# |
ODE |
CAS classification |
Solved? |
time (sec) |
\[
{}2 y^{\prime }+y = 0
\] |
[_quadrature] |
✓ |
0.305 |
|
\[
{}y^{\prime }+6 y = {\mathrm e}^{4 t}
\] |
[[_linear, ‘class A‘]] |
✓ |
0.335 |
|
\[
{}y^{\prime }-y = 2 \cos \left (5 t \right )
\] |
[[_linear, ‘class A‘]] |
✓ |
0.426 |
|
\[
{}y^{\prime \prime }+5 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.261 |
|
\[
{}y^{\prime \prime }-4 y^{\prime } = 6 \,{\mathrm e}^{3 t}-3 \,{\mathrm e}^{-t}
\] |
[[_2nd_order, _missing_y]] |
✓ |
0.289 |
|
\[
{}y^{\prime \prime }+y = \sqrt {2}\, \sin \left (\sqrt {2}\, t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.477 |
|
\[
{}y^{\prime \prime }+9 y = {\mathrm e}^{t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.373 |
|
\[
{}2 y^{\prime \prime \prime }+3 y^{\prime \prime }-3 y^{\prime }-2 y = {\mathrm e}^{-t}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
0.329 |
|
\[
{}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = \sin \left (3 t \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
0.462 |
|
\[
{}y^{\prime }+y = {\mathrm e}^{-3 t} \cos \left (2 t \right )
\] |
[[_linear, ‘class A‘]] |
✓ |
0.412 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.318 |
|
\[
{}y^{\prime }+4 y = {\mathrm e}^{-4 t}
\] |
[[_linear, ‘class A‘]] |
✓ |
0.323 |
|
\[
{}y^{\prime }-y = 1+t \,{\mathrm e}^{t}
\] |
[[_linear, ‘class A‘]] |
✓ |
0.300 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.244 |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = t^{3} {\mathrm e}^{2 t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.248 |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = t
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.282 |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = t^{3}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.288 |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+13 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.298 |
|
\[
{}2 y^{\prime \prime }+20 y^{\prime }+51 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.465 |
|
\[
{}y^{\prime \prime }-y = {\mathrm e}^{t} \cos \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.343 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+5 y = t +1
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.350 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.291 |
|
\[
{}y^{\prime \prime }+8 y^{\prime }+20 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.203 |
|
\[
{}y^{\prime }+y = \left \{\begin {array}{cc} 0 & 0\le t <1 \\ 5 & 1\le t \end {array}\right .
\] |
[[_linear, ‘class A‘]] |
✓ |
0.486 |
|
\[
{}y^{\prime }+y = \left \{\begin {array}{cc} 1 & 0\le t <1 \\ -1 & 1\le t \end {array}\right .
\] |
[[_linear, ‘class A‘]] |
✓ |
0.543 |
|
\[
{}y^{\prime }+y = \left \{\begin {array}{cc} t & 0\le t <1 \\ 0 & 1\le t \end {array}\right .
\] |
[[_linear, ‘class A‘]] |
✓ |
0.571 |
|
\[
{}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 1 & 0\le t <1 \\ 0 & 1\le t \end {array}\right .
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.889 |
|
\[
{}y^{\prime \prime }+4 y = \sin \left (t \right ) \operatorname {Heaviside}\left (t -2 \pi \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.645 |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = \operatorname {Heaviside}\left (t -1\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.566 |
|
\[
{}y^{\prime \prime }+y = \left \{\begin {array}{cc} 0 & 0\le t <\pi \\ 1 & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right .
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.691 |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+3 y = 1-\operatorname {Heaviside}\left (t -2\right )-\operatorname {Heaviside}\left (-4+t \right )+\operatorname {Heaviside}\left (t -6\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.245 |
|
\[
{}y^{\prime }+y = t \sin \left (t \right )
\] |
[[_linear, ‘class A‘]] |
✓ |
0.389 |
|
\[
{}y^{\prime }-y = t \,{\mathrm e}^{t} \sin \left (t \right )
\] |
[[_linear, ‘class A‘]] |
✓ |
0.416 |
|
\[
{}y^{\prime \prime }+9 y = \cos \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.363 |
|
\[
{}y^{\prime \prime }+y = \sin \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.325 |
|
\[
{}y^{\prime \prime }+16 y = \left \{\begin {array}{cc} \cos \left (4 t \right ) & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right .
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.651 |
|
\[
{}y^{\prime \prime }+y = \left \{\begin {array}{cc} 1 & 0\le t <\frac {\pi }{2} \\ \sin \left (t \right ) & \frac {\pi }{2}\le t \end {array}\right .
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.592 |
|
\[
{}t y^{\prime \prime }-y^{\prime } = 2 t^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
1.185 |
|
\[
{}2 y^{\prime \prime }+t y^{\prime }-2 y = 10
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.088 |
|
\[
{}y^{\prime \prime }+y = \sin \left (t \right )+t \sin \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.366 |
|
\[
{}y^{\prime }-3 y = \delta \left (t -2\right )
\] |
[[_linear, ‘class A‘]] |
✓ |
0.388 |
|
\[
{}y^{\prime }+y = \delta \left (t -1\right )
\] |
[[_linear, ‘class A‘]] |
✓ |
0.394 |
|
\[
{}y^{\prime \prime }+y = \delta \left (t -2 \pi \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.478 |
|
\[
{}y^{\prime \prime }+16 y = \delta \left (t -2 \pi \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.356 |
|
\[
{}y^{\prime \prime }+y = \delta \left (t -\frac {\pi }{2}\right )+\delta \left (t -\frac {3 \pi }{2}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.500 |
|
\[
{}y^{\prime \prime }+y = \delta \left (t -2 \pi \right )+\delta \left (t -4 \pi \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.604 |
|
\[
{}y^{\prime \prime }+2 y^{\prime } = \delta \left (t -1\right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
0.538 |
|
\[
{}y^{\prime \prime }-2 y^{\prime } = 1+\delta \left (t -2\right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
0.506 |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+5 y = \delta \left (t -2 \pi \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.486 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = \delta \left (t -1\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.342 |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+13 y = \delta \left (t -\pi \right )+\delta \left (t -3 \pi \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.847 |
|
\[
{}y^{\prime \prime }-7 y^{\prime }+6 y = {\mathrm e}^{t}+\delta \left (t -2\right )+\delta \left (-4+t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.930 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+10 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.300 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+10 y = \delta \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.284 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=3 x-5 y \\ y^{\prime }=4 x+8 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.646 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=4 x-7 y \\ y^{\prime }=5 x \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.627 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-3 x+4 y-9 z \\ y^{\prime }=6 x-y \\ z^{\prime }=10 x+4 y+3 z \end {array}\right ]
\] |
system_of_ODEs |
✓ |
8.915 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x-y \\ y^{\prime }=x+2 z \\ z^{\prime }=z-x \end {array}\right ]
\] |
system_of_ODEs |
✓ |
7.394 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x-y+z+t -1 \\ y^{\prime }=2 x+y-z-3 t^{2} \\ z^{\prime }=x+y+z+t^{2}-t +2 \end {array}\right ]
\] |
system_of_ODEs |
✓ |
3.100 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-3 x+4 y+{\mathrm e}^{-t} \sin \left (2 t \right ) \\ y^{\prime }=5 x+9 z+4 \,{\mathrm e}^{-t} \cos \left (2 t \right ) \\ z^{\prime }=y+6 z-{\mathrm e}^{-t} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
185.581 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=4 x+2 y+{\mathrm e}^{t} \\ y^{\prime }=-x+3 y-{\mathrm e}^{t} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
1.179 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=7 x+5 y-9 z-8 \,{\mathrm e}^{-2 t} \\ y^{\prime }=4 x+y+z+2 \,{\mathrm e}^{5 t} \\ z^{\prime }=-2 y+3 z+{\mathrm e}^{5 t}-3 \,{\mathrm e}^{-2 t} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
38.418 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x-y+2 z+{\mathrm e}^{-t}-3 t \\ y^{\prime }=3 x-4 y+z+2 \,{\mathrm e}^{-t}+t \\ z^{\prime }=-2 x+5 y+6 z+2 \,{\mathrm e}^{-t}-t \end {array}\right ]
\] |
system_of_ODEs |
✓ |
186.508 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=3 x-7 y+4 \sin \left (t \right )+\left (-4+t \right ) {\mathrm e}^{4 t} \\ y^{\prime }=x+y+8 \sin \left (t \right )+\left (2 t +1\right ) {\mathrm e}^{4 t} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
4.274 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=3 x-4 y \\ y^{\prime }=4 x-7 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.344 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-2 x+5 y \\ y^{\prime }=-2 x+4 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.459 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-x+\frac {y}{4} \\ y^{\prime }=x-y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.333 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=2 x+y \\ y^{\prime }=-x \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.290 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x+2 y+z \\ y^{\prime }=6 x-y \\ z^{\prime }=-x-2 y-z \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.536 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x+z \\ y^{\prime }=x+y \\ z^{\prime }=-2 x-z \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.562 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x+2 y \\ y^{\prime }=4 x+3 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.325 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=2 x+2 y \\ y^{\prime }=x+3 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.318 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-4 x+2 y \\ y^{\prime }=-\frac {5 x}{2}+2 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.339 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-\frac {5 x}{2}+2 y \\ y^{\prime }=\frac {3 x}{4}-2 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.339 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=10 x-5 y \\ y^{\prime }=8 x-12 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.346 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-6 x+2 y \\ y^{\prime }=-3 x+y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.311 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x+y-z \\ y^{\prime }=2 y \\ z^{\prime }=y-z \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.380 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=2 x-7 y \\ y^{\prime }=5 x+10 y+4 z \\ z^{\prime }=5 y+2 z \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.497 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=y-x \\ y^{\prime }=x+2 y+z \\ z^{\prime }=3 y-z \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.490 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x+z \\ y^{\prime }=y \\ z^{\prime }=x+z \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.322 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-x-y \\ y^{\prime }=\frac {3 x}{4}-\frac {3 y}{2}+3 z \\ z^{\prime }=\frac {x}{8}+\frac {y}{4}-\frac {z}{2} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.494 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-x-y \\ y^{\prime }=\frac {3 x}{4}-\frac {3 y}{2}+3 z \\ z^{\prime }=\frac {x}{8}+\frac {y}{4}-\frac {z}{2} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.515 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-x+4 y+2 z \\ y^{\prime }=4 x-y-2 z \\ z^{\prime }=6 z \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.479 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=\frac {x}{2} \\ y^{\prime }=x-\frac {y}{2} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.420 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x+y+4 z \\ y^{\prime }=2 y \\ z^{\prime }=x+y+z \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.475 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=\frac {9 x}{10}+\frac {21 y}{10}+\frac {16 z}{5} \\ y^{\prime }=\frac {7 x}{10}+\frac {13 y}{2}+\frac {21 z}{5} \\ z^{\prime }=\frac {11 x}{10}+\frac {17 y}{10}+\frac {17 z}{5} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
75.411 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+2 x_{3}-\frac {9 x_{4}}{5} \\ x_{2}^{\prime }=\frac {51 x_{2}}{10}-x_{4}+3 x_{5} \\ x_{3}^{\prime }=x_{1}+2 x_{2}-3 x_{3} \\ x_{4}^{\prime }=x_{2}-\frac {31 x_{3}}{10}+4 x_{4} \\ x_{5}^{\prime }=-\frac {14 x_{1}}{5}+\frac {3 x_{4}}{2}-x_{5} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
84.113 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=3 x-y \\ y^{\prime }=9 x-3 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.262 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-6 x+5 y \\ y^{\prime }=-5 x+4 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.296 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-x+3 y \\ y^{\prime }=-3 x+5 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.298 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=12 x-9 y \\ y^{\prime }=4 x \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.309 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=3 x-y-z \\ y^{\prime }=x+y-z \\ z^{\prime }=x-y+z \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.345 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=3 x+2 y+4 z \\ y^{\prime }=2 x+2 z \\ z^{\prime }=4 x+2 y+3 z \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.437 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=5 x-4 y \\ y^{\prime }=x+2 z \\ z^{\prime }=2 y+5 z \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.444 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x \\ y^{\prime }=3 y+z \\ z^{\prime }=z-y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.335 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x \\ y^{\prime }=2 x+2 y-z \\ z^{\prime }=y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.317 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=4 x+y \\ y^{\prime }=4 y+z \\ z^{\prime }=4 z \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.285 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=2 x+4 y \\ y^{\prime }=-x+6 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.430 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=z \\ y^{\prime }=y \\ z^{\prime }=x \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.318 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=6 x-y \\ y^{\prime }=5 x+2 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.412 |
|