2.2.81 Problems 8001 to 8100

Table 2.163: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

8001

\[ {}2 y^{\prime }+y = 0 \]
i.c.

[_quadrature]

0.305

8002

\[ {}y^{\prime }+6 y = {\mathrm e}^{4 t} \]
i.c.

[[_linear, ‘class A‘]]

0.335

8003

\[ {}y^{\prime }-y = 2 \cos \left (5 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

0.426

8004

\[ {}y^{\prime \prime }+5 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.261

8005

\[ {}y^{\prime \prime }-4 y^{\prime } = 6 \,{\mathrm e}^{3 t}-3 \,{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _missing_y]]

0.289

8006

\[ {}y^{\prime \prime }+y = \sqrt {2}\, \sin \left (\sqrt {2}\, t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.477

8007

\[ {}y^{\prime \prime }+9 y = {\mathrm e}^{t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.373

8008

\[ {}2 y^{\prime \prime \prime }+3 y^{\prime \prime }-3 y^{\prime }-2 y = {\mathrm e}^{-t} \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

0.329

8009

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = \sin \left (3 t \right ) \]
i.c.

[[_3rd_order, _linear, _nonhomogeneous]]

0.462

8010

\[ {}y^{\prime }+y = {\mathrm e}^{-3 t} \cos \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

0.412

8011

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.318

8012

\[ {}y^{\prime }+4 y = {\mathrm e}^{-4 t} \]
i.c.

[[_linear, ‘class A‘]]

0.323

8013

\[ {}y^{\prime }-y = 1+t \,{\mathrm e}^{t} \]
i.c.

[[_linear, ‘class A‘]]

0.300

8014

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.244

8015

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = t^{3} {\mathrm e}^{2 t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.248

8016

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.282

8017

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = t^{3} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.288

8018

\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.298

8019

\[ {}2 y^{\prime \prime }+20 y^{\prime }+51 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.465

8020

\[ {}y^{\prime \prime }-y = {\mathrm e}^{t} \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.343

8021

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = t +1 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.350

8022

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.291

8023

\[ {}y^{\prime \prime }+8 y^{\prime }+20 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.203

8024

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} 0 & 0\le t <1 \\ 5 & 1\le t \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

0.486

8025

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} 1 & 0\le t <1 \\ -1 & 1\le t \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

0.543

8026

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} t & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

0.571

8027

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 1 & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.889

8028

\[ {}y^{\prime \prime }+4 y = \sin \left (t \right ) \operatorname {Heaviside}\left (t -2 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.645

8029

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = \operatorname {Heaviside}\left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.566

8030

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} 0 & 0\le t <\pi \\ 1 & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.691

8031

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 1-\operatorname {Heaviside}\left (t -2\right )-\operatorname {Heaviside}\left (-4+t \right )+\operatorname {Heaviside}\left (t -6\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.245

8032

\[ {}y^{\prime }+y = t \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

0.389

8033

\[ {}y^{\prime }-y = t \,{\mathrm e}^{t} \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

0.416

8034

\[ {}y^{\prime \prime }+9 y = \cos \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.363

8035

\[ {}y^{\prime \prime }+y = \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.325

8036

\[ {}y^{\prime \prime }+16 y = \left \{\begin {array}{cc} \cos \left (4 t \right ) & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.651

8037

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} 1 & 0\le t <\frac {\pi }{2} \\ \sin \left (t \right ) & \frac {\pi }{2}\le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.592

8038

\[ {}t y^{\prime \prime }-y^{\prime } = 2 t^{2} \]
i.c.

[[_2nd_order, _missing_y]]

1.185

8039

\[ {}2 y^{\prime \prime }+t y^{\prime }-2 y = 10 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.088

8040

\[ {}y^{\prime \prime }+y = \sin \left (t \right )+t \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.366

8041

\[ {}y^{\prime }-3 y = \delta \left (t -2\right ) \]
i.c.

[[_linear, ‘class A‘]]

0.388

8042

\[ {}y^{\prime }+y = \delta \left (t -1\right ) \]
i.c.

[[_linear, ‘class A‘]]

0.394

8043

\[ {}y^{\prime \prime }+y = \delta \left (t -2 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.478

8044

\[ {}y^{\prime \prime }+16 y = \delta \left (t -2 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.356

8045

\[ {}y^{\prime \prime }+y = \delta \left (t -\frac {\pi }{2}\right )+\delta \left (t -\frac {3 \pi }{2}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.500

8046

\[ {}y^{\prime \prime }+y = \delta \left (t -2 \pi \right )+\delta \left (t -4 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.604

8047

\[ {}y^{\prime \prime }+2 y^{\prime } = \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _missing_y]]

0.538

8048

\[ {}y^{\prime \prime }-2 y^{\prime } = 1+\delta \left (t -2\right ) \]
i.c.

[[_2nd_order, _missing_y]]

0.506

8049

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = \delta \left (t -2 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.486

8050

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.342

8051

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = \delta \left (t -\pi \right )+\delta \left (t -3 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.847

8052

\[ {}y^{\prime \prime }-7 y^{\prime }+6 y = {\mathrm e}^{t}+\delta \left (t -2\right )+\delta \left (-4+t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.930

8053

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.300

8054

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = \delta \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.284

8055

\[ {}\left [\begin {array}{c} x^{\prime }=3 x-5 y \\ y^{\prime }=4 x+8 y \end {array}\right ] \]

system_of_ODEs

0.646

8056

\[ {}\left [\begin {array}{c} x^{\prime }=4 x-7 y \\ y^{\prime }=5 x \end {array}\right ] \]

system_of_ODEs

0.627

8057

\[ {}\left [\begin {array}{c} x^{\prime }=-3 x+4 y-9 z \\ y^{\prime }=6 x-y \\ z^{\prime }=10 x+4 y+3 z \end {array}\right ] \]

system_of_ODEs

8.915

8058

\[ {}\left [\begin {array}{c} x^{\prime }=x-y \\ y^{\prime }=x+2 z \\ z^{\prime }=z-x \end {array}\right ] \]

system_of_ODEs

7.394

8059

\[ {}\left [\begin {array}{c} x^{\prime }=x-y+z+t -1 \\ y^{\prime }=2 x+y-z-3 t^{2} \\ z^{\prime }=x+y+z+t^{2}-t +2 \end {array}\right ] \]

system_of_ODEs

3.100

8060

\[ {}\left [\begin {array}{c} x^{\prime }=-3 x+4 y+{\mathrm e}^{-t} \sin \left (2 t \right ) \\ y^{\prime }=5 x+9 z+4 \,{\mathrm e}^{-t} \cos \left (2 t \right ) \\ z^{\prime }=y+6 z-{\mathrm e}^{-t} \end {array}\right ] \]

system_of_ODEs

185.581

8061

\[ {}\left [\begin {array}{c} x^{\prime }=4 x+2 y+{\mathrm e}^{t} \\ y^{\prime }=-x+3 y-{\mathrm e}^{t} \end {array}\right ] \]

system_of_ODEs

1.179

8062

\[ {}\left [\begin {array}{c} x^{\prime }=7 x+5 y-9 z-8 \,{\mathrm e}^{-2 t} \\ y^{\prime }=4 x+y+z+2 \,{\mathrm e}^{5 t} \\ z^{\prime }=-2 y+3 z+{\mathrm e}^{5 t}-3 \,{\mathrm e}^{-2 t} \end {array}\right ] \]

system_of_ODEs

38.418

8063

\[ {}\left [\begin {array}{c} x^{\prime }=x-y+2 z+{\mathrm e}^{-t}-3 t \\ y^{\prime }=3 x-4 y+z+2 \,{\mathrm e}^{-t}+t \\ z^{\prime }=-2 x+5 y+6 z+2 \,{\mathrm e}^{-t}-t \end {array}\right ] \]

system_of_ODEs

186.508

8064

\[ {}\left [\begin {array}{c} x^{\prime }=3 x-7 y+4 \sin \left (t \right )+\left (-4+t \right ) {\mathrm e}^{4 t} \\ y^{\prime }=x+y+8 \sin \left (t \right )+\left (2 t +1\right ) {\mathrm e}^{4 t} \end {array}\right ] \]

system_of_ODEs

4.274

8065

\[ {}\left [\begin {array}{c} x^{\prime }=3 x-4 y \\ y^{\prime }=4 x-7 y \end {array}\right ] \]

system_of_ODEs

0.344

8066

\[ {}\left [\begin {array}{c} x^{\prime }=-2 x+5 y \\ y^{\prime }=-2 x+4 y \end {array}\right ] \]

system_of_ODEs

0.459

8067

\[ {}\left [\begin {array}{c} x^{\prime }=-x+\frac {y}{4} \\ y^{\prime }=x-y \end {array}\right ] \]

system_of_ODEs

0.333

8068

\[ {}\left [\begin {array}{c} x^{\prime }=2 x+y \\ y^{\prime }=-x \end {array}\right ] \]

system_of_ODEs

0.290

8069

\[ {}\left [\begin {array}{c} x^{\prime }=x+2 y+z \\ y^{\prime }=6 x-y \\ z^{\prime }=-x-2 y-z \end {array}\right ] \]

system_of_ODEs

0.536

8070

\[ {}\left [\begin {array}{c} x^{\prime }=x+z \\ y^{\prime }=x+y \\ z^{\prime }=-2 x-z \end {array}\right ] \]

system_of_ODEs

0.562

8071

\[ {}\left [\begin {array}{c} x^{\prime }=x+2 y \\ y^{\prime }=4 x+3 y \end {array}\right ] \]

system_of_ODEs

0.325

8072

\[ {}\left [\begin {array}{c} x^{\prime }=2 x+2 y \\ y^{\prime }=x+3 y \end {array}\right ] \]

system_of_ODEs

0.318

8073

\[ {}\left [\begin {array}{c} x^{\prime }=-4 x+2 y \\ y^{\prime }=-\frac {5 x}{2}+2 y \end {array}\right ] \]

system_of_ODEs

0.339

8074

\[ {}\left [\begin {array}{c} x^{\prime }=-\frac {5 x}{2}+2 y \\ y^{\prime }=\frac {3 x}{4}-2 y \end {array}\right ] \]

system_of_ODEs

0.339

8075

\[ {}\left [\begin {array}{c} x^{\prime }=10 x-5 y \\ y^{\prime }=8 x-12 y \end {array}\right ] \]

system_of_ODEs

0.346

8076

\[ {}\left [\begin {array}{c} x^{\prime }=-6 x+2 y \\ y^{\prime }=-3 x+y \end {array}\right ] \]

system_of_ODEs

0.311

8077

\[ {}\left [\begin {array}{c} x^{\prime }=x+y-z \\ y^{\prime }=2 y \\ z^{\prime }=y-z \end {array}\right ] \]

system_of_ODEs

0.380

8078

\[ {}\left [\begin {array}{c} x^{\prime }=2 x-7 y \\ y^{\prime }=5 x+10 y+4 z \\ z^{\prime }=5 y+2 z \end {array}\right ] \]

system_of_ODEs

0.497

8079

\[ {}\left [\begin {array}{c} x^{\prime }=y-x \\ y^{\prime }=x+2 y+z \\ z^{\prime }=3 y-z \end {array}\right ] \]

system_of_ODEs

0.490

8080

\[ {}\left [\begin {array}{c} x^{\prime }=x+z \\ y^{\prime }=y \\ z^{\prime }=x+z \end {array}\right ] \]

system_of_ODEs

0.322

8081

\[ {}\left [\begin {array}{c} x^{\prime }=-x-y \\ y^{\prime }=\frac {3 x}{4}-\frac {3 y}{2}+3 z \\ z^{\prime }=\frac {x}{8}+\frac {y}{4}-\frac {z}{2} \end {array}\right ] \]

system_of_ODEs

0.494

8082

\[ {}\left [\begin {array}{c} x^{\prime }=-x-y \\ y^{\prime }=\frac {3 x}{4}-\frac {3 y}{2}+3 z \\ z^{\prime }=\frac {x}{8}+\frac {y}{4}-\frac {z}{2} \end {array}\right ] \]

system_of_ODEs

0.515

8083

\[ {}\left [\begin {array}{c} x^{\prime }=-x+4 y+2 z \\ y^{\prime }=4 x-y-2 z \\ z^{\prime }=6 z \end {array}\right ] \]

system_of_ODEs

0.479

8084

\[ {}\left [\begin {array}{c} x^{\prime }=\frac {x}{2} \\ y^{\prime }=x-\frac {y}{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.420

8085

\[ {}\left [\begin {array}{c} x^{\prime }=x+y+4 z \\ y^{\prime }=2 y \\ z^{\prime }=x+y+z \end {array}\right ] \]
i.c.

system_of_ODEs

0.475

8086

\[ {}\left [\begin {array}{c} x^{\prime }=\frac {9 x}{10}+\frac {21 y}{10}+\frac {16 z}{5} \\ y^{\prime }=\frac {7 x}{10}+\frac {13 y}{2}+\frac {21 z}{5} \\ z^{\prime }=\frac {11 x}{10}+\frac {17 y}{10}+\frac {17 z}{5} \end {array}\right ] \]

system_of_ODEs

75.411

8087

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+2 x_{3}-\frac {9 x_{4}}{5} \\ x_{2}^{\prime }=\frac {51 x_{2}}{10}-x_{4}+3 x_{5} \\ x_{3}^{\prime }=x_{1}+2 x_{2}-3 x_{3} \\ x_{4}^{\prime }=x_{2}-\frac {31 x_{3}}{10}+4 x_{4} \\ x_{5}^{\prime }=-\frac {14 x_{1}}{5}+\frac {3 x_{4}}{2}-x_{5} \end {array}\right ] \]

system_of_ODEs

84.113

8088

\[ {}\left [\begin {array}{c} x^{\prime }=3 x-y \\ y^{\prime }=9 x-3 y \end {array}\right ] \]

system_of_ODEs

0.262

8089

\[ {}\left [\begin {array}{c} x^{\prime }=-6 x+5 y \\ y^{\prime }=-5 x+4 y \end {array}\right ] \]

system_of_ODEs

0.296

8090

\[ {}\left [\begin {array}{c} x^{\prime }=-x+3 y \\ y^{\prime }=-3 x+5 y \end {array}\right ] \]

system_of_ODEs

0.298

8091

\[ {}\left [\begin {array}{c} x^{\prime }=12 x-9 y \\ y^{\prime }=4 x \end {array}\right ] \]

system_of_ODEs

0.309

8092

\[ {}\left [\begin {array}{c} x^{\prime }=3 x-y-z \\ y^{\prime }=x+y-z \\ z^{\prime }=x-y+z \end {array}\right ] \]

system_of_ODEs

0.345

8093

\[ {}\left [\begin {array}{c} x^{\prime }=3 x+2 y+4 z \\ y^{\prime }=2 x+2 z \\ z^{\prime }=4 x+2 y+3 z \end {array}\right ] \]

system_of_ODEs

0.437

8094

\[ {}\left [\begin {array}{c} x^{\prime }=5 x-4 y \\ y^{\prime }=x+2 z \\ z^{\prime }=2 y+5 z \end {array}\right ] \]

system_of_ODEs

0.444

8095

\[ {}\left [\begin {array}{c} x^{\prime }=x \\ y^{\prime }=3 y+z \\ z^{\prime }=z-y \end {array}\right ] \]

system_of_ODEs

0.335

8096

\[ {}\left [\begin {array}{c} x^{\prime }=x \\ y^{\prime }=2 x+2 y-z \\ z^{\prime }=y \end {array}\right ] \]

system_of_ODEs

0.317

8097

\[ {}\left [\begin {array}{c} x^{\prime }=4 x+y \\ y^{\prime }=4 y+z \\ z^{\prime }=4 z \end {array}\right ] \]

system_of_ODEs

0.285

8098

\[ {}\left [\begin {array}{c} x^{\prime }=2 x+4 y \\ y^{\prime }=-x+6 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.430

8099

\[ {}\left [\begin {array}{c} x^{\prime }=z \\ y^{\prime }=y \\ z^{\prime }=x \end {array}\right ] \]
i.c.

system_of_ODEs

0.318

8100

\[ {}\left [\begin {array}{c} x^{\prime }=6 x-y \\ y^{\prime }=5 x+2 y \end {array}\right ] \]

system_of_ODEs

0.412