2.2.82 Problems 8101 to 8200

Table 2.165: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

8101

\[ {}\left [\begin {array}{c} x^{\prime }=x+y \\ y^{\prime }=-2 x-y \end {array}\right ] \]

system_of_ODEs

0.376

8102

\[ {}\left [\begin {array}{c} x^{\prime }=5 x+y \\ y^{\prime }=-2 x+3 y \end {array}\right ] \]

system_of_ODEs

0.416

8103

\[ {}\left [\begin {array}{c} x^{\prime }=4 x+5 y \\ y^{\prime }=-2 x+6 y \end {array}\right ] \]

system_of_ODEs

0.430

8104

\[ {}\left [\begin {array}{c} x^{\prime }=4 x-5 y \\ y^{\prime }=5 x-4 y \end {array}\right ] \]

system_of_ODEs

0.406

8105

\[ {}\left [\begin {array}{c} x^{\prime }=x-8 y \\ y^{\prime }=x-3 y \end {array}\right ] \]

system_of_ODEs

0.417

8106

\[ {}\left [\begin {array}{c} x^{\prime }=z \\ y^{\prime }=-z \\ z^{\prime }=y \end {array}\right ] \]

system_of_ODEs

0.373

8107

\[ {}\left [\begin {array}{c} x^{\prime }=2 x+y+2 z \\ y^{\prime }=3 x+6 z \\ z^{\prime }=-4 x-3 z \end {array}\right ] \]

system_of_ODEs

0.836

8108

\[ {}\left [\begin {array}{c} x^{\prime }=x-12 y-14 z \\ y^{\prime }=x+2 y-3 z \\ z^{\prime }=x+y-2 z \end {array}\right ] \]
i.c.

system_of_ODEs

0.636

8109

\[ {}\left [\begin {array}{c} x^{\prime }=2 x+3 y-7 \\ y^{\prime }=-x-2 y+5 \end {array}\right ] \]

system_of_ODEs

0.519

8110

\[ {}\left [\begin {array}{c} x^{\prime }=5 x+9 y+2 \\ y^{\prime }=-x+11 y+6 \end {array}\right ] \]

system_of_ODEs

0.515

8111

\[ {}x^{2} {y^{\prime }}^{2}-y^{2} = 0 \]

[_separable]

2.688

8112

\[ {}x {y^{\prime }}^{2}-\left (2 x +3 y\right ) y^{\prime }+6 y = 0 \]

[_quadrature]

2.030

8113

\[ {}x^{2} {y^{\prime }}^{2}-5 x y y^{\prime }+6 y^{2} = 0 \]

[_separable]

3.199

8114

\[ {}x^{2} {y^{\prime }}^{2}+x y^{\prime }-y^{2}-y = 0 \]

[_separable]

2.664

8115

\[ {}x {y^{\prime }}^{2}+\left (1-x^{2} y\right ) y^{\prime }-x y = 0 \]

[_quadrature]

1.525

8116

\[ {}{y^{\prime }}^{2}-\left (x^{2} y+3\right ) y^{\prime }+3 x^{2} y = 0 \]

[_quadrature]

1.544

8117

\[ {}x {y^{\prime }}^{2}-\left (x y+1\right ) y^{\prime }+y = 0 \]

[_quadrature]

1.237

8118

\[ {}{y^{\prime }}^{2}-y^{2} x^{2} = 0 \]

[_separable]

2.450

8119

\[ {}\left (x +y\right )^{2} {y^{\prime }}^{2} = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5.920

8120

\[ {}y {y^{\prime }}^{2}+\left (x -y^{2}\right ) y^{\prime }-x y = 0 \]

[_quadrature]

3.782

8121

\[ {}{y^{\prime }}^{2}-x y \left (x +y\right ) y^{\prime }+x^{3} y^{3} = 0 \]

[_separable]

2.567

8122

\[ {}\left (4 x -y\right ) {y^{\prime }}^{2}+6 \left (x -y\right ) y^{\prime }+2 x -5 y = 0 \]

[_quadrature]

3.862

8123

\[ {}\left (x -y\right )^{2} {y^{\prime }}^{2} = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5.927

8124

\[ {}x y {y^{\prime }}^{2}+\left (-1+x y^{2}\right ) y^{\prime }-y = 0 \]

[_quadrature]

2.228

8125

\[ {}\left (y^{2}+x^{2}\right )^{2} {y^{\prime }}^{2} = 4 y^{2} x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

8.564

8126

\[ {}\left (x +y\right )^{2} {y^{\prime }}^{2}+\left (2 y^{2}+x y-x^{2}\right ) y^{\prime }+\left (y-x \right ) y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6.825

8127

\[ {}x y \left (y^{2}+x^{2}\right ) \left (-1+{y^{\prime }}^{2}\right ) = y^{\prime } \left (x^{4}+y^{2} x^{2}+y^{4}\right ) \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

9.868

8128

\[ {}x {y^{\prime }}^{3}-\left (x^{2}+x +y\right ) {y^{\prime }}^{2}+\left (x^{2}+x y+y\right ) y^{\prime }-x y = 0 \]

[_quadrature]

1.766

8129

\[ {}x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0 \]

[_quadrature]

1.555

8130

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+4 x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.623

8131

\[ {}3 x^{4} {y^{\prime }}^{2}-x y^{\prime }-y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

1.976

8132

\[ {}{y^{\prime }}^{2}-x y^{\prime }-y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.457

8133

\[ {}{y^{\prime }}^{2}-x y^{\prime }+y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.355

8134

\[ {}{y^{\prime }}^{2}+4 x^{5} y^{\prime }-12 x^{4} y = 0 \]

[[_1st_order, _with_linear_symmetries]]

2.412

8135

\[ {}4 y^{3} {y^{\prime }}^{2}-4 x y^{\prime }+y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

3.478

8136

\[ {}4 y^{3} {y^{\prime }}^{2}+4 x y^{\prime }+y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

3.291

8137

\[ {}{y^{\prime }}^{3}+x {y^{\prime }}^{2}-y = 0 \]

[_dAlembert]

2.937

8138

\[ {}y^{4} {y^{\prime }}^{3}-6 x y^{\prime }+2 y = 0 \]

[[_1st_order, _with_linear_symmetries]]

108.488

8139

\[ {}{y^{\prime }}^{2}+x^{3} y^{\prime }-2 x^{2} y = 0 \]

[[_1st_order, _with_linear_symmetries]]

2.531

8140

\[ {}{y^{\prime }}^{2}+4 x^{5} y^{\prime }-12 x^{4} y = 0 \]

[[_1st_order, _with_linear_symmetries]]

2.377

8141

\[ {}2 x {y^{\prime }}^{3}-6 y {y^{\prime }}^{2}+x^{4} = 0 \]

[[_1st_order, _with_linear_symmetries]]

117.715

8142

\[ {}{y^{\prime }}^{2}-x y^{\prime }+y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.346

8143

\[ {}y = x y^{\prime }+k {y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.377

8144

\[ {}x^{8} {y^{\prime }}^{2}+3 x y^{\prime }+9 y = 0 \]

[[_homogeneous, ‘class G‘]]

2.368

8145

\[ {}x^{4} {y^{\prime }}^{2}+2 x^{3} y y^{\prime }-4 = 0 \]

[[_homogeneous, ‘class G‘], _rational]

2.167

8146

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+4 x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.609

8147

\[ {}3 x^{4} {y^{\prime }}^{2}-x y^{\prime }-y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

2.023

8148

\[ {}x {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }+1-y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

0.547

8149

\[ {}y^{\prime } \left (x y^{\prime }-y+k \right )+a = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.511

8150

\[ {}x^{6} {y^{\prime }}^{3}-3 x y^{\prime }-3 y = 0 \]

[[_1st_order, _with_linear_symmetries]]

9.785

8151

\[ {}y = x^{6} {y^{\prime }}^{3}-x y^{\prime } \]

[[_1st_order, _with_linear_symmetries]]

11.859

8152

\[ {}x {y^{\prime }}^{4}-2 y {y^{\prime }}^{3}+12 x^{3} = 0 \]

[[_1st_order, _with_linear_symmetries]]

2.962

8153

\[ {}x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+1 = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.636

8154

\[ {}{y^{\prime }}^{2}-x y^{\prime }-y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.467

8155

\[ {}2 {y^{\prime }}^{3}+x y^{\prime }-2 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.536

8156

\[ {}2 {y^{\prime }}^{2}+x y^{\prime }-2 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.551

8157

\[ {}{y^{\prime }}^{3}+2 x y^{\prime }-y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.555

8158

\[ {}4 x {y^{\prime }}^{2}-3 y y^{\prime }+3 = 0 \]

[[_homogeneous, ‘class G‘], _rational, _dAlembert]

0.514

8159

\[ {}{y^{\prime }}^{3}-x y^{\prime }+2 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.531

8160

\[ {}5 {y^{\prime }}^{2}+6 x y^{\prime }-2 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.477

8161

\[ {}2 x {y^{\prime }}^{2}+\left (2 x -y\right ) y^{\prime }+1-y = 0 \]

[_rational, _dAlembert]

1.149

8162

\[ {}5 {y^{\prime }}^{2}+3 x y^{\prime }-y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.484

8163

\[ {}{y^{\prime }}^{2}+3 x y^{\prime }-y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.483

8164

\[ {}y = x y^{\prime }+x^{3} {y^{\prime }}^{2} \]

[[_homogeneous, ‘class G‘], _rational]

2.012

8165

\[ {}y^{\prime \prime } = x {y^{\prime }}^{3} \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.727

8166

\[ {}x^{2} y^{\prime \prime }+{y^{\prime }}^{2}-2 x y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_y]]

0.603

8167

\[ {}x^{2} y^{\prime \prime }+{y^{\prime }}^{2}-2 x y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_y]]

0.602

8168

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.398

8169

\[ {}y^{2} y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.351

8170

\[ {}\left (1+y\right ) y^{\prime \prime } = {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.257

8171

\[ {}2 a y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]]

0.405

8172

\[ {}x y^{\prime \prime } = y^{\prime }+x^{5} \]
i.c.

[[_2nd_order, _missing_y]]

1.526

8173

\[ {}x y^{\prime \prime }+y^{\prime }+x = 0 \]
i.c.

[[_2nd_order, _missing_y]]

1.590

8174

\[ {}y^{\prime \prime } = 2 y {y^{\prime }}^{3} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.274

8175

\[ {}y y^{\prime \prime }+{y^{\prime }}^{3}-{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.613

8176

\[ {}y^{\prime \prime }+\beta ^{2} y = 0 \]

[[_2nd_order, _missing_x]]

1.648

8177

\[ {}y y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.526

8178

\[ {}\cos \left (x \right ) y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_y]]

1.900

8179

\[ {}y^{\prime \prime } = x {y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.359

8180

\[ {}y^{\prime \prime } = x {y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.306

8181

\[ {}y^{\prime \prime } = -{\mathrm e}^{-2 y} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

21.572

8182

\[ {}y^{\prime \prime } = -{\mathrm e}^{-2 y} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

24.141

8183

\[ {}2 y^{\prime \prime } = \sin \left (2 y\right ) \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.805

8184

\[ {}2 y^{\prime \prime } = \sin \left (2 y\right ) \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.870

8185

\[ {}x^{3} y^{\prime \prime }-x^{2} y^{\prime } = -x^{2}+3 \]

[[_2nd_order, _missing_y]]

0.981

8186

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

0.188

8187

\[ {}y^{\prime \prime } = {\mathrm e}^{x} {y^{\prime }}^{2} \]

[[_2nd_order, _missing_y]]

0.230

8188

\[ {}2 y^{\prime \prime } = {y^{\prime }}^{3} \sin \left (2 x \right ) \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

1.038

8189

\[ {}x^{2} y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.244

8190

\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

0.380

8191

\[ {}y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

[[_2nd_order, _missing_x]]

0.504

8192

\[ {}y y^{\prime \prime } = {y^{\prime }}^{2} \left (1-y^{\prime } \sin \left (y\right )-y y^{\prime } \cos \left (y\right )\right ) \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]]

1.142

8193

\[ {}\left (1+y^{2}\right ) y^{\prime \prime }+{y^{\prime }}^{3}+y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.089

8194

\[ {}\left (y y^{\prime \prime }+1+{y^{\prime }}^{2}\right )^{2} = \left (1+{y^{\prime }}^{2}\right )^{3} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

13.167

8195

\[ {}x^{2} y^{\prime \prime } = y^{\prime } \left (2 x -y^{\prime }\right ) \]
i.c.

[[_2nd_order, _missing_y]]

0.676

8196

\[ {}x^{2} y^{\prime \prime } = y^{\prime } \left (3 x -2 y^{\prime }\right ) \]

[[_2nd_order, _missing_y]]

0.444

8197

\[ {}x y^{\prime \prime } = y^{\prime } \left (2-3 x y^{\prime }\right ) \]

[[_2nd_order, _missing_y], _Liouville, [_2nd_order, _reducible, _mu_xy]]

0.520

8198

\[ {}x^{4} y^{\prime \prime } = y^{\prime } \left (y^{\prime }+x^{3}\right ) \]
i.c.

[[_2nd_order, _missing_y]]

0.775

8199

\[ {}y^{\prime \prime } = 2 x +\left (x^{2}-y^{\prime }\right )^{2} \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_xy]]

0.664

8200

\[ {}{y^{\prime \prime }}^{2}-2 y^{\prime \prime }+{y^{\prime }}^{2}-2 x y^{\prime }+x^{2} = 0 \]
i.c.

[[_2nd_order, _missing_y]]

6.299