2.2.64 Problems 6301 to 6400

Table 2.129: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

6301

\[ {}y^{\prime } = \frac {y}{x}+2 x +1 \]

[_linear]

1.004

6302

\[ {}r^{\prime }+r \tan \left (\theta \right ) = \sec \left (\theta \right ) \]

[_linear]

1.419

6303

\[ {}x y^{\prime }+2 y = \frac {1}{x^{3}} \]

[_linear]

1.225

6304

\[ {}t +y+1-y^{\prime } = 0 \]

[[_linear, ‘class A‘]]

0.966

6305

\[ {}y^{\prime } = x^{2} {\mathrm e}^{-4 x}-4 y \]

[[_linear, ‘class A‘]]

1.464

6306

\[ {}y x^{\prime }+2 x = 5 y^{3} \]

[_linear]

1.337

6307

\[ {}x y^{\prime }+3 y+3 x^{2} = \frac {\sin \left (x \right )}{x} \]

[_linear]

1.617

6308

\[ {}\left (x^{2}+1\right ) y^{\prime }+x y-x = 0 \]

[_separable]

1.246

6309

\[ {}\left (-x^{2}+1\right ) y^{\prime }-x^{2} y = \left (x +1\right ) \sqrt {-x^{2}+1} \]

[_linear]

2.393

6310

\[ {}y^{\prime }-\frac {y}{x} = x \,{\mathrm e}^{x} \]
i.c.

[_linear]

1.345

6311

\[ {}y^{\prime }+4 y-{\mathrm e}^{-x} = 0 \]
i.c.

[[_linear, ‘class A‘]]

1.389

6312

\[ {}t^{2} x^{\prime }+3 x t = t^{4} \ln \left (t \right )+1 \]
i.c.

[_linear]

1.492

6313

\[ {}y^{\prime }+\frac {3 y}{x}+2 = 3 x \]
i.c.

[_linear]

1.451

6314

\[ {}\cos \left (x \right ) y^{\prime }+y \sin \left (x \right ) = 2 x \cos \left (x \right )^{2} \]
i.c.

[_linear]

2.947

6315

\[ {}y^{\prime } \sin \left (x \right )+y \cos \left (x \right ) = x \sin \left (x \right ) \]
i.c.

[_linear]

2.340

6316

\[ {}y^{\prime }+y \sqrt {1+\sin \left (x \right )^{2}} = x \]
i.c.

[_linear]

15.873

6317

\[ {}\left ({\mathrm e}^{4 y}+2 x \right ) y^{\prime }-1 = 0 \]

[[_1st_order, _with_exponential_symmetries]]

4.123

6318

\[ {}y^{\prime }+2 y = \frac {x}{y^{2}} \]

[_rational, _Bernoulli]

1.399

6319

\[ {}y^{\prime }+\frac {3 y}{x} = x^{2} \]

[_linear]

1.345

6320

\[ {}x^{\prime } = \alpha -\beta \cos \left (\frac {\pi t}{12}\right )-k x \]
i.c.

[[_linear, ‘class A‘]]

1.832

6321

\[ {}u^{\prime } = \alpha \left (1-u\right )-\beta u \]

[_quadrature]

0.914

6322

\[ {}x^{2} y+x^{4} \cos \left (x \right )-x^{3} y^{\prime } = 0 \]

[_linear]

1.260

6323

\[ {}x^{{10}/{3}}-2 y+x y^{\prime } = 0 \]

[_linear]

1.358

6324

\[ {}\sqrt {-2 y-y^{2}}+\left (-x^{2}+2 x +3\right ) y^{\prime } = 0 \]

[_separable]

2.940

6325

\[ {}y \,{\mathrm e}^{x y}+2 x +\left (x \,{\mathrm e}^{x y}-2 y\right ) y^{\prime } = 0 \]

[_exact]

0.283

6326

\[ {}y^{\prime }+x y = 0 \]

[_separable]

0.220

6327

\[ {}y^{2}+\left (2 x y+\cos \left (y\right )\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

0.249

6328

\[ {}2 x +y \cos \left (x y\right )+\left (x \cos \left (x y\right )-2 y\right ) y^{\prime } = 0 \]

[_exact]

0.295

6329

\[ {}\theta r^{\prime }+3 r-\theta -1 = 0 \]

[_linear]

0.255

6330

\[ {}2 x y+3+\left (x^{2}-1\right ) y^{\prime } = 0 \]

[_linear]

0.193

6331

\[ {}2 x +y+\left (x -2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

0.316

6332

\[ {}{\mathrm e}^{x} \sin \left (y\right )-3 x^{2}+\left ({\mathrm e}^{x} \cos \left (y\right )+\frac {1}{3 y^{{2}/{3}}}\right ) y^{\prime } = 0 \]

[_exact]

0.390

6333

\[ {}\cos \left (x \right ) \cos \left (y\right )+2 x -\left (\sin \left (x \right ) \sin \left (y\right )+2 y\right ) y^{\prime } = 0 \]

[_exact]

6.810

6334

\[ {}{\mathrm e}^{t} \left (-t +y\right )+\left (1+{\mathrm e}^{t}\right ) y^{\prime } = 0 \]

[_linear]

0.221

6335

\[ {}\frac {t y^{\prime }}{y}+1+\ln \left (y\right ) = 0 \]

[_separable]

0.287

6336

\[ {}\cos \left (\theta \right ) r^{\prime }-r \sin \left (\theta \right )+{\mathrm e}^{\theta } = 0 \]

[_linear]

0.225

6337

\[ {}y \,{\mathrm e}^{x y}-\frac {1}{y}+\left (x \,{\mathrm e}^{x y}+\frac {x}{y^{2}}\right ) y^{\prime } = 0 \]

[_exact]

0.281

6338

\[ {}\frac {1}{y}-\left (3 y-\frac {x}{y^{2}}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

0.203

6339

\[ {}2 x +y^{2}-\cos \left (x +y\right )+\left (2 x y-\cos \left (x +y\right )-{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[_exact]

36.481

6340

\[ {}y^{\prime } = \frac {{\mathrm e}^{x +y}}{y-1} \]

[_separable]

1.474

6341

\[ {}y^{\prime }-4 y = 32 x^{2} \]

[[_linear, ‘class A‘]]

1.036

6342

\[ {}\left (x^{2}-\frac {2}{y^{3}}\right ) y^{\prime }+2 x y-3 x^{2} = 0 \]

[_exact, _rational]

2.217

6343

\[ {}y^{\prime }+\frac {3 y}{x} = x^{2}-4 x +3 \]

[_linear]

1.599

6344

\[ {}2 x y^{3}-\left (-x^{2}+1\right ) y^{\prime } = 0 \]

[_separable]

2.411

6345

\[ {}y^{2} t^{3}+\frac {t^{4} y^{\prime }}{y^{6}} = 0 \]

[_separable]

1.424

6346

\[ {}\left (x +1\right ) y^{\prime \prime }-x^{2} y^{\prime }+3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.642

6347

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime }-x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.170

6348

\[ {}\left (x^{2}-2\right ) y^{\prime \prime }+2 y^{\prime }+y \sin \left (x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.739

6349

\[ {}\left (x^{2}+x \right ) y^{\prime \prime }+3 y^{\prime }-6 x y = 0 \]

[[_Emden, _Fowler]]

1.307

6350

\[ {}\left (t^{2}-t -2\right ) x^{\prime \prime }+\left (t +1\right ) x^{\prime }-\left (t -2\right ) x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.695

6351

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }+\left (x^{2}-2 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.652

6352

\[ {}\sin \left (x \right ) y^{\prime \prime }+y \cos \left (x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.589

6353

\[ {}{\mathrm e}^{x} y^{\prime \prime }-\left (x^{2}-1\right ) y^{\prime }+2 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.012

6354

\[ {}\sin \left (x \right ) y^{\prime \prime }-y \ln \left (x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4.825

6355

\[ {}y^{\prime }+\left (x +2\right ) y = 0 \]

[_separable]

0.534

6356

\[ {}y^{\prime }-y = 0 \]

[_quadrature]

0.455

6357

\[ {}z^{\prime }-x^{2} z = 0 \]

[_separable]

0.496

6358

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

0.576

6359

\[ {}y^{\prime \prime }+\left (x -1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.552

6360

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.636

6361

\[ {}w^{\prime \prime }-x^{2} w^{\prime }+w = 0 \]

[_Lienard]

0.593

6362

\[ {}\left (2 x -3\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.592

6363

\[ {}\left (x +1\right ) y^{\prime \prime }-3 x y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.693

6364

\[ {}y^{\prime \prime }-x y^{\prime }-3 y = 0 \]

[_Hermite]

0.638

6365

\[ {}\left (x^{2}+x +1\right ) y^{\prime \prime }-3 y = 0 \]

[[_Emden, _Fowler]]

0.678

6366

\[ {}\left (x^{2}-5 x +6\right ) y^{\prime \prime }-3 x y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.666

6367

\[ {}y^{\prime \prime }-\tan \left (x \right ) y^{\prime }+y = 0 \]

[_Lienard]

1.826

6368

\[ {}\left (x^{3}+1\right ) y^{\prime \prime }-x y^{\prime }+2 x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.807

6369

\[ {}y^{\prime }+2 \left (x -1\right ) y = 0 \]

[_separable]

0.586

6370

\[ {}y^{\prime }-2 x y = 0 \]

[_separable]

0.612

6371

\[ {}\left (x^{2}-2 x \right ) y^{\prime \prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.622

6372

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler]]

0.661

6373

\[ {}x^{2} y^{\prime \prime }-y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.686

6374

\[ {}y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.654

6375

\[ {}x^{\prime }+\sin \left (t \right ) x = 0 \]
i.c.

[_separable]

0.683

6376

\[ {}y^{\prime }-y \,{\mathrm e}^{x} = 0 \]
i.c.

[_separable]

0.661

6377

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-{\mathrm e}^{x} y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.947

6378

\[ {}y^{\prime \prime }+t y^{\prime }+{\mathrm e}^{t} y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.732

6379

\[ {}y^{\prime \prime }-{\mathrm e}^{2 x} y^{\prime }+y \cos \left (x \right ) = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.143

6380

\[ {}y^{\prime }-x y = \sin \left (x \right ) \]

[_linear]

0.585

6381

\[ {}w^{\prime }+w x = {\mathrm e}^{x} \]

[_linear]

0.605

6382

\[ {}z^{\prime \prime }+x z^{\prime }+z = x^{2}+2 x +1 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.561

6383

\[ {}y^{\prime \prime }-2 x y^{\prime }+3 y = x^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.536

6384

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+y = \cos \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

0.674

6385

\[ {}y^{\prime \prime }-x y^{\prime }+2 y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.622

6386

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime }+y = \tan \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.501

6387

\[ {}y^{\prime \prime }-y \sin \left (x \right ) = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.721

6388

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+n \left (n +1\right ) y = 0 \]

[_Gegenbauer]

0.734

6389

\[ {}x^{\prime \prime }-\omega ^{2} x = 0 \]

[[_2nd_order, _missing_x]]

3.242

6390

\[ {}x^{\prime \prime \prime }-x^{\prime \prime }+x^{\prime }-x = 0 \]

[[_3rd_order, _missing_x]]

0.072

6391

\[ {}x^{\prime \prime }+42 x^{\prime }+x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.413

6392

\[ {}x^{\prime \prime \prime \prime }+x = 0 \]

[[_high_order, _missing_x]]

0.086

6393

\[ {}x^{\prime \prime \prime }-3 x^{\prime \prime }-9 x^{\prime }-5 x = 0 \]

[[_3rd_order, _missing_x]]

0.073

6394

\[ {}x^{\prime \prime }+2 \gamma x^{\prime }+\omega _{0} x = F \cos \left (\omega t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.457

6395

\[ {}y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{2 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.716

6396

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 \cos \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.641

6397

\[ {}y^{\prime \prime }+16 y = 16 \cos \left (4 x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

4.306

6398

\[ {}y^{\prime \prime }-y = \cosh \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2.792

6399

\[ {}y^{\prime }-y = {\mathrm e}^{2 x} \]

[[_linear, ‘class A‘]]

1.025

6400

\[ {}x^{2} y^{\prime }+2 x y-x +1 = 0 \]
i.c.

[_linear]

1.334