# |
ODE |
CAS classification |
Solved? |
time (sec) |
\[
{}\left [\begin {array}{c} x^{\prime }=3 x+2 y \\ y^{\prime }=-2 x-y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.368 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x+y \\ y^{\prime }=-x+y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.367 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=3 x-5 y \\ y^{\prime }=-x+2 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.609 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x+2 y \\ y^{\prime }=-4 x+y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.515 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=3 x+2 y+z \\ y^{\prime }=-2 x-y+3 z \\ z^{\prime }=x+y+z \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.637 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-x+y-z \\ y^{\prime }=2 x-y-4 z \\ z^{\prime }=3 x-y+z \end {array}\right ]
\] |
system_of_ODEs |
✓ |
9.538 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x+2 y-4 t +1 \\ y^{\prime }=-x+2 y+3 t +4 \end {array}\right ]
\] |
system_of_ODEs |
✓ |
1.453 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-2 x+y-t +3 \\ y^{\prime }=x+4 y+t -2 \end {array}\right ]
\] |
system_of_ODEs |
✓ |
2.022 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-4 x+y-t +3 \\ y^{\prime }=-x-5 y+t +1 \end {array}\right ]
\] |
system_of_ODEs |
✓ |
1.373 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x y+1 \\ y^{\prime }=-x+y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.061 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=1+t y \\ y^{\prime }=-t x+y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.062 |
|
\[
{}y^{\prime } = -x +y^{2}
\] |
[[_Riccati, _special]] |
✓ |
0.301 |
|
\[
{}y^{\prime } = -x +y^{2}
\] |
[[_Riccati, _special]] |
✓ |
2.088 |
|
\[
{}y^{\prime }-2 y = x^{2}
\] |
[[_linear, ‘class A‘]] |
✓ |
0.488 |
|
\[
{}y^{\prime }-2 y = x^{2}
\] |
[[_linear, ‘class A‘]] |
✓ |
1.262 |
|
\[
{}y^{\prime } = y+x \,{\mathrm e}^{y}
\] |
[‘y=_G(x,y’)‘] |
✓ |
0.976 |
|
\[
{}y^{\prime } = y+x \,{\mathrm e}^{y}
\] |
[‘y=_G(x,y’)‘] |
✗ |
1.251 |
|
\[
{}y^{\prime \prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.358 |
|
\[
{}y^{\prime \prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.372 |
|
\[
{}y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.342 |
|
\[
{}y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.511 |
|
\[
{}y^{\prime \prime }-y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.386 |
|
\[
{}y^{\prime \prime }-y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.795 |
|
\[
{}y^{\prime \prime }+2 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.397 |
|
\[
{}y^{\prime \prime }+2 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.101 |
|
\[
{}y^{\prime \prime }-x y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.327 |
|
\[
{}y^{\prime \prime }+x^{2} y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.407 |
|
\[
{}y^{\prime \prime }-2 y^{\prime } x +y = 0
\] |
[_Lienard] |
✓ |
0.428 |
|
\[
{}y^{\prime \prime }-y^{\prime } x +2 y = 0
\] |
[_Hermite] |
✓ |
0.449 |
|
\[
{}y^{\prime \prime }+x^{2} y^{\prime }+x y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.443 |
|
\[
{}y^{\prime \prime }+2 y^{\prime } x +2 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.469 |
|
\[
{}\left (x -1\right ) y^{\prime \prime }+y^{\prime } = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
0.455 |
|
\[
{}\left (x +2\right ) y^{\prime \prime }+y^{\prime } x -y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.462 |
|
\[
{}y^{\prime \prime }-\left (x +1\right ) y^{\prime }-y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.551 |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }-6 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.479 |
|
\[
{}\left (x^{2}+2\right ) y^{\prime \prime }+3 y^{\prime } x -y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.579 |
|
\[
{}\left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime } x -y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.487 |
|
\[
{}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.454 |
|
\[
{}\left (x +1\right ) y^{\prime \prime }-\left (2-x \right ) y^{\prime }+y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.622 |
|
\[
{}y^{\prime \prime }-2 y^{\prime } x +8 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.512 |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
0.515 |
|
\[
{}y^{\prime \prime }+y \sin \left (x \right ) = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.750 |
|
\[
{}y^{\prime \prime }+{\mathrm e}^{x} y^{\prime }-y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.850 |
|
\[
{}\cos \left (x \right ) y^{\prime \prime }+y^{\prime }+5 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
2.949 |
|
\[
{}\cos \left (x \right ) y^{\prime \prime }+y^{\prime }+5 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
6.839 |
|
\[
{}y^{\prime \prime }-x y = 1
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.350 |
|
\[
{}y^{\prime \prime }-4 y^{\prime } x -4 y = {\mathrm e}^{x}
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
0.583 |
|
\[
{}x y^{\prime \prime }+y \sin \left (x \right ) = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.926 |
|
\[
{}y^{\prime \prime }+5 y^{\prime } x +y \sqrt {x} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.214 |
|
\[
{}y^{\prime \prime }+y^{\prime } x +y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.482 |
|
\[
{}y^{\prime \prime }+\cos \left (x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.793 |
|
\[
{}x^{3} y^{\prime \prime }+4 x^{2} y^{\prime }+3 y = 0
\] |
[[_Emden, _Fowler]] |
✗ |
0.171 |
|
\[
{}x \left (3+x \right )^{2} y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.524 |
|
\[
{}\left (x^{2}-9\right )^{2} y^{\prime \prime }+\left (3+x \right ) y^{\prime }+2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.765 |
|
\[
{}y^{\prime \prime }-\frac {y^{\prime }}{x}+\frac {y}{\left (x -1\right )^{3}} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.786 |
|
\[
{}\left (x^{3}+4 x \right ) y^{\prime \prime }-2 y^{\prime } x +6 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.696 |
|
\[
{}x^{2} \left (x -5\right )^{2} y^{\prime \prime }+4 y^{\prime } x +\left (x^{2}-25\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.619 |
|
\[
{}\left (x^{2}+x -6\right ) y^{\prime \prime }+\left (3+x \right ) y^{\prime }+\left (x -2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.673 |
|
\[
{}x \left (x^{2}+1\right )^{2} y^{\prime \prime }+y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.493 |
|
\[
{}x^{3} \left (x^{2}-25\right ) \left (x -2\right )^{2} y^{\prime \prime }+3 x \left (x -2\right ) y^{\prime }+7 \left (5+x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.195 |
|
\[
{}\left (x^{3}-2 x^{2}+3 x \right )^{2} y^{\prime \prime }+x \left (x -3\right )^{2} y^{\prime }-\left (x +1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.293 |
|
\[
{}\left (x^{2}-1\right ) y^{\prime \prime }+5 \left (x +1\right ) y^{\prime }+\left (x^{2}-x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.773 |
|
\[
{}x y^{\prime \prime }+\left (3+x \right ) y^{\prime }+7 x^{2} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.568 |
|
\[
{}x^{2} y^{\prime \prime }+\left (\frac {5}{3} x +x^{2}\right ) y^{\prime }-\frac {y}{3} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.928 |
|
\[
{}x y^{\prime \prime }+y^{\prime }+10 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.678 |
|
\[
{}2 x y^{\prime \prime }-y^{\prime }+2 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.934 |
|
\[
{}2 x y^{\prime \prime }+5 y^{\prime }+x y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.730 |
|
\[
{}4 x y^{\prime \prime }+\frac {y^{\prime }}{2}+y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.915 |
|
\[
{}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (x^{2}+1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.822 |
|
\[
{}3 x y^{\prime \prime }+\left (2-x \right ) y^{\prime }-y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.816 |
|
\[
{}x^{2} y^{\prime \prime }-\left (x -\frac {2}{9}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.979 |
|
\[
{}2 x y^{\prime \prime }-\left (2 x +3\right ) y^{\prime }+y = 0
\] |
[_Laguerre] |
✓ |
0.871 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {4}{9}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.767 |
|
\[
{}9 x^{2} y^{\prime \prime }+9 x^{2} y^{\prime }+2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.020 |
|
\[
{}2 x^{2} y^{\prime \prime }+3 y^{\prime } x +\left (2 x -1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.907 |
|
\[
{}x y^{\prime \prime }+2 y^{\prime }-x y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.729 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.798 |
|
\[
{}x y^{\prime \prime }-y^{\prime } x +y = 0
\] |
[_Laguerre, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
1.446 |
|
\[
{}y^{\prime \prime }+\frac {3 y^{\prime }}{x}-2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.254 |
|
\[
{}x y^{\prime \prime }+\left (1-x \right ) y^{\prime }-y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.656 |
|
\[
{}x y^{\prime \prime }+y^{\prime }+y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.657 |
|
\[
{}x y^{\prime \prime }+\left (x -6\right ) y^{\prime }-3 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.943 |
|
\[
{}x \left (x -1\right ) y^{\prime \prime }+3 y^{\prime }-2 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.802 |
|
\[
{}y^{\prime \prime }+\frac {2 y^{\prime }}{t}+\lambda y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.771 |
|
\[
{}x^{3} y^{\prime \prime }+y = 0
\] |
[[_Emden, _Fowler]] |
✗ |
0.149 |
|
\[
{}x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✗ |
0.214 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{9}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.504 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-1\right ) y = 0
\] |
[_Bessel] |
✓ |
0.559 |
|
\[
{}4 x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}-25\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.702 |
|
\[
{}16 x^{2} y^{\prime \prime }+16 y^{\prime } x +\left (16 x^{2}-1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.579 |
|
\[
{}x y^{\prime \prime }+y^{\prime }+x y = 0
\] |
[_Lienard] |
✓ |
0.508 |
|
\[
{}x y^{\prime \prime }+y^{\prime }+\left (x -\frac {4}{x}\right ) y = 0
\] |
[_Bessel] |
✓ |
0.569 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (9 x^{2}-4\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.586 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (36 x^{2}-\frac {1}{4}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.662 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (25 x^{2}-\frac {4}{9}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.540 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (2 x^{2}-64\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.663 |
|
\[
{}x y^{\prime \prime }+2 y^{\prime }+4 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.331 |
|
\[
{}x y^{\prime \prime }+3 y^{\prime }+x y = 0
\] |
[_Lienard] |
✓ |
0.505 |
|
\[
{}x y^{\prime \prime }-y^{\prime }+x y = 0
\] |
[_Lienard] |
✓ |
0.508 |
|
\[
{}x y^{\prime \prime }-5 y^{\prime }+x y = 0
\] |
[_Lienard] |
✓ |
0.545 |
|