2.2.65 Problems 6401 to 6500

Table 2.131: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

6401

\[ {}y^{\prime }+y = \left (x +1\right )^{2} \]
i.c.

[[_linear, ‘class A‘]]

1.277

6402

\[ {}x^{2} y^{\prime }+2 x y = \sinh \left (x \right ) \]
i.c.

[_linear]

1.484

6403

\[ {}y^{\prime }+\frac {y}{1-x}+2 x -x^{2} = 0 \]

[_linear]

1.104

6404

\[ {}y^{\prime }+\frac {y}{1-x}+x -x^{2} = 0 \]

[_linear]

1.001

6405

\[ {}\left (x^{2}+1\right ) y^{\prime } = x y+1 \]

[_linear]

2.100

6406

\[ {}y^{\prime }+x y = x y^{2} \]

[_separable]

1.767

6407

\[ {}3 x y^{\prime }+y+x^{2} y^{4} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2.921

6408

\[ {}x \left (x +1\right )^{2} y^{\prime \prime }+\left (-x^{2}+1\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.941

6409

\[ {}x \left (1-x \right ) y^{\prime \prime }+2 \left (-2 x +1\right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.172

6410

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.972

6411

\[ {}x y^{\prime \prime }+\frac {y^{\prime }}{2}+2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.462

6412

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

1.195

6413

\[ {}2 x y^{\prime \prime }-y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler]]

1.188

6414

\[ {}x y^{\prime \prime }+x y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.235

6415

\[ {}x \left (x -1\right )^{2} y^{\prime \prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.967

6416

\[ {}y^{\prime }-\frac {2 y}{x}-x^{2} = 0 \]

[_linear]

1.235

6417

\[ {}y^{\prime }+\frac {2 y}{x}-x^{3} = 0 \]

[_linear]

1.337

6418

\[ {}x y^{\prime \prime }+\left (1-x \right ) y^{\prime }+m y = 0 \]

[_Laguerre]

0.645

6419

\[ {}x y^{\prime } = x^{2}+2 x -3 \]

[_quadrature]

0.356

6420

\[ {}\left (x +1\right )^{2} y^{\prime } = 1+y^{2} \]

[_separable]

2.036

6421

\[ {}y^{\prime }+2 y = {\mathrm e}^{3 x} \]

[[_linear, ‘class A‘]]

1.049

6422

\[ {}-y+x y^{\prime } = x^{2} \]

[_linear]

1.172

6423

\[ {}x^{2} y^{\prime } = x^{3} \sin \left (3 x \right )+4 \]

[_quadrature]

0.563

6424

\[ {}x \cos \left (y\right ) y^{\prime }-\sin \left (y\right ) = 0 \]

[_separable]

3.610

6425

\[ {}\left (x^{3}+x y^{2}\right ) y^{\prime } = 2 y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

74.500

6426

\[ {}\left (x^{2}-1\right ) y^{\prime }+2 x y = x \]

[_separable]

1.250

6427

\[ {}y^{\prime }+y \tanh \left (x \right ) = 2 \sinh \left (x \right ) \]

[_linear]

1.705

6428

\[ {}x y^{\prime }-2 y = x^{3} \cos \left (x \right ) \]

[_linear]

1.591

6429

\[ {}y^{\prime }+\frac {y}{x} = y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2.685

6430

\[ {}x y^{\prime }+3 y = y^{2} x^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1.495

6431

\[ {}x \left (-3+y\right ) y^{\prime } = 4 y \]

[_separable]

1.786

6432

\[ {}\left (x^{3}+1\right ) y^{\prime } = x^{2} y \]
i.c.

[_separable]

2.177

6433

\[ {}x^{3}+\left (1+y\right )^{2} y^{\prime } = 0 \]

[_separable]

1.643

6434

\[ {}\cos \left (y\right )+\left (1+{\mathrm e}^{-x}\right ) \sin \left (y\right ) y^{\prime } = 0 \]
i.c.

[_separable]

2.758

6435

\[ {}x^{2} \left (1+y\right )+y^{2} \left (x -1\right ) y^{\prime } = 0 \]

[_separable]

1.358

6436

\[ {}\left (2 y-x \right ) y^{\prime } = 2 x +y \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.380

6437

\[ {}x y+y^{2}+\left (x^{2}-x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3.381

6438

\[ {}x^{3}+y^{3} = 3 x y^{2} y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

9.591

6439

\[ {}y-3 x +\left (4 y+3 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5.276

6440

\[ {}\left (x^{3}+3 x y^{2}\right ) y^{\prime } = y^{3}+3 x^{2} y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

45.891

6441

\[ {}-y+x y^{\prime } = x^{3}+3 x^{2}-2 x \]

[_linear]

0.173

6442

\[ {}y^{\prime }+y \tan \left (x \right ) = \sin \left (x \right ) \]

[_linear]

0.236

6443

\[ {}-y+x y^{\prime } = x^{3} \cos \left (x \right ) \]
i.c.

[_linear]

0.364

6444

\[ {}\left (x^{2}+1\right ) y^{\prime }+3 x y = 5 x \]
i.c.

[_separable]

0.585

6445

\[ {}y^{\prime }+y \cot \left (x \right ) = 5 \,{\mathrm e}^{\cos \left (x \right )} \]
i.c.

[_linear]

0.375

6446

\[ {}\left (3 x +3 y-4\right ) y^{\prime } = -x -y \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.261

6447

\[ {}x -x y^{2} = \left (x +x^{2} y\right ) y^{\prime } \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

2.816

6448

\[ {}x -y-1+\left (4 y+x -1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.878

6449

\[ {}3 y-7 x +7+\left (7 y-3 x +3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.237

6450

\[ {}y \left (x y+1\right )+x \left (1+x y+y^{2} x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

1.610

6451

\[ {}y^{\prime }+y = x y^{3} \]

[_Bernoulli]

0.416

6452

\[ {}y^{\prime }+y = y^{4} {\mathrm e}^{x} \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

0.325

6453

\[ {}2 y^{\prime }+y = y^{3} \left (x -1\right ) \]

[_Bernoulli]

0.411

6454

\[ {}y^{\prime }-2 y \tan \left (x \right ) = y^{2} \tan \left (x \right )^{2} \]

[_Bernoulli]

0.342

6455

\[ {}y^{\prime }+y \tan \left (x \right ) = y^{3} \sec \left (x \right )^{4} \]

[_Bernoulli]

0.445

6456

\[ {}\left (-x^{2}+1\right ) y^{\prime } = x y+1 \]

[_linear]

1.102

6457

\[ {}x y y^{\prime }-\left (x +1\right ) \sqrt {y-1} = 0 \]

[_separable]

1.637

6458

\[ {}x^{2}-2 x y+5 y^{2} = \left (x^{2}+2 x y+y^{2}\right ) y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6.234

6459

\[ {}y^{\prime }-y \cot \left (x \right ) = y^{2} \sec \left (x \right )^{2} \]
i.c.

[_Bernoulli]

2.602

6460

\[ {}y+\left (x^{2}-4 x \right ) y^{\prime } = 0 \]

[_separable]

1.388

6461

\[ {}y^{\prime }-y \tan \left (x \right ) = \cos \left (x \right )-2 x \sin \left (x \right ) \]
i.c.

[_linear]

2.458

6462

\[ {}y^{\prime } = \frac {2 x y+y^{2}}{x^{2}+2 x y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

73.601

6463

\[ {}\left (x^{2}+1\right ) y^{\prime } = x \left (1+y\right ) \]

[_separable]

1.185

6464

\[ {}x y^{\prime }+2 y = 3 x -1 \]
i.c.

[_linear]

1.901

6465

\[ {}x^{2} y^{\prime } = y^{2}-x y y^{\prime } \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

8.902

6466

\[ {}y^{\prime } = {\mathrm e}^{-2 y+3 x} \]
i.c.

[_separable]

3.610

6467

\[ {}y^{\prime }+\frac {y}{x} = \sin \left (2 x \right ) \]
i.c.

[_linear]

1.728

6468

\[ {}y^{2}+x^{2} y^{\prime } = x y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

37.135

6469

\[ {}2 x y y^{\prime } = x^{2}-y^{2} \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

3.732

6470

\[ {}y^{\prime } = \frac {x -2 y+1}{2 x -4 y} \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.959

6471

\[ {}\left (-x^{3}+1\right ) y^{\prime }+x^{2} y = x^{2} \left (-x^{3}+1\right ) \]

[_linear]

2.482

6472

\[ {}y^{\prime }+\frac {y}{x} = \sin \left (x \right ) \]
i.c.

[_linear]

1.462

6473

\[ {}y^{\prime }+x +x y^{2} = 0 \]
i.c.

[_separable]

2.459

6474

\[ {}y^{\prime }+\left (\frac {1}{x}-\frac {2 x}{-x^{2}+1}\right ) y = \frac {1}{-x^{2}+1} \]

[_linear]

1.198

6475

\[ {}x y+\left (x^{2}+1\right ) y^{\prime } = \left (x^{2}+1\right )^{{3}/{2}} \]

[_linear]

1.612

6476

\[ {}x \left (1+y^{2}\right )-y \left (x^{2}+1\right ) y^{\prime } = 0 \]

[_separable]

3.285

6477

\[ {}\frac {r \tan \left (\theta \right ) r^{\prime }}{a^{2}-r^{2}} = 1 \]
i.c.

[_separable]

2.386

6478

\[ {}y^{\prime }+y \cot \left (x \right ) = \cos \left (x \right ) \]
i.c.

[_linear]

1.944

6479

\[ {}y^{\prime }+\frac {y}{x} = x y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1.660

6480

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 8 \]

[[_2nd_order, _missing_x]]

0.957

6481

\[ {}y^{\prime \prime }-4 y = 10 \,{\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

1.043

6482

\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-2 x} \]

[[_2nd_order, _with_linear_symmetries]]

0.996

6483

\[ {}y^{\prime \prime }+25 y = 5 x^{2}+x \]

[[_2nd_order, _with_linear_symmetries]]

3.100

6484

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 4 \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.291

6485

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 2 \,{\mathrm e}^{-2 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

3.294

6486

\[ {}3 y^{\prime \prime }-2 y^{\prime }-y = 2 x -3 \]

[[_2nd_order, _with_linear_symmetries]]

1.140

6487

\[ {}y^{\prime \prime }-6 y^{\prime }+8 y = 8 \,{\mathrm e}^{4 x} \]

[[_2nd_order, _with_linear_symmetries]]

1.055

6488

\[ {}2 y^{\prime \prime }-7 y^{\prime }-4 y = {\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

1.034

6489

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 54 x +18 \]

[[_2nd_order, _with_linear_symmetries]]

1.053

6490

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 100 \sin \left (4 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.422

6491

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 4 \sinh \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.387

6492

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 2 \cosh \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.290

6493

\[ {}y^{\prime \prime }-y^{\prime }+10 y = 20-{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

21.645

6494

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 2 \cos \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.701

6495

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = x +{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

1.118

6496

\[ {}y^{\prime \prime }-2 y^{\prime }+3 y = x^{2}-1 \]

[[_2nd_order, _with_linear_symmetries]]

19.063

6497

\[ {}y^{\prime \prime }-9 y = {\mathrm e}^{3 x}+\sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.838

6498

\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = {\mathrm e}^{-3 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.661

6499

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 6 \sin \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

8.183

6500

\[ {}x^{\prime \prime }-3 x^{\prime }+2 x = \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.593