2.2.82 Problems 8101 to 8200

Table 2.165: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

8101

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.481

8102

\[ {}y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.415

8103

\[ {}y^{\prime \prime }+y^{\prime }-x y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.525

8104

\[ {}y^{\prime \prime }+y^{\prime }-x y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.504

8105

\[ {}y^{\prime \prime }+\left (p +\frac {1}{2}-\frac {x^{2}}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.563

8106

\[ {}y^{\prime \prime }+x y = 0 \]

[[_Emden, _Fowler]]

0.311

8107

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +p^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.825

8108

\[ {}y^{\prime \prime }-2 y^{\prime } x +2 p y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.566

8109

\[ {}x^{3} \left (x -1\right ) y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }+3 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.168

8110

\[ {}x^{2} \left (x^{2}-1\right ) y^{\prime \prime }-x \left (1-x \right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.261

8111

\[ {}x^{2} y^{\prime \prime }+\left (2-x \right ) y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

0.194

8112

\[ {}\left (3 x +1\right ) x y^{\prime \prime }-\left (x +1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.717

8113

\[ {}y^{\prime \prime }+y \sin \left (x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.795

8114

\[ {}x y^{\prime \prime }+y \sin \left (x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.962

8115

\[ {}x^{2} y^{\prime \prime }+y \sin \left (x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.266

8116

\[ {}x^{3} y^{\prime \prime }+y \sin \left (x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.733

8117

\[ {}x^{4} y^{\prime \prime }+y \sin \left (x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.194

8118

\[ {}x^{3} y^{\prime \prime }+\left (\cos \left (2 x \right )-1\right ) y^{\prime }+2 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.862

8119

\[ {}4 x^{2} y^{\prime \prime }+\left (2 x^{4}-5 x \right ) y^{\prime }+\left (3 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.922

8120

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +4 x y = 0 \]

[[_Emden, _Fowler]]

1.523

8121

\[ {}x^{3} y^{\prime \prime }-4 x^{2} y^{\prime }+3 x y = 0 \]

[[_Emden, _Fowler]]

0.607

8122

\[ {}4 x y^{\prime \prime }+3 y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

0.880

8123

\[ {}2 x y^{\prime \prime }+\left (3-x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.855

8124

\[ {}2 x y^{\prime \prime }+\left (x +1\right ) y^{\prime }+3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.951

8125

\[ {}2 x^{2} y^{\prime \prime }+y^{\prime } x -\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.891

8126

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +x^{2} y = 0 \]

[_Lienard]

0.573

8127

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x^{2}}-\frac {y}{x^{3}} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.145

8128

\[ {}x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.214

8129

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +\left (4 x +4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.804

8130

\[ {}4 x^{2} y^{\prime \prime }-8 x^{2} y^{\prime }+\left (4 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.882

8131

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

[_Lienard]

0.734

8132

\[ {}x^{2} y^{\prime \prime }-x^{2} y^{\prime }+\left (x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.047

8133

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.611

8134

\[ {}\left (x -1\right )^{2} y^{\prime \prime }-3 \left (x -1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.669

8135

\[ {}3 \left (x +1\right )^{2} y^{\prime \prime }-\left (x +1\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.729

8136

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-1\right ) y = 0 \]

[_Bessel]

1.263

8137

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.770

8138

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (\frac {3}{2}-2 x \right ) y^{\prime }+2 y = 0 \]

[_Jacobi]

0.914

8139

\[ {}\left (2 x^{2}+2 x \right ) y^{\prime \prime }+\left (1+5 x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.686

8140

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+\left (5 x +4\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.000

8141

\[ {}\left (x^{2}-x -6\right ) y^{\prime \prime }+\left (3 x +5\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.072

8142

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +p^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.422

8143

\[ {}\left (1-{\mathrm e}^{x}\right ) y^{\prime \prime }+\frac {y^{\prime }}{2}+y \,{\mathrm e}^{x} = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.142

8144

\[ {}y^{\prime \prime }+2 x y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

0.447

8145

\[ {}y^{\prime \prime }-y^{\prime } x +y = x \]

[[_2nd_order, _with_linear_symmetries]]

0.455

8146

\[ {}y^{\prime \prime }+y^{\prime }+y = x^{3}-x \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.514

8147

\[ {}2 y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.488

8148

\[ {}\left (x^{2}+4\right ) y^{\prime \prime }-y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.661

8149

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.477

8150

\[ {}y^{\prime \prime }-\left (x +1\right ) y^{\prime }-x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.557

8151

\[ {}\left (x -1\right ) y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.571

8152

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.885

8153

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.781

8154

\[ {}x y^{\prime \prime }-4 y^{\prime }+x y = 0 \]

[_Lienard]

0.705

8155

\[ {}4 x^{2} y^{\prime \prime }+4 x^{2} y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.825

8156

\[ {}2 x y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.886

8157

\[ {}x y^{\prime \prime }-\left (x -1\right ) y^{\prime }+2 y = 0 \]

[_Laguerre]

0.787

8158

\[ {}x^{2} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.838

8159

\[ {}x y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.650

8160

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+\left (x^{2}+x \right ) y^{\prime }+x y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.059

8161

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-3 y^{\prime } x +\left (x -1\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.050

8162

\[ {}x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }+\left (x^{2}+2 x \right ) y^{\prime }-x y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.061

8163

\[ {}x^{3} y^{\prime \prime \prime }+\left (2 x^{3}-x^{2}\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.048

8164

\[ {}x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

0.759

8165

\[ {}9 \left (x -2\right )^{2} \left (x -3\right ) y^{\prime \prime }+6 x \left (x -2\right ) y^{\prime }+16 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.267

8166

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +p \left (p +1\right ) y = 0 \]

[_Gegenbauer]

1.113

8167

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 5 \,{\mathrm e}^{3 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.454

8168

\[ {}y^{\prime \prime }+y^{\prime }-6 y = t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.332

8169

\[ {}y^{\prime \prime }-y = t^{2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.300

8170

\[ {}L i^{\prime }+R i = E_{0} \operatorname {Heaviside}\left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

0.276

8171

\[ {}L i^{\prime }+R i = E_{0} \delta \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

0.234

8172

\[ {}L i^{\prime }+R i = E_{0} \sin \left (\omega t \right ) \]
i.c.

[[_linear, ‘class A‘]]

0.401

8173

\[ {}y^{\prime \prime }+3 y^{\prime }-5 y = 1 \]
i.c.

[[_2nd_order, _missing_x]]

0.526

8174

\[ {}y^{\prime \prime }+3 y^{\prime }-2 y = -6 \,{\mathrm e}^{\pi -t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.959

8175

\[ {}y^{\prime \prime }+2 y^{\prime }-y = t \,{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.469

8176

\[ {}y^{\prime \prime }-y^{\prime }+y = 3 \,{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.557

8177

\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

0.271

8178

\[ {}y^{\prime \prime }+3 y^{\prime }+3 y = 2 \]

[[_2nd_order, _missing_x]]

0.476

8179

\[ {}y^{\prime \prime }+y^{\prime }+2 y = t \]

[[_2nd_order, _with_linear_symmetries]]

0.466

8180

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = {\mathrm e}^{2 t} t \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.263

8181

\[ {}i^{\prime \prime }+2 i^{\prime }+3 i = \left \{\begin {array}{cc} 30 & 0<t <2 \pi \\ 0 & 2 \pi \le t \le 5 \pi \\ 10 & 5 \pi <t <\infty \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16.981

8182

\[ {}\left [\begin {array}{c} x^{\prime }=x+3 y \\ y^{\prime }=3 x+y \end {array}\right ] \]

system_of_ODEs

0.362

8183

\[ {}\left [\begin {array}{c} x^{\prime }=x+3 y \\ y^{\prime }=3 x+y \end {array}\right ] \]
i.c.

system_of_ODEs

0.477

8184

\[ {}\left [\begin {array}{c} x^{\prime }=x+2 y \\ y^{\prime }=3 x+2 y \end {array}\right ] \]

system_of_ODEs

0.438

8185

\[ {}\left [\begin {array}{c} x^{\prime }=x+2 y+t -1 \\ y^{\prime }=3 x+2 y-5 t -2 \end {array}\right ] \]

system_of_ODEs

0.609

8186

\[ {}\left [\begin {array}{c} x^{\prime }=x+y \\ y^{\prime }=y \end {array}\right ] \]

system_of_ODEs

0.281

8187

\[ {}\left [\begin {array}{c} x^{\prime }=x \\ y^{\prime }=y \end {array}\right ] \]

system_of_ODEs

0.239

8188

\[ {}\left [\begin {array}{c} x^{\prime }=-3 x+4 y \\ y^{\prime }=-2 x+3 y \end {array}\right ] \]

system_of_ODEs

0.335

8189

\[ {}\left [\begin {array}{c} x^{\prime }=4 x-2 y \\ y^{\prime }=5 x+2 y \end {array}\right ] \]

system_of_ODEs

0.574

8190

\[ {}\left [\begin {array}{c} x^{\prime }=5 x+4 y \\ y^{\prime }=-x+y \end {array}\right ] \]

system_of_ODEs

0.390

8191

\[ {}\left [\begin {array}{c} x^{\prime }=4 x-3 y \\ y^{\prime }=8 x-6 y \end {array}\right ] \]

system_of_ODEs

0.407

8192

\[ {}\left [\begin {array}{c} x^{\prime }=2 x \\ y^{\prime }=3 y \end {array}\right ] \]

system_of_ODEs

0.277

8193

\[ {}\left [\begin {array}{c} x^{\prime }=-4 x-y \\ y^{\prime }=x-2 y \end {array}\right ] \]

system_of_ODEs

0.307

8194

\[ {}\left [\begin {array}{c} x^{\prime }=7 x+6 y \\ y^{\prime }=2 x+6 y \end {array}\right ] \]

system_of_ODEs

0.437

8195

\[ {}\left [\begin {array}{c} x^{\prime }=x-2 y \\ y^{\prime }=4 x+5 y \end {array}\right ] \]

system_of_ODEs

0.580

8196

\[ {}\left [\begin {array}{c} x^{\prime }=x+y-5 t +2 \\ y^{\prime }=4 x-2 y-8 t -8 \end {array}\right ] \]

system_of_ODEs

0.569

8197

\[ {}\left [\begin {array}{c} x^{\prime }=3 x-4 y \\ y^{\prime }=4 x-7 y \end {array}\right ] \]

system_of_ODEs

0.450

8198

\[ {}\left [\begin {array}{c} x^{\prime }=x+y \\ y^{\prime }=4 x+y \end {array}\right ] \]

system_of_ODEs

0.402

8199

\[ {}\left [\begin {array}{c} x^{\prime }=-3 x+\sqrt {2}\, y \\ y^{\prime }=\sqrt {2}\, x-2 y \end {array}\right ] \]

system_of_ODEs

0.474

8200

\[ {}\left [\begin {array}{c} x^{\prime }=5 x+3 y \\ y^{\prime }=-6 x-4 y \end {array}\right ] \]

system_of_ODEs

0.359