Taken from Mathematica Symbolic PDE document
Solve for \(u(x,t)\)
Mathematica ✓
ClearAll["Global`*"]; pde = D[u[x, t], {t}] + D[u[x, t], {x}] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, u[x, t], {x, t}], 60*10]];
Maple ✓
restart; pde := diff(u(x, t), t) + diff(u(x, t),x) =0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,u(x,t))),output='realtime'));
Hand solution
Let \(u\equiv u\left ( x\left ( t\right ) ,t\right ) \). Then
Comparing (1) to (2) then we see that
(3) says that \(u\) is constant. Since no initial conditions are given, let \(u=F\left ( x\left ( 0\right ) \right ) \) where \(F\) is arbitrary function. To find \(x\left ( 0\right ) \) we solve (4). The solution to (4) is \(x=x\left ( 0\right ) +t\). Hence \(x\left ( 0\right ) =x-t\). Therefore
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________