# |
ODE |
CAS classification |
Solved? |
time (sec) |
\[
{}y \ln \left (y\right )-2 x y+\left (x +y\right ) y^{\prime } = 0
\] |
[‘y=_G(x,y’)‘] |
✓ |
0.466 |
|
\[
{}y^{2}+x y+1+\left (x^{2}+x y+1\right ) y^{\prime } = 0
\] |
[_rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
0.385 |
|
\[
{}x^{3}+x y^{3}+3 y^{2} y^{\prime } = 0
\] |
[_rational, _Bernoulli] |
✓ |
0.324 |
|
\[
{}y^{\prime } = \frac {2 y}{x}+\frac {x^{3}}{y}+x \tan \left (\frac {y}{x^{2}}\right )
\] |
[[_homogeneous, ‘class G‘]] |
✓ |
5.218 |
|
\[
{}y y^{\prime \prime }+{y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
1.232 |
|
\[
{}x y y^{\prime \prime } = {y^{\prime }}^{3}+y^{\prime }
\] |
[NONE] |
✗ |
0.270 |
|
\[
{}y^{\prime \prime }-k^{2} y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.534 |
|
\[
{}x^{2} y^{\prime \prime } = 2 y^{\prime } x +{y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
0.650 |
|
\[
{}2 y y^{\prime \prime } = 1+{y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
1.259 |
|
\[
{}y y^{\prime \prime }-{y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
0.506 |
|
\[
{}x y^{\prime \prime }+y^{\prime } = 4 x
\] |
[[_2nd_order, _missing_y]] |
✓ |
0.847 |
|
\[
{}\left (x^{2}+2 y^{\prime }\right ) y^{\prime \prime }+2 y^{\prime } x = 0
\] |
[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]] |
✗ |
4.144 |
|
\[
{}y y^{\prime \prime } = y^{2} y^{\prime }+{y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmetries], [_2nd_order, _reducible, _mu_xy]] |
✓ |
0.816 |
|
\[
{}y^{\prime \prime } = {\mathrm e}^{y} y^{\prime }
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]] |
✓ |
3.011 |
|
\[
{}y^{\prime \prime } = 1+{y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
1.614 |
|
\[
{}y^{\prime \prime }+{y^{\prime }}^{2} = 1
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
1.783 |
|
\[
{}y^{\prime } x +y = x
\] |
[_linear] |
✓ |
2.294 |
|
\[
{}x^{2} y^{\prime }+y = x^{2}
\] |
[_linear] |
✓ |
1.124 |
|
\[
{}x^{2} y^{\prime } = y
\] |
[_separable] |
✓ |
1.376 |
|
\[
{}\sec \left (x \right ) y^{\prime } = \sec \left (y\right )
\] |
[_separable] |
✓ |
2.342 |
|
\[
{}y^{\prime } = \frac {x^{2}+y^{2}}{x^{2}-y^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
5.303 |
|
\[
{}y^{\prime } = \frac {x +2 y}{2 x -y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
3.513 |
|
\[
{}x^{2} y^{\prime }+2 x y = 0
\] |
[_separable] |
✓ |
1.538 |
|
\[
{}-\sin \left (x \right ) \sin \left (y\right )+\cos \left (x \right ) \cos \left (y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
2.660 |
|
\[
{}y^{\prime } x -y = 2 x
\] |
[_linear] |
✓ |
1.604 |
|
\[
{}x^{2} y^{\prime }-2 y = 3 x^{2}
\] |
[_linear] |
✓ |
1.510 |
|
\[
{}y^{2} y^{\prime } = x
\] |
[_separable] |
✓ |
2.819 |
|
\[
{}\csc \left (x \right ) y^{\prime } = \csc \left (y\right )
\] |
[_separable] |
✓ |
2.791 |
|
\[
{}y^{\prime } = \frac {x +y}{x -y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
25.187 |
|
\[
{}y^{\prime } = \frac {x^{2}+2 y^{2}}{x^{2}-2 y^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
5.330 |
|
\[
{}2 x \cos \left (y\right )-x^{2} \sin \left (y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
5.604 |
|
\[
{}\frac {1}{y}-\frac {x y^{\prime }}{y^{2}} = 0
\] |
[_separable] |
✓ |
1.433 |
|
\[
{}y y^{\prime \prime }-{y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
0.485 |
|
\[
{}x y^{\prime \prime } = y^{\prime }-2 {y^{\prime }}^{3}
\] |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
1.376 |
|
\[
{}y y^{\prime \prime }+y^{\prime } = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
0.524 |
|
\[
{}x y^{\prime \prime }-3 y^{\prime } = 5 x
\] |
[[_2nd_order, _missing_y]] |
✓ |
1.017 |
|
\[
{}y^{\prime \prime }+y^{\prime }-6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.318 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.359 |
|
\[
{}y^{\prime \prime }+8 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.522 |
|
\[
{}2 y^{\prime \prime }-4 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.492 |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.438 |
|
\[
{}y^{\prime \prime }-9 y^{\prime }+20 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.324 |
|
\[
{}2 y^{\prime \prime }+2 y^{\prime }+3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.562 |
|
\[
{}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.396 |
|
\[
{}y^{\prime \prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.353 |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+25 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.513 |
|
\[
{}4 y^{\prime \prime }+20 y^{\prime }+25 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.361 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.536 |
|
\[
{}y^{\prime \prime } = 4 y
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.446 |
|
\[
{}4 y^{\prime \prime }-8 y^{\prime }+7 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.575 |
|
\[
{}2 y^{\prime \prime }+y^{\prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.346 |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.436 |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.449 |
|
\[
{}y^{\prime \prime }+4 y^{\prime }-5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.325 |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.613 |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.579 |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.622 |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.730 |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.658 |
|
\[
{}y^{\prime \prime }+8 y^{\prime }-9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.617 |
|
\[
{}x^{2} y^{\prime \prime }+3 y^{\prime } x +10 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
1.075 |
|
\[
{}2 x^{2} y^{\prime \prime }+10 y^{\prime } x +8 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.895 |
|
\[
{}x^{2} y^{\prime \prime }+2 y^{\prime } x -12 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.795 |
|
\[
{}4 x^{2} y^{\prime \prime }-3 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.370 |
|
\[
{}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
0.901 |
|
\[
{}x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
0.641 |
|
\[
{}x^{2} y^{\prime \prime }+2 y^{\prime } x +3 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
1.148 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x -2 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
0.951 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x -16 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
0.887 |
|
\[
{}y^{\prime \prime }+3 y^{\prime }-10 y = 6 \,{\mathrm e}^{4 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.512 |
|
\[
{}y^{\prime \prime }+4 y = 3 \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.719 |
|
\[
{}y^{\prime \prime }+10 y^{\prime }+25 y = 14 \,{\mathrm e}^{-5 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.596 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+5 y = 25 x^{2}+12
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.617 |
|
\[
{}y^{\prime \prime }-y^{\prime }-6 y = 20 \,{\mathrm e}^{-2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.515 |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = 14 \sin \left (2 x \right )-18 \cos \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.604 |
|
\[
{}y^{\prime \prime }+y = 2 \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.746 |
|
\[
{}y^{\prime \prime }-2 y^{\prime } = 12 x -10
\] |
[[_2nd_order, _missing_y]] |
✓ |
1.020 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = 6 \,{\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.544 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{x} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.679 |
|
\[
{}y^{\prime \prime }+y^{\prime } = 10 x^{4}+2
\] |
[[_2nd_order, _missing_y]] |
✓ |
1.019 |
|
\[
{}y^{\prime \prime }+4 y = 4 \cos \left (2 x \right )+6 \cos \left (x \right )+8 x^{2}-4 x
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.246 |
|
\[
{}y^{\prime \prime }+9 y = 2 \sin \left (3 x \right )+4 \sin \left (x \right )-26 \,{\mathrm e}^{-2 x}+27 x^{3}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.491 |
|
\[
{}y^{\prime \prime }-3 y = {\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.568 |
|
\[
{}y^{\prime \prime \prime }+y^{\prime } = \sin \left (x \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
0.427 |
|
\[
{}y^{\prime \prime }+4 y = \tan \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.936 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-x} \ln \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.687 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-3 y = 64 x \,{\mathrm e}^{-x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.560 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+5 y = {\mathrm e}^{-x} \sec \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.839 |
|
\[
{}2 y^{\prime \prime }+3 y^{\prime }+y = {\mathrm e}^{-3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.424 |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = \frac {1}{1+{\mathrm e}^{-x}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.562 |
|
\[
{}y^{\prime \prime }+y = \sec \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.682 |
|
\[
{}y^{\prime \prime }+y = \cot \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.923 |
|
\[
{}y^{\prime \prime }+y = \cot \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.225 |
|
\[
{}y^{\prime \prime }+y = x \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.730 |
|
\[
{}y^{\prime \prime }+y = \tan \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.795 |
|
\[
{}y^{\prime \prime }+y = \sec \left (x \right ) \tan \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.833 |
|
\[
{}y^{\prime \prime }+y = \sec \left (x \right ) \csc \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.944 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = 2 x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.557 |
|
\[
{}y^{\prime \prime }-y^{\prime }-6 y = {\mathrm e}^{-x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.404 |
|
\[
{}\left (x^{2}-1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = \left (x^{2}-1\right )^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.977 |
|