2.2.80 Problems 7901 to 8000

Table 2.161: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

7901

\[ {}y \ln \left (y\right )-2 x y+\left (x +y\right ) y^{\prime } = 0 \]

[‘y=_G(x,y’)‘]

0.466

7902

\[ {}y^{2}+x y+1+\left (x^{2}+x y+1\right ) y^{\prime } = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

0.385

7903

\[ {}x^{3}+x y^{3}+3 y^{2} y^{\prime } = 0 \]

[_rational, _Bernoulli]

0.324

7904

\[ {}y^{\prime } = \frac {2 y}{x}+\frac {x^{3}}{y}+x \tan \left (\frac {y}{x^{2}}\right ) \]

[[_homogeneous, ‘class G‘]]

5.218

7905

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.232

7906

\[ {}x y y^{\prime \prime } = {y^{\prime }}^{3}+y^{\prime } \]

[NONE]

0.270

7907

\[ {}y^{\prime \prime }-k^{2} y = 0 \]

[[_2nd_order, _missing_x]]

1.534

7908

\[ {}x^{2} y^{\prime \prime } = 2 y^{\prime } x +{y^{\prime }}^{2} \]

[[_2nd_order, _missing_y]]

0.650

7909

\[ {}2 y y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.259

7910

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.506

7911

\[ {}x y^{\prime \prime }+y^{\prime } = 4 x \]

[[_2nd_order, _missing_y]]

0.847

7912

\[ {}\left (x^{2}+2 y^{\prime }\right ) y^{\prime \prime }+2 y^{\prime } x = 0 \]
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]]

4.144

7913

\[ {}y y^{\prime \prime } = y^{2} y^{\prime }+{y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.816

7914

\[ {}y^{\prime \prime } = {\mathrm e}^{y} y^{\prime } \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

3.011

7915

\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

1.614

7916

\[ {}y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

1.783

7917

\[ {}y^{\prime } x +y = x \]

[_linear]

2.294

7918

\[ {}x^{2} y^{\prime }+y = x^{2} \]

[_linear]

1.124

7919

\[ {}x^{2} y^{\prime } = y \]

[_separable]

1.376

7920

\[ {}\sec \left (x \right ) y^{\prime } = \sec \left (y\right ) \]

[_separable]

2.342

7921

\[ {}y^{\prime } = \frac {x^{2}+y^{2}}{x^{2}-y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5.303

7922

\[ {}y^{\prime } = \frac {x +2 y}{2 x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.513

7923

\[ {}x^{2} y^{\prime }+2 x y = 0 \]

[_separable]

1.538

7924

\[ {}-\sin \left (x \right ) \sin \left (y\right )+\cos \left (x \right ) \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

2.660

7925

\[ {}y^{\prime } x -y = 2 x \]
i.c.

[_linear]

1.604

7926

\[ {}x^{2} y^{\prime }-2 y = 3 x^{2} \]
i.c.

[_linear]

1.510

7927

\[ {}y^{2} y^{\prime } = x \]
i.c.

[_separable]

2.819

7928

\[ {}\csc \left (x \right ) y^{\prime } = \csc \left (y\right ) \]
i.c.

[_separable]

2.791

7929

\[ {}y^{\prime } = \frac {x +y}{x -y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

25.187

7930

\[ {}y^{\prime } = \frac {x^{2}+2 y^{2}}{x^{2}-2 y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5.330

7931

\[ {}2 x \cos \left (y\right )-x^{2} \sin \left (y\right ) y^{\prime } = 0 \]
i.c.

[_separable]

5.604

7932

\[ {}\frac {1}{y}-\frac {x y^{\prime }}{y^{2}} = 0 \]

[_separable]

1.433

7933

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.485

7934

\[ {}x y^{\prime \prime } = y^{\prime }-2 {y^{\prime }}^{3} \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

1.376

7935

\[ {}y y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.524

7936

\[ {}x y^{\prime \prime }-3 y^{\prime } = 5 x \]

[[_2nd_order, _missing_y]]

1.017

7937

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]

[[_2nd_order, _missing_x]]

0.318

7938

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.359

7939

\[ {}y^{\prime \prime }+8 y = 0 \]

[[_2nd_order, _missing_x]]

1.522

7940

\[ {}2 y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

0.492

7941

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

0.438

7942

\[ {}y^{\prime \prime }-9 y^{\prime }+20 y = 0 \]

[[_2nd_order, _missing_x]]

0.324

7943

\[ {}2 y^{\prime \prime }+2 y^{\prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

0.562

7944

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

0.396

7945

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

1.353

7946

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

0.513

7947

\[ {}4 y^{\prime \prime }+20 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

0.361

7948

\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

0.536

7949

\[ {}y^{\prime \prime } = 4 y \]

[[_2nd_order, _missing_x]]

1.446

7950

\[ {}4 y^{\prime \prime }-8 y^{\prime }+7 y = 0 \]

[[_2nd_order, _missing_x]]

0.575

7951

\[ {}2 y^{\prime \prime }+y^{\prime }-y = 0 \]

[[_2nd_order, _missing_x]]

0.346

7952

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

0.436

7953

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

0.449

7954

\[ {}y^{\prime \prime }+4 y^{\prime }-5 y = 0 \]

[[_2nd_order, _missing_x]]

0.325

7955

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.613

7956

\[ {}y^{\prime \prime }-6 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.579

7957

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.622

7958

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.730

7959

\[ {}y^{\prime \prime }+4 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.658

7960

\[ {}y^{\prime \prime }+8 y^{\prime }-9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.617

7961

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +10 y = 0 \]

[[_Emden, _Fowler]]

1.075

7962

\[ {}2 x^{2} y^{\prime \prime }+10 y^{\prime } x +8 y = 0 \]

[[_Emden, _Fowler]]

0.895

7963

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -12 y = 0 \]

[[_Emden, _Fowler]]

0.795

7964

\[ {}4 x^{2} y^{\prime \prime }-3 y = 0 \]

[[_Emden, _Fowler]]

0.370

7965

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.901

7966

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.641

7967

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x +3 y = 0 \]

[[_Emden, _Fowler]]

1.148

7968

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.951

7969

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -16 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.887

7970

\[ {}y^{\prime \prime }+3 y^{\prime }-10 y = 6 \,{\mathrm e}^{4 x} \]

[[_2nd_order, _with_linear_symmetries]]

0.512

7971

\[ {}y^{\prime \prime }+4 y = 3 \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.719

7972

\[ {}y^{\prime \prime }+10 y^{\prime }+25 y = 14 \,{\mathrm e}^{-5 x} \]

[[_2nd_order, _with_linear_symmetries]]

0.596

7973

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 25 x^{2}+12 \]

[[_2nd_order, _with_linear_symmetries]]

0.617

7974

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 20 \,{\mathrm e}^{-2 x} \]

[[_2nd_order, _with_linear_symmetries]]

0.515

7975

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 14 \sin \left (2 x \right )-18 \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.604

7976

\[ {}y^{\prime \prime }+y = 2 \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.746

7977

\[ {}y^{\prime \prime }-2 y^{\prime } = 12 x -10 \]

[[_2nd_order, _missing_y]]

1.020

7978

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 6 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

0.544

7979

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.679

7980

\[ {}y^{\prime \prime }+y^{\prime } = 10 x^{4}+2 \]

[[_2nd_order, _missing_y]]

1.019

7981

\[ {}y^{\prime \prime }+4 y = 4 \cos \left (2 x \right )+6 \cos \left (x \right )+8 x^{2}-4 x \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.246

7982

\[ {}y^{\prime \prime }+9 y = 2 \sin \left (3 x \right )+4 \sin \left (x \right )-26 \,{\mathrm e}^{-2 x}+27 x^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.491

7983

\[ {}y^{\prime \prime }-3 y = {\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

0.568

7984

\[ {}y^{\prime \prime \prime }+y^{\prime } = \sin \left (x \right ) \]

[[_3rd_order, _missing_y]]

0.427

7985

\[ {}y^{\prime \prime }+4 y = \tan \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.936

7986

\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-x} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.687

7987

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 64 x \,{\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.560

7988

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = {\mathrm e}^{-x} \sec \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.839

7989

\[ {}2 y^{\prime \prime }+3 y^{\prime }+y = {\mathrm e}^{-3 x} \]

[[_2nd_order, _with_linear_symmetries]]

0.424

7990

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \frac {1}{1+{\mathrm e}^{-x}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.562

7991

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.682

7992

\[ {}y^{\prime \prime }+y = \cot \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.923

7993

\[ {}y^{\prime \prime }+y = \cot \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.225

7994

\[ {}y^{\prime \prime }+y = x \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.730

7995

\[ {}y^{\prime \prime }+y = \tan \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.795

7996

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \tan \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.833

7997

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \csc \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.944

7998

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 x \]

[[_2nd_order, _with_linear_symmetries]]

0.557

7999

\[ {}y^{\prime \prime }-y^{\prime }-6 y = {\mathrm e}^{-x} \]

[[_2nd_order, _with_linear_symmetries]]

0.404

8000

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = \left (x^{2}-1\right )^{2} \]

[[_2nd_order, _with_linear_symmetries]]

0.977