2.2.66 Problems 6501 to 6600

Table 2.133: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

6501

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 3 \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.786

6502

\[ {}y^{\prime \prime }+6 y^{\prime }+10 y = 50 x \]

[[_2nd_order, _with_linear_symmetries]]

8.180

6503

\[ {}x^{\prime \prime }+2 x^{\prime }+2 x = 85 \sin \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

9.493

6504

\[ {}y^{\prime \prime } = 3 \sin \left (x \right )-4 y \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2.672

6505

\[ {}\frac {x^{\prime \prime }}{2} = -48 x \]
i.c.

[[_2nd_order, _missing_x]]

2.451

6506

\[ {}x^{\prime \prime }+5 x^{\prime }+6 x = \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.766

6507

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 4 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1.072

6508

\[ {}y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

1.026

6509

\[ {}y^{\prime \prime }-y^{\prime }-2 y = \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.415

6510

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 2 \sin \left (\frac {t}{2}\right )-\cos \left (\frac {t}{2}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

53.820

6511

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 64 \,{\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

11.555

6512

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 50 t^{3}-36 t^{2}-63 t +18 \]

[[_2nd_order, _linear, _nonhomogeneous]]

16.074

6513

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 2 x \,{\mathrm e}^{-x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.125

6514

\[ {}y^{\prime \prime } = 9 x^{2}+2 x -1 \]

[[_2nd_order, _quadrature]]

1.325

6515

\[ {}y^{\prime \prime }-5 y = 2 \,{\mathrm e}^{5 x} \]

[[_2nd_order, _with_linear_symmetries]]

1.244

6516

\[ {}y^{\prime }-5 y = \left (x -1\right ) \sin \left (x \right )+\left (x +1\right ) \cos \left (x \right ) \]

[[_linear, ‘class A‘]]

1.864

6517

\[ {}y^{\prime }-5 y = 3 \,{\mathrm e}^{x}-2 x +1 \]

[[_linear, ‘class A‘]]

1.237

6518

\[ {}y^{\prime }-5 y = {\mathrm e}^{x} x^{2}-x \,{\mathrm e}^{5 x} \]

[[_linear, ‘class A‘]]

1.520

6519

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x^{2}-1 \]

[[_2nd_order, _with_linear_symmetries]]

1.074

6520

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 4 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

1.012

6521

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 4 \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.329

6522

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 3 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

1.014

6523

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.024

6524

\[ {}y^{\prime }-y = {\mathrm e}^{x} \]

[[_linear, ‘class A‘]]

0.895

6525

\[ {}y^{\prime }-y = x \,{\mathrm e}^{2 x}+1 \]

[[_linear, ‘class A‘]]

1.177

6526

\[ {}y^{\prime }-y = \sin \left (x \right )+\cos \left (2 x \right ) \]

[[_linear, ‘class A‘]]

1.903

6527

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 1+{\mathrm e}^{x} \]

[[_3rd_order, _with_linear_symmetries]]

0.135

6528

\[ {}y^{\prime \prime \prime }+y^{\prime } = \sec \left (x \right ) \]

[[_3rd_order, _missing_y]]

0.556

6529

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = \frac {{\mathrm e}^{x}}{1+{\mathrm e}^{-x}} \]

[[_3rd_order, _missing_y]]

0.247

6530

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.118

6531

\[ {}y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

0.986

6532

\[ {}x^{\prime \prime }+4 x = \sin \left (2 t \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.502

6533

\[ {}t^{2} N^{\prime \prime }-2 t N^{\prime }+2 N = t \ln \left (t \right ) \]

[[_2nd_order, _with_linear_symmetries]]

2.122

6534

\[ {}y^{\prime }+\frac {4 y}{x} = x^{4} \]

[_linear]

1.336

6535

\[ {}y^{\prime \prime \prime \prime } = 5 x \]

[[_high_order, _quadrature]]

0.112

6536

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{x^{5}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.087

6537

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.736

6538

\[ {}y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

1.001

6539

\[ {}y^{\prime \prime }-60 y^{\prime }-900 y = 5 \,{\mathrm e}^{10 x} \]

[[_2nd_order, _with_linear_symmetries]]

1.423

6540

\[ {}y^{\prime \prime }-7 y^{\prime } = -3 \]

[[_2nd_order, _missing_x]]

1.534

6541

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = \ln \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.215

6542

\[ {}x^{2} y^{\prime \prime }-x y^{\prime } = x^{3} {\mathrm e}^{x} \]

[[_2nd_order, _missing_y]]

1.026

6543

\[ {}y^{\prime }-\frac {y}{x} = x^{2} \]

[_linear]

1.210

6544

\[ {}y^{\prime }+2 y = 0 \]
i.c.

[_quadrature]

0.274

6545

\[ {}y^{\prime }+2 y = 2 \]
i.c.

[_quadrature]

0.258

6546

\[ {}y^{\prime }+2 y = {\mathrm e}^{x} \]
i.c.

[[_linear, ‘class A‘]]

0.296

6547

\[ {}y^{\prime \prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.216

6548

\[ {}y^{\prime \prime }-y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.304

6549

\[ {}y^{\prime \prime }-y = {\mathrm e}^{x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.279

6550

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = \sin \left (2 x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.434

6551

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.328

6552

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.469

6553

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 3 \,{\mathrm e}^{-2 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.356

6554

\[ {}y^{\prime \prime }+5 y^{\prime }-3 y = \operatorname {Heaviside}\left (x -4\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.096

6555

\[ {}y^{\prime \prime \prime }-y = 5 \]
i.c.

[[_3rd_order, _missing_x]]

0.470

6556

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]
i.c.

[[_high_order, _missing_x]]

0.351

6557

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = {\mathrm e}^{x} x^{2} \]
i.c.

[[_3rd_order, _linear, _nonhomogeneous]]

0.303

6558

\[ {}x^{\prime \prime }+4 x^{\prime }+4 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.251

6559

\[ {}q^{\prime \prime }+9 q^{\prime }+14 q = \frac {\sin \left (t \right )}{2} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.342

6560

\[ {}\left (x +1\right ) y^{\prime \prime }+\frac {y^{\prime }}{x}+x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.784

6561

\[ {}x^{3} y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

0.108

6562

\[ {}y^{\prime \prime }+x y = 0 \]

[[_Emden, _Fowler]]

0.516

6563

\[ {}y^{\prime \prime }-2 x y^{\prime }-2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.560

6564

\[ {}y^{\prime \prime }+x^{2} y^{\prime }+2 x y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.557

6565

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.535

6566

\[ {}y^{\prime \prime }+2 x^{2} y = 0 \]

[[_Emden, _Fowler]]

0.475

6567

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+x y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.579

6568

\[ {}y^{\prime \prime }-x y = 0 \]

[[_Emden, _Fowler]]

0.509

6569

\[ {}y^{\prime \prime }-2 x y^{\prime }+x^{2} y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.523

6570

\[ {}x y^{\prime } = 2 y \]

[_separable]

1.581

6571

\[ {}y y^{\prime }+x = 0 \]

[_separable]

2.796

6572

\[ {}y = x y^{\prime }+{y^{\prime }}^{4} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

2.321

6573

\[ {}2 x^{3} y^{\prime } = y \left (y^{2}+3 x^{2}\right ) \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

80.734

6574

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.827

6575

\[ {}\left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.260

6576

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

1.938

6577

\[ {}y^{\prime \prime }-y = 4-x \]

[[_2nd_order, _with_linear_symmetries]]

1.032

6578

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

0.793

6579

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 2 \,{\mathrm e}^{x} \left (1-x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.096

6580

\[ {}4 y+x y^{\prime } = 0 \]

[_separable]

1.621

6581

\[ {}1+2 y+\left (-x^{2}+4\right ) y^{\prime } = 0 \]

[_separable]

1.373

6582

\[ {}y^{2}-x^{2} y^{\prime } = 0 \]

[_separable]

2.227

6583

\[ {}1+y-\left (x +1\right ) y^{\prime } = 0 \]

[_separable]

1.428

6584

\[ {}x y^{2}+y+\left (x^{2} y-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.579

6585

\[ {}x \sin \left (\frac {y}{x}\right )-y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

3.709

6586

\[ {}y^{2} \left (x^{2}+2\right )+\left (x^{3}+y^{3}\right ) \left (y-x y^{\prime }\right ) = 0 \]

[[_homogeneous, ‘class D‘], _rational]

1.708

6587

\[ {}y \sqrt {y^{2}+x^{2}}-x \left (x +\sqrt {y^{2}+x^{2}}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _dAlembert]

4.599

6588

\[ {}x +y+1+\left (2 x +2 y+1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.268

6589

\[ {}1+2 y-\left (4-x \right ) y^{\prime } = 0 \]

[_separable]

1.536

6590

\[ {}x y+\left (x^{2}+1\right ) y^{\prime } = 0 \]

[_separable]

1.300

6591

\[ {}x +2 y+\left (3 y+2 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.953

6592

\[ {}2 x y^{\prime }-2 y = \sqrt {4 y^{2}+x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6.655

6593

\[ {}3 y-7 x +7+\left (7 y-3 x +3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.199

6594

\[ {}x y y^{\prime } = \left (1+y\right ) \left (1-x \right ) \]

[_separable]

1.177

6595

\[ {}y^{2}-x^{2}+x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4.335

6596

\[ {}y \left (1+2 x y\right )+x \left (1-x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.597

6597

\[ {}1+\left (-x^{2}+1\right ) \cot \left (y\right ) y^{\prime } = 0 \]

[_separable]

2.002

6598

\[ {}x^{3}+y^{3}+3 x y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

9.382

6599

\[ {}3 x +2 y+1-\left (3 x +2 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.405

6600

\[ {}x y^{\prime }+2 y = 0 \]
i.c.

[_separable]

2.189