Added January 2, 2018.
Einstein-Weiner PDE. Solve for \(u(x,t)\) with \(x>0,t>0\)
Assuming \(\beta >0,D>0\)
Mathematica ✓
ClearAll["Global`*"]; pde = D[u[x, t], t] == beta*D[u[x, t], x] + d*D[u[x, t], {x, 2}]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, u[x, t], {x, t}, Assumptions -> {beta > 0, d > 0, x > 0, t > 0}], 60*10]];
Maple ✓
restart; pde := diff(u(x,t),t)=-beta*diff(u(x,t),x)+d*diff(u(x,t),x$2); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,u(x,t),'build') assuming d>0,beta>0,x>0,t>0),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________