Taken from Mathematica Symbolic PDE document
quasilinear first-order PDE, scalar conservation law with initial value
Solve for \(u(x,y)\)
With \(u(x,0)=\frac {1}{x+1}\)
Mathematica ✓
ClearAll["Global`*"]; pde = D[u[x, y], {x}] + u[x, y]*D[u[x, y], {y}] == 0; ic = u[x, 0] == 1/(x + 1); sol = AbsoluteTiming[TimeConstrained[Simplify[DSolve[{pde, ic}, u[x, y], {x, y}]], 60*10]];
Maple ✓
restart; interface(showassumed=0); pde := diff(u(x, y), x) + u(x,y)*diff(u(x, y),y) =0; ic := u(x,0)=1/(x+1); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde,ic],u(x,y))),output='realtime'));
Hand solution
Using the method of characteristics, the systems of characteristic lines are (from the PDE itself)
With initial conditions at \(s=0\)
We are given that \(u\left ( x,0\right ) =\frac {1}{1+x}\). This initial condition translates to
Equation (3) gives
Hence the solution is
Solving for \(u\) gives
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________