y=1\) with \(u(0,y)=a y\). Problem 3.16(a) Lokenath Debnath

0.051

0.275

67

General first order

\((y+u)u_x+(x+u)u_y=x+y\). Problem 3.17(a) Lokenath Debnath

230.268

1.62

68

General first order

\(x u(u^2+x y)u_x - y u(u^2+x y) u_y = x^4\). Problem 3.17(b) Lokenath Debnath

0.037

0.28

69

General first order

\((x+y) u_x + (x-y)u_y =0\). Problem 3.17(c) Lokenath Debnath

0.039

0.947

70

General first order

\(y u_x - x u_y = e^u\) with \(u(0,y)=y^2-1\)

0.099

0.634

Yes

71

General first order

\(y u_x - x u_y = e^u\)

0.048

0.503

Yes

72

General first order

\(u_t + x u_x = 0\) with \(u(x,0)=x^2\). Math 5587

0.011

0.377

Yes

73

General first order

\(u_t + t u_x = 0\) with \(u(x,0)=e^x\)

0.018

0.457

Yes

74

General first order

\(2 u_x + 3 u_y = 1\)

0.009

0.162

Yes

75

General first order

\(x u_t - t u_x = 0\)

0.019

0.334

Yes

76

General first order

\(u_t + u_x = 0\) with \(u(x,1)=\frac {x}{1+x^2}\)

0.007

0.206

Yes

77

General first order

\(u_x u_y = 1\)

0.004

0.152

Yes

78

General first order

\(u_x u_y = u\) with \(u(x,0)=0,u(0,y)=0\)

1.279

0.436

Yes

79

Solved by factoring into two transport equations

\(u_{xx} + u_{xt} - 6 u_{tt} = 0\)

0.027

0.325

Yes

80

Solved by factoring into two transport equations

\(u_{xx} - u_{xt} - 12 u_{tt} = 0\)

0.013

0.491

Yes

81

Solved by factoring into two transport equations

\(u_{xx} - 3 u_{xt} - 4 u_{tt} = 0\)

0.014

2.669

Yes

82

Solved by factoring into two transport equations

\(u_{tt} - 2 u_{xt} - 3 u_{xx} = 0\) with \(u(0,x)=x^2, u_t(x,0)=e^x\)

0.014

2.492

83

Schrodinger PDE

pict

Logan textbook, page 30

0.406

0.879

84

Schrodinger PDE

pict

In a square, zero potential

0.306

3.28

85

Schrodinger PDE

pict

From Mathematica help pages

0.42

1.514

86

Schrodinger PDE

pict

From Mathematica help pages

0.008


Trivial solution. Maple does not support \(\infty \) in boundary conditions

1.974

87

Schrodinger PDE

pict

David Griffiths, page 47

30.775

1.25

88

Schrodinger PDE

pict

David Griffiths, page 47

0.325

0.796

89

Schrodinger PDE

pict

In a square

0.307

3.898

90

Beam PDE

Beam PDE \(u_{tt} + u_{xxxx} = 0\)

2.485

0.386

91

Burger’s PDE

Inviscid Burgers \(u_x + u u_y = 0\)


Implicit solution

0.03

0.215

Yes

92

Burger’s PDE

Inviscid Burgers with I.C. \(u_x+ u u_y = 0\) and \(u(x,0)=\frac {1}{x+1}\)

0.01

0.26

Yes

93

Burger’s PDE

\(u_t+ u u_x = \mu u_{xx}\)

0.029

0.267

94

Burger’s PDE

\(u_t + u u_x + \mu u_{xx}\) with IC

11.242

0.621

95

Burger’s PDE

\(u_t + u u_x + \mu u_{xx}\) IC as UnitBox

23.532

0.46

96

Black Scholes PDE

classic Black Scholes model from finance, European call version

5.177

0.786

97

Black Scholes PDE

Boundary value problem for the Black Scholes equation

1.849

1.307

98

Korteweg-deVries PDE

\(u_{xxx} + u_t -6 u u_x = 0\)

0.029

0.165

99

Tricomi PDE

\(u_{xx} + y u_{yy} = 0\) with \(u(x,0)=0,u_y(x,0)=x^2\)

8.326

2.058

100

Tricomi PDE

\(u_{xx} + x u_{yy} = 0\)

0.011

1.035

101

Keldysh equation

\(x u_{xx} + u_{yy} = 0\)

0.007

1.319

102

Euler-Poisson-Darboux equation

\(u_{xx} + u_{yy} + \frac {\beta }{x} u_x = 0\)

0.01

0.31

103

Euler-Poisson-Darboux equation

\(u_{xx} - u_{yy} + \frac {\beta }{x} u_x = 0\)

0.009

0.515

104

Euler-Poisson-Darboux equation

\(u_{tt} - u_{xx} - \frac {2}{x} u_x = 0\) with \(u(x,0)=0,u_t(x,0)=g(x)\)

2.679

2.225

105

Chaplygin’s equation

\(u_{\theta \theta }+\frac {v^2}{1-\frac {v^2}{c^2}} u_{vv} + v u_v=0\)

0.037

0.82

106

Cauchy Riemann PDE’s

Cauchy Riemann PDE with Prescribe the values of \(u\) and \(v\) on the \(x\) axis

0.005

0.185

107

Cauchy Riemann PDE’s

Cauchy Riemann PDE With extra term on right side

0.003

0.225

108

Hamilton-Jacobi PDE

Hamilton-Jacobi type PDE

0.041

0.342

109

Airy PDE

\(u_t + u_{xxx} = 0\)

0.012

0.235

Yes

110

Nonlinear PDE’s

Bateman-Burgers \(u_t+u u_x = \nu u_{xx}\)

0.026

0.165

111

Nonlinear PDE’s

Benjamin Bona Mahony \(u_t+u_x + u u+x - u_{xxt} = 0\)

0.032

0.18

112

Nonlinear PDE’s

Benjamin Ono \(u_t+H u_{xx} +u u_x = 0\)

0.023

0.162

113

Nonlinear PDE’s

Born Infeld \((1-u_t^2) u_{xx} + 2 u_x u_t u_{xt} - (1+ u_x^2) u_{tt}=0\)

0.013

0.222

114

Nonlinear PDE’s

Boussinesq \(u_{tt}-u_{xx}-u_{xxxx} - 3 (u^2)_{xx} = 0\)

0.042

0.178

115

Nonlinear PDE’s

Boussinesq type \(u_{tt}-u_{xx}-2 \alpha (u u_x)_x - \beta u_{xxtt} = 0\)

0.037

0.211

116

Nonlinear PDE’s

Buckmaster \( u_t = (u^4)_{xx} + (u^3)_x\)

0.082


Answer in terms of RootOf.

0.446

117

Nonlinear PDE’s

Camassa Holm \(u_t + 2 k u_x - u_{xxt} + 3 u u_x = 2 u_x u_{xx}+ u u_{xxx}\)

0.134


Answer in terms of RootOf.

1.537

118

Nonlinear PDE’s

Chaffee Infante \(u_t = u_{xx} + \lambda (u^3 - u) = 0\)

0.091

0.25

119

Nonlinear PDE’s

Clarke. \(\left ( \theta _t - \gamma e^\theta \right )_{tt} = \left ( \theta _t - e^\theta \right )_{xx}\)

0.012

0.055

120

Nonlinear PDE’s

Degasperis Procesi \(u_t - u_{xxt} + 4 u u_x = 3 u_x u_xx + u u_{xxx}\)

0.132


But still has unresolved ODE’s in solution

0.593

121

Nonlinear PDE’s

Dym equation \(u_t =u^3 u_{xxx}\)

0.074


has RootOf

0.66

122

Nonlinear PDE’s

Estevez Mansfield Clarkson \(u_{tyyy} + \beta u_y u_{yt} + \beta u_{yy} u_t + u_{tt} = 0\)

0.035

0.2

123

Nonlinear PDE’s

Fisher’s \(u_t = u(1-u)+u_{xx}\)

0.043

0.22

124

Nonlinear PDE’s

Hunter Saxton \(\left ( u_t + u u_x) \right )_x = \frac {1}{2} (u_x)^2\)

0.051


with RootOf

0.331

125

Nonlinear PDE’s

Kadomtsev Petviashvili \( \left ( u_t + u u_x + \epsilon ^2 u_{xxx} \right )_x + \lambda u_{yy} = 0 \)

0.068

0.251

126

Nonlinear PDE’s

Klein Gordon \(u_{xx}+u_{yy}+ \lambda u^p=0\)

0.008

0.073

127

Nonlinear PDE’s

Klein Gordon \(u_{xx}+u_{yy}+ u^2=0\)

0.18

0.828

128

Nonlinear PDE’s

Khokhlov Zabolotskaya \(u_{x t} - (u u_x)_x = u_{yy}\)

0.063

0.772

129

Nonlinear PDE’s

Korteweg de Vries (KdV) \(u_t + (u_x)^3+ 6 u u_x = 0\)

0.028

0.36

130

Nonlinear PDE’s

Lin Tsien \(2 u_{tx} + u_x u_{xx} - u_{yy} = 0\)

0.075

0.524

131

Nonlinear PDE’s

Liouville \(u_{xx} + u_{yy} +e^{\lambda u} = 0\)

0.007

0.103

132

Nonlinear PDE’s

Plateau \((1+u_y^2)u_{xx} - 2 u_x u_y y_{xy} + (1+u_x^2) u_{yy} = 0\)

0.042

0.434

133

Nonlinear PDE’s

Rayleigh \(u_{tt} - u_{xx} = \epsilon (u_t - u_t^3)\)

0.074


Has RootOf

0.52

134

Nonlinear PDE’s

Sawada Kotera \(u_t + 45 u^2 u_x + 15 u_x u_{xx} + 15 u u_{xxx} + u_{xxxxx} = 0 \)

0.078

0.397

135

Nonlinear PDE’s

Sine Gordon \(\phi _{tt} - \phi _{xx} + \sin \phi = 0\)

0.009

0.088

136

Nonlinear PDE’s

Sinh Gordon \( u_{xt} = \sinh u\)

0.007

0.154

137

Nonlinear PDE’s

Sinh Poisson \(u_{xx}+u_{yy} + \sinh u=0\)

0.007

0.083

138

Nonlinear PDE’s

Thomas equation \( u_{xy} + \alpha u_x + \beta u_y+ \nu u_x u_y =0\)

0.061

0.951

139

Nonlinear PDE’s

phi equation \(\phi _{tt} - \phi _{xx} - \phi + \phi ^3 = 0\)

0.041

0.303

140

more miscellaneous

\(S S_{xy} + S_x S_y = 1\)

0.042

0.256

141

more miscellaneous

\(u_{rr} + u_{\theta \theta } = 0\)

22.869

0.87

142

more miscellaneous

\( u_{xx} + y u_{yy} = 0\)

8.295

2.664

143

more miscellaneous

\(u_t + u_{xxx} = 0\)

0.176

2.595

144

more miscellaneous

\(u_{xy} = \sin (x) \sin (y) \)

2.243

0.603

145

more miscellaneous

\(w_t = w_{x_1 x_1} + w_{x_2 x_2} + w_{x_3 x_3}\)

1.274

0.858

146

more miscellaneous

Linear PDE, initial conditions at \(t=t_0\)

1.592

0.706

147

more miscellaneous

second order in time, Linear PDE, initial conditions at \(t=t_0\)

1.011

1.607

148

more miscellaneous

Einstein-Weiner \(u_t = -\beta u_x + D u_{xx}\)

0.031

0.566

149

more miscellaneous

Using integral transforms.

38.845

2.009