2.2.63 Problems 6201 to 6300

Table 2.127: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

6201

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 2 x \]

[[_2nd_order, _with_linear_symmetries]]

3.014

6202

\[ {}x^{2} \left (2-x \right ) y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.334

6203

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.317

6204

\[ {}x y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.331

6205

\[ {}3 x y^{\prime \prime }-2 \left (3 x -1\right ) y^{\prime }+\left (3 x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.348

6206

\[ {}x^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.345

6207

\[ {}x \left (x +1\right ) y^{\prime \prime }-\left (x -1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.340

6208

\[ {}x^{2} y^{\prime }-x y = \frac {1}{x} \]

[_linear]

1.296

6209

\[ {}x \ln \left (y\right ) y^{\prime }-y \ln \left (x \right ) = 0 \]

[_separable]

1.571

6210

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

0.069

6211

\[ {}r^{\prime \prime }-6 r^{\prime }+9 r = 0 \]

[[_2nd_order, _missing_x]]

0.840

6212

\[ {}2 x -y \sin \left (2 x \right ) = \left (\sin \left (x \right )^{2}-2 y\right ) y^{\prime } \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

3.415

6213

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 10 \,{\mathrm e}^{x}+6 \,{\mathrm e}^{-x} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16.559

6214

\[ {}3 x^{3} y^{2} y^{\prime }-x^{2} y^{3} = 1 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2.670

6215

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = x \]

[[_2nd_order, _with_linear_symmetries]]

1.758

6216

\[ {}y^{\prime }-2 y-y^{2} {\mathrm e}^{3 x} = 0 \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

1.368

6217

\[ {}u \left (-v +1\right )+v^{2} \left (1-u\right ) u^{\prime } = 0 \]

[_separable]

1.450

6218

\[ {}y+2 x -x y^{\prime } = 0 \]

[_linear]

1.240

6219

\[ {}x y^{\prime \prime }+y^{\prime } = 4 x \]

[[_2nd_order, _missing_y]]

1.085

6220

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 26 \,{\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

7.002

6221

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 2 \,{\mathrm e}^{-2 x} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5.455

6222

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 6 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

1.043

6223

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = {\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

1.000

6224

\[ {}\left (2 x +y\right ) y^{\prime }-x +2 y = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.949

6225

\[ {}\left (x \cos \left (y\right )-{\mathrm e}^{-\sin \left (y\right )}\right ) y^{\prime }+1 = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

2.073

6226

\[ {}\sin \left (x \right )^{2} y^{\prime }+\sin \left (x \right )^{2}+\left (x +y\right ) \sin \left (2 x \right ) = 0 \]

[_linear]

4.275

6227

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 5 x +4 \,{\mathrm e}^{x} \left (1+\sin \left (2 x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

29.241

6228

\[ {}y^{\prime }+x y = \frac {x}{y} \]

[_separable]

1.568

6229

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+13 y^{\prime \prime }-18 y^{\prime }+36 y = 0 \]

[[_high_order, _missing_x]]

0.083

6230

\[ {}\sin \left (\theta \right ) \cos \left (\theta \right ) r^{\prime }-\sin \left (\theta \right )^{2} = r \cos \left (\theta \right )^{2} \]

[_linear]

2.898

6231

\[ {}x \left (y y^{\prime \prime }+{y^{\prime }}^{2}\right ) = y y^{\prime } \]

[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.757

6232

\[ {}3 x^{2} y+x^{3} y^{\prime } = 0 \]
i.c.

[_separable]

2.172

6233

\[ {}-y+x y^{\prime } = x^{2} \]
i.c.

[_linear]

1.487

6234

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 6 \]
i.c.

[[_2nd_order, _missing_x]]

1.557

6235

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2}+4 = 0 \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

2.838

6236

\[ {}x y^{\prime } = x y+y \]

[_separable]

0.487

6237

\[ {}x y^{\prime } = x y+y \]

[_separable]

1.111

6238

\[ {}y^{\prime } = 3 x^{2} y \]

[_separable]

0.560

6239

\[ {}y^{\prime } = 3 x^{2} y \]

[_separable]

1.175

6240

\[ {}x y^{\prime } = y \]

[_separable]

0.427

6241

\[ {}x y^{\prime } = y \]

[_separable]

1.220

6242

\[ {}y^{\prime \prime } = -4 y \]

[[_2nd_order, _missing_x]]

0.532

6243

\[ {}y^{\prime \prime } = -4 y \]

[[_2nd_order, _missing_x]]

1.983

6244

\[ {}y^{\prime \prime } = y \]

[[_2nd_order, _missing_x]]

0.500

6245

\[ {}y^{\prime \prime } = y \]

[[_2nd_order, _missing_x]]

1.945

6246

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.592

6247

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.844

6248

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+3 y = 0 \]

[[_Emden, _Fowler]]

0.777

6249

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+3 y = 0 \]

[[_Emden, _Fowler]]

1.243

6250

\[ {}\left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.942

6251

\[ {}\left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.148

6252

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.465

6253

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.216

6254

\[ {}y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.534

6255

\[ {}y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.692

6256

\[ {}y^{\prime }-\sin \left (x +y\right ) = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

2.217

6257

\[ {}y^{\prime } = 4 y^{2}-3 y+1 \]

[_quadrature]

1.079

6258

\[ {}s^{\prime } = t \ln \left (s^{2 t}\right )+8 t^{2} \]

[‘y=_G(x,y’)‘]

1.780

6259

\[ {}y^{\prime } = \frac {y \,{\mathrm e}^{x +y}}{x^{2}+2} \]

[_separable]

1.739

6260

\[ {}\left (x y^{2}+3 y^{2}\right ) y^{\prime }-2 x = 0 \]

[_separable]

1.648

6261

\[ {}s^{2}+s^{\prime } = \frac {s+1}{s t} \]

[_rational, [_Abel, ‘2nd type‘, ‘class C‘]]

0.920

6262

\[ {}x y^{\prime } = \frac {1}{y^{3}} \]

[_separable]

1.955

6263

\[ {}x^{\prime } = 3 x t^{2} \]

[_separable]

1.168

6264

\[ {}x^{\prime } = \frac {t \,{\mathrm e}^{-t -2 x}}{x} \]

[_separable]

1.386

6265

\[ {}y^{\prime } = \frac {x}{y^{2} \sqrt {x +1}} \]

[_separable]

1.889

6266

\[ {}x v^{\prime } = \frac {1-4 v^{2}}{3 v} \]

[_separable]

4.040

6267

\[ {}y^{\prime } = \frac {\sec \left (y\right )^{2}}{x^{2}+1} \]

[_separable]

2.275

6268

\[ {}y^{\prime } = 3 x^{2} \left (1+y^{2}\right )^{{3}/{2}} \]

[_separable]

100.783

6269

\[ {}x^{\prime }-x^{3} = x \]

[_quadrature]

3.894

6270

\[ {}x +x y^{2}+{\mathrm e}^{x^{2}} y y^{\prime } = 0 \]

[_separable]

2.143

6271

\[ {}\frac {y^{\prime }}{y}+y \,{\mathrm e}^{\cos \left (x \right )} \sin \left (x \right ) = 0 \]

[_separable]

2.036

6272

\[ {}y^{\prime } = \left (1+y^{2}\right ) \tan \left (x \right ) \]
i.c.

[_separable]

3.584

6273

\[ {}y^{\prime } = x^{3} \left (1-y\right ) \]
i.c.

[_separable]

1.402

6274

\[ {}\frac {y^{\prime }}{2} = \sqrt {1+y}\, \cos \left (x \right ) \]
i.c.

[_separable]

2.055

6275

\[ {}x^{2} y^{\prime } = \frac {4 x^{2}-x -2}{\left (x +1\right ) \left (1+y\right )} \]
i.c.

[_separable]

3.508

6276

\[ {}\frac {y^{\prime }}{\theta } = \frac {y \sin \left (\theta \right )}{y^{2}+1} \]
i.c.

[_separable]

3.580

6277

\[ {}x^{2}+2 y y^{\prime } = 0 \]
i.c.

[_separable]

5.270

6278

\[ {}y^{\prime } = 2 t \cos \left (y\right )^{2} \]
i.c.

[_separable]

1.615

6279

\[ {}y^{\prime } = 8 x^{3} {\mathrm e}^{-2 y} \]
i.c.

[_separable]

2.074

6280

\[ {}y^{\prime } = x^{2} \left (1+y\right ) \]
i.c.

[_separable]

1.457

6281

\[ {}\sqrt {y}+\left (x +1\right ) y^{\prime } = 0 \]
i.c.

[_separable]

2.656

6282

\[ {}y^{\prime } = {\mathrm e}^{x^{2}} \]
i.c.

[_quadrature]

0.522

6283

\[ {}y^{\prime } = \frac {{\mathrm e}^{x^{2}}}{y^{2}} \]
i.c.

[_separable]

2.783

6284

\[ {}y^{\prime } = \sqrt {\sin \left (x \right )+1}\, \left (1+y^{2}\right ) \]
i.c.

[_separable]

21.435

6285

\[ {}y^{\prime } = 2 y-2 t y \]
i.c.

[_separable]

1.695

6286

\[ {}y^{\prime } = y^{{1}/{3}} \]

[_quadrature]

1.563

6287

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

1.694

6288

\[ {}y^{\prime } = \left (x -3\right ) \left (1+y\right )^{{2}/{3}} \]

[_separable]

6.533

6289

\[ {}y^{\prime } = x y^{3} \]

[_separable]

2.168

6290

\[ {}y^{\prime } = x y^{3} \]
i.c.

[_separable]

3.638

6291

\[ {}y^{\prime } = x y^{3} \]
i.c.

[_separable]

3.972

6292

\[ {}y^{\prime } = x y^{3} \]
i.c.

[_separable]

4.011

6293

\[ {}y^{\prime } = y^{2}-3 y+2 \]
i.c.

[_quadrature]

1.675

6294

\[ {}x^{2} y^{\prime }+\sin \left (x \right )-y = 0 \]

[_linear]

1.910

6295

\[ {}x^{\prime }+x t = {\mathrm e}^{x} \]

[‘y=_G(x,y’)‘]

0.940

6296

\[ {}\left (t^{2}+1\right ) y^{\prime } = t y-y \]

[_separable]

1.492

6297

\[ {}3 t = {\mathrm e}^{t} y^{\prime }+y \ln \left (t \right ) \]

[_linear]

4.437

6298

\[ {}x x^{\prime }+x t^{2} = \sin \left (t \right ) \]

[[_Abel, ‘2nd type‘, ‘class A‘]]

2.306

6299

\[ {}3 r = r^{\prime }-\theta ^{3} \]

[[_linear, ‘class A‘]]

1.289

6300

\[ {}y^{\prime }-y-{\mathrm e}^{3 x} = 0 \]

[[_linear, ‘class A‘]]

1.029