2.4.14 second order change of variable on x method 1

Table 2.473: second order change of variable on x method 1

#

ODE

CAS classification

Solved?

227

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

230

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

244

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

248

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

262

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

315

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

316

\[ {}x^{2} y^{\prime \prime }+7 y^{\prime } x +25 y = 0 \]

[[_Emden, _Fowler]]

376

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 72 x^{5} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

377

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

378

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = x^{4} \]

[[_2nd_order, _with_linear_symmetries]]

379

\[ {}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +3 y = 8 x^{{4}/{3}} \]

[[_2nd_order, _with_linear_symmetries]]

380

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

516

\[ {}x y^{\prime \prime }-y^{\prime }+36 x^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

819

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

822

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

833

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

837

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

860

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

861

\[ {}x^{2} y^{\prime \prime }+7 y^{\prime } x +25 y = 0 \]

[[_Emden, _Fowler]]

902

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 72 x^{5} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

903

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

904

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = x^{4} \]

[[_2nd_order, _with_linear_symmetries]]

905

\[ {}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +3 y = 8 x^{{4}/{3}} \]

[[_2nd_order, _with_linear_symmetries]]

906

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

1293

\[ {}t^{2} y^{\prime \prime }+y^{\prime } t +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1294

\[ {}t^{2} y^{\prime \prime }+4 y^{\prime } t +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1295

\[ {}t^{2} y^{\prime \prime }+3 y^{\prime } t +\frac {5 y}{4} = 0 \]

[[_Emden, _Fowler]]

1297

\[ {}t^{2} y^{\prime \prime }-4 y^{\prime } t +6 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1298

\[ {}t^{2} y^{\prime \prime }-y^{\prime } t +5 y = 0 \]

[[_Emden, _Fowler]]

1300

\[ {}t^{2} y^{\prime \prime }+7 y^{\prime } t +10 y = 0 \]

[[_Emden, _Fowler]]

1301

\[ {}y^{\prime \prime }+y^{\prime } t +{\mathrm e}^{-t^{2}} y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1302

\[ {}t y^{\prime \prime }+\left (t^{2}-1\right ) y^{\prime }+t^{3} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1327

\[ {}t^{2} y^{\prime \prime }-3 y^{\prime } t +4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1328

\[ {}t^{2} y^{\prime \prime }+2 y^{\prime } t +\frac {y}{4} = 0 \]

[[_Emden, _Fowler]]

1329

\[ {}2 t^{2} y^{\prime \prime }-5 y^{\prime } t +5 y = 0 \]

[[_Emden, _Fowler]]

1330

\[ {}t^{2} y^{\prime \prime }+3 y^{\prime } t +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1331

\[ {}4 t^{2} y^{\prime \prime }-8 y^{\prime } t +9 y = 0 \]

[[_Emden, _Fowler]]

1332

\[ {}t^{2} y^{\prime \prime }+5 y^{\prime } t +13 y = 0 \]

[[_Emden, _Fowler]]

1351

\[ {}t^{2} y^{\prime \prime }-2 y^{\prime } t +2 y = 4 t^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1352

\[ {}t^{2} y^{\prime \prime }+7 y^{\prime } t +5 y = t \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1746

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1747

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_Emden, _Fowler]]

1811

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 2 x^{2}+2 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1815

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = x^{{5}/{2}} \]

[[_2nd_order, _with_linear_symmetries]]

1816

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y = 2 x^{4} \sin \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

1822

\[ {}x y^{\prime \prime }-y^{\prime }-4 x^{3} y = 8 x^{5} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2385

\[ {}t^{2} y^{\prime \prime }+y^{\prime } t +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2386

\[ {}t^{2} y^{\prime \prime }+2 y^{\prime } t +2 y = 0 \]

[[_Emden, _Fowler]]

2400

\[ {}t^{2} y^{\prime \prime }+3 y^{\prime } t +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

2401

\[ {}t^{2} y^{\prime \prime }-y^{\prime } t +y = 0 \]

[[_Emden, _Fowler]]

2431

\[ {}t^{2} y^{\prime \prime }-5 y^{\prime } t +9 y = 0 \]

[[_Emden, _Fowler]]

2435

\[ {}t^{2} y^{\prime \prime }+3 y^{\prime } t +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

2436

\[ {}t^{2} y^{\prime \prime }-y^{\prime } t +y = 0 \]

[[_Emden, _Fowler]]

2438

\[ {}t^{2} y^{\prime \prime }+y^{\prime } t +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2439

\[ {}t^{2} y^{\prime \prime }-y^{\prime } t +2 y = 0 \]
i.c.

[[_Emden, _Fowler]]

2565

\[ {}t^{2} y^{\prime \prime }+y^{\prime } t +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2566

\[ {}t^{2} y^{\prime \prime }+2 y^{\prime } t +2 y = 0 \]

[[_Emden, _Fowler]]

2581

\[ {}t^{2} y^{\prime \prime }+3 y^{\prime } t +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

2582

\[ {}t^{2} y^{\prime \prime }-y^{\prime } t +y = 0 \]

[[_Emden, _Fowler]]

2631

\[ {}t^{2} y^{\prime \prime }+3 y^{\prime } t +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

2632

\[ {}t^{2} y^{\prime \prime }-y^{\prime } t +y = 0 \]

[[_Emden, _Fowler]]

2634

\[ {}t^{2} y^{\prime \prime }+y^{\prime } t +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2635

\[ {}t^{2} y^{\prime \prime }+3 y^{\prime } t +2 y = 0 \]

[[_Emden, _Fowler]]

3221

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +y = 0 \]

[[_Emden, _Fowler]]

3222

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +16 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

3223

\[ {}4 x^{2} y^{\prime \prime }-16 y^{\prime } x +25 y = 0 \]

[[_Emden, _Fowler]]

3224

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +10 y = 0 \]

[[_Emden, _Fowler]]

3226

\[ {}2 x^{2} y^{\prime \prime }-3 y^{\prime } x +2 y = \ln \left (x^{2}\right ) \]

[[_2nd_order, _with_linear_symmetries]]

3227

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

3228

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +y = 1-x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3230

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 4 x +\sin \left (\ln \left (x \right )\right ) \]

[[_2nd_order, _with_linear_symmetries]]

3231

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +2 y = x^{2} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3232

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +3 y = \left (x -1\right ) \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3494

\[ {}\left (x +1\right )^{2} y^{\prime \prime }+3 \left (x +1\right ) y^{\prime }+y = x^{2} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3565

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +3 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

3566

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

3567

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +13 y = 0 \]

[[_Emden, _Fowler]]

3568

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +y = 9 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

3569

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = x^{4} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3575

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

3576

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler]]

3708

\[ {}2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

3773

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = 4 \ln \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3774

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = \cos \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3775

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +9 y = 9 \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

3776

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +5 y = 8 x \ln \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3777

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = x^{4} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3778

\[ {}x^{2} y^{\prime \prime }+6 y^{\prime } x +6 y = 4 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3781

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +5 y = 0 \]
i.c.

[[_Emden, _Fowler]]

3782

\[ {}t^{2} y^{\prime \prime }+y^{\prime } t +25 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

4139

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x -4 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

4140

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = x^{2}+2 \]

[[_2nd_order, _with_linear_symmetries]]

4510

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +5 y = \frac {5 \ln \left (x \right )}{x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

5991

\[ {}y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\frac {2 y}{x^{2}} = x \ln \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

5992

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

5993

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = x^{2} {\mathrm e}^{-x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

6026

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6193

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6194

\[ {}x^{2} y^{\prime \prime }+7 y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler]]

6195

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +6 y = 0 \]

[[_Emden, _Fowler]]

6196

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -16 y = 8 x^{4} \]

[[_2nd_order, _with_linear_symmetries]]

6197

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = x -\frac {1}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

6201

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = 2 x \]

[[_2nd_order, _with_linear_symmetries]]

6249

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y = 0 \]

[[_Emden, _Fowler]]

6410

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -9 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6411

\[ {}x y^{\prime \prime }+\frac {y^{\prime }}{2}+2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6412

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_Emden, _Fowler]]

6533

\[ {}t^{2} N^{\prime \prime }-2 t N^{\prime }+2 N = t \ln \left (t \right ) \]

[[_2nd_order, _with_linear_symmetries]]

6541

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = \ln \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

6696

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6698

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6751

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = \ln \left (x \right )^{2}-\ln \left (x^{2}\right ) \]

[[_2nd_order, _with_linear_symmetries]]

6754

\[ {}\left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }-y = \ln \left (x +1\right )^{2}+x -1 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

6764

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6765

\[ {}x^{4} y^{\prime \prime }+2 x^{3} y^{\prime }+y = \frac {x +1}{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6766

\[ {}x^{8} y^{\prime \prime }+4 x^{7} y^{\prime }+y = \frac {1}{x^{3}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6768

\[ {}x y^{\prime \prime }-3 y^{\prime }+\frac {3 y}{x} = x +2 \]

[[_2nd_order, _with_linear_symmetries]]

6913

\[ {}x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y = 0 \]

[[_Emden, _Fowler]]

7257

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

7258

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7262

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

7265

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler]]

7267

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7270

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = x^{2}+2 x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

7277

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +\frac {y}{4} = -\frac {x^{2}}{2}+\frac {1}{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

7305

\[ {}y^{\prime \prime }-\frac {x y^{\prime }}{-x^{2}+1}+\frac {y}{-x^{2}+1} = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7452

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

7453

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

7454

\[ {}\left (3 x -1\right )^{2} y^{\prime \prime }+\left (9 x -3\right ) y^{\prime }-9 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

7475

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +\alpha ^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7479

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7480

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

7482

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = 1 \]

[[_2nd_order, _with_linear_symmetries]]

7483

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +5 y = 0 \]

[[_Emden, _Fowler]]

7485

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -4 \pi y = x \]

[[_2nd_order, _with_linear_symmetries]]

7739

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +10 y = 0 \]

[[_Emden, _Fowler]]

7740

\[ {}2 x^{2} y^{\prime \prime }+10 y^{\prime } x +8 y = 0 \]

[[_Emden, _Fowler]]

7743

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7745

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x +3 y = 0 \]

[[_Emden, _Fowler]]

7746

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7747

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -16 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7782

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = x \,{\mathrm e}^{-x} \]

[[_2nd_order, _with_linear_symmetries]]

8385

\[ {}2 x^{2} y^{\prime \prime }-3 y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8389

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -9 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8390

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8391

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler]]

8392

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +5 y = 0 \]

[[_Emden, _Fowler]]

8539

\[ {}t^{2} y^{\prime \prime }-3 y^{\prime } t +5 y = 0 \]

[[_Emden, _Fowler]]

8543

\[ {}t y^{\prime \prime }-y^{\prime }+4 t^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8631

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}-x^{2} y-x^{3}-\frac {1}{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8651

\[ {}x^{4} y^{\prime \prime }+x^{3} y^{\prime }-4 x^{2} y = 1 \]

[[_2nd_order, _with_linear_symmetries]]

8652

\[ {}x^{4} y^{\prime \prime }+x^{3} y^{\prime }-4 x^{2} y = x \]

[[_2nd_order, _with_linear_symmetries]]

8653

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = x \]

[[_2nd_order, _with_linear_symmetries]]

8739

\[ {}y^{\prime \prime } \sin \left (2 x \right )^{2}+y^{\prime } \sin \left (4 x \right )-4 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8917

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+\frac {a^{2} y}{x^{4}} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8918

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x -c^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8919

\[ {}x^{6} y^{\prime \prime }+3 x^{5} y^{\prime }+a^{2} y = \frac {1}{x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

8920

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y = 2 x^{3}-x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

8921

\[ {}y^{\prime \prime }+\cot \left (x \right ) y^{\prime }+4 y \csc \left (x \right )^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8923

\[ {}y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+\cos \left (x \right )^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8924

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 8 x^{3} \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

8925

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = x^{5} \]

[[_2nd_order, _linear, _nonhomogeneous]]

8926

\[ {}\cos \left (x \right ) y^{\prime \prime }+\sin \left (x \right ) y^{\prime }-2 y \cos \left (x \right )^{3} = 2 \cos \left (x \right )^{5} \]

[[_2nd_order, _linear, _nonhomogeneous]]

8927

\[ {}y^{\prime \prime }+\left (1-\frac {1}{x}\right ) y^{\prime }+4 x^{2} y \,{\mathrm e}^{-2 x} = 4 \left (x^{3}+x^{2}\right ) {\mathrm e}^{-3 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

8947

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

10820

\[ {}y^{\prime \prime }+y^{\prime }+a \,{\mathrm e}^{-2 x} y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

10821

\[ {}y^{\prime \prime }-y^{\prime }+{\mathrm e}^{2 x} y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

10853

\[ {}y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+\cos \left (x \right )^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10854

\[ {}y^{\prime \prime }+\tan \left (x \right ) y^{\prime }-\cos \left (x \right )^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10856

\[ {}y^{\prime \prime }-\cot \left (x \right ) y^{\prime }+y \sin \left (x \right )^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10865

\[ {}y^{\prime \prime }-\frac {a f^{\prime }\left (x \right ) y^{\prime }}{f \left (x \right )}+b f \left (x \right )^{2 a} y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

10882

\[ {}x y^{\prime \prime }-y^{\prime }-y a \,x^{3} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

10914

\[ {}2 x y^{\prime \prime }+y^{\prime }+a y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

10919

\[ {}4 x y^{\prime \prime }+2 y^{\prime }-y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

10943

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y-a \,x^{2} = 0 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

10944

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +a y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

10950

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y-3 x^{3} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10958

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y-x^{5} \ln \left (x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10966

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y-5 x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10968

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y-x^{4}+x^{2} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

10970

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +8 y-\sin \left (x \right ) x^{3} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

11006

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11007

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x -9 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11008

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +a y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11018

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime } x +a y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11069

\[ {}\left (3 x -1\right )^{2} y^{\prime \prime }+3 \left (3 x -1\right ) y^{\prime }-9 y-\ln \left (3 x -1\right )^{2} = 0 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

11073

\[ {}\left (27 x^{2}+4\right ) y^{\prime \prime }+27 y^{\prime } x -3 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11075

\[ {}50 x \left (x -1\right ) y^{\prime \prime }+25 \left (2 x -1\right ) y^{\prime }-2 y = 0 \]

[_Jacobi, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11080

\[ {}\left (a \,x^{2}+1\right ) y^{\prime \prime }+a x y^{\prime }+b y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11097

\[ {}x \left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime }+y a \,x^{3} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11119

\[ {}y^{\prime \prime } = -\frac {\left (3 x +a +2 b \right ) y^{\prime }}{2 \left (x +a \right ) \left (x +b \right )}-\frac {\left (a -b \right ) y}{4 \left (x +a \right )^{2} \left (x +b \right )} \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11132

\[ {}y^{\prime \prime } = -\frac {2 y^{\prime }}{x}-\frac {a^{2} y}{x^{4}} \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11148

\[ {}y^{\prime \prime } = -\frac {2 x y^{\prime }}{x^{2}+1}-\frac {y}{\left (x^{2}+1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11152

\[ {}y^{\prime \prime } = -\frac {2 x y^{\prime }}{x^{2}-1}+\frac {a^{2} y}{\left (x^{2}-1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11158

\[ {}y^{\prime \prime } = -\frac {\left (2 x^{2}+a \right ) y^{\prime }}{x \left (x^{2}+a \right )}-\frac {b y}{x^{2} \left (x^{2}+a \right )} \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11191

\[ {}y^{\prime \prime } = -a \,x^{2 a -1} x^{-2 a} y^{\prime }-b^{2} x^{-2 a} y \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11194

\[ {}y^{\prime \prime } = \frac {y^{\prime }}{x \ln \left (x \right )}+\ln \left (x \right )^{2} y \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11211

\[ {}y^{\prime \prime } = -\frac {\cos \left (x \right ) y^{\prime }}{\sin \left (x \right )}+\frac {y}{\sin \left (x \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12339

\[ {}x y^{\prime \prime }+\frac {y^{\prime }}{2}+a y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12343

\[ {}x y^{\prime \prime }+n y^{\prime }+b \,x^{1-2 n} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12429

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime } x +a y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12430

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +n^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12440

\[ {}\left (a \,x^{2}+b \right ) y^{\prime \prime }+a x y^{\prime }+c y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12452

\[ {}\left (2 a x +x^{2}+b \right ) y^{\prime \prime }+\left (x +a \right ) y^{\prime }-m^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12455

\[ {}\left (a \,x^{2}+2 b x +c \right ) y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+d y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12503

\[ {}\left (a \,x^{2}+b \right )^{2} y^{\prime \prime }+2 a x \left (a \,x^{2}+b \right ) y^{\prime }+c y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12530

\[ {}x \left (x^{2 n}+a \right ) y^{\prime \prime }+\left (x^{2 n}+a -a n \right ) y^{\prime }-b^{2} x^{2 n -1} y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12551

\[ {}y^{\prime \prime }-a y^{\prime }+b \,{\mathrm e}^{2 a x} y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12729

\[ {}\left (x +1\right )^{2} y^{\prime \prime }-\left (x +1\right ) y^{\prime }+6 y = x \]

[[_2nd_order, _with_linear_symmetries]]

12752

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +4 y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12753

\[ {}y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+\cos \left (x \right )^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12754

\[ {}x^{6} y^{\prime \prime }+3 x^{5} y^{\prime }+y = \frac {1}{x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12778

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +y = x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

12934

\[ {}t^{2} x^{\prime \prime }+3 t x^{\prime }+x = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

12935

\[ {}t x^{\prime \prime }+4 x^{\prime }+\frac {2 x}{t} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12936

\[ {}t^{2} x^{\prime \prime }-7 t x^{\prime }+16 x = 0 \]

[[_Emden, _Fowler]]

12939

\[ {}t^{2} x^{\prime \prime }-t x^{\prime }+2 x = 0 \]
i.c.

[[_Emden, _Fowler]]

12948

\[ {}t^{2} x^{\prime \prime }-3 t x^{\prime }+3 x = 4 t^{7} \]

[[_2nd_order, _with_linear_symmetries]]

13172

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13173

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13301

\[ {}x^{2} y^{\prime \prime }-6 y^{\prime } x +10 y = 3 x^{4}+6 x^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13302

\[ {}\left (x +1\right )^{2} y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y = 1 \]

[[_2nd_order, _with_linear_symmetries]]

13309

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y = 0 \]

[[_Emden, _Fowler]]

13310

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13311

\[ {}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +3 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13312

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13313

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13314

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +13 y = 0 \]

[[_Emden, _Fowler]]

13315

\[ {}3 x^{2} y^{\prime \prime }-4 y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13316

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13317

\[ {}9 x^{2} y^{\prime \prime }+3 y^{\prime } x +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13318

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +10 y = 0 \]

[[_Emden, _Fowler]]

13322

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 4 x -6 \]

[[_2nd_order, _with_linear_symmetries]]

13323

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +8 y = 2 x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

13324

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = 4 \ln \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

13325

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = 2 x \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

13326

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = 4 \sin \left (\ln \left (x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13329

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13330

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +3 y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

13332

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +4 y = -6 x^{3}+4 x^{2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13334

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +8 y = 2 x^{3} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13440

\[ {}t x^{\prime \prime }-2 x^{\prime }+9 t^{5} x = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13444

\[ {}t^{2} x^{\prime \prime }+3 t x^{\prime }+3 x = 0 \]

[[_Emden, _Fowler]]

13451

\[ {}t^{2} x^{\prime \prime }+t x^{\prime }+x = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13460

\[ {}x y^{\prime \prime }+y^{\prime }+\frac {\lambda y}{x} = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13461

\[ {}x y^{\prime \prime }+y^{\prime }+\frac {\lambda y}{x} = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13462

\[ {}2 y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }+\frac {\lambda y}{x^{2}+1} = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13463

\[ {}-\frac {6 y^{\prime } x}{\left (3 x^{2}+1\right )^{2}}+\frac {y^{\prime \prime }}{3 x^{2}+1}+\lambda \left (3 x^{2}+1\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13574

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13576

\[ {}t^{2} x^{\prime \prime }-5 t x^{\prime }+10 x = 0 \]
i.c.

[[_Emden, _Fowler]]

13577

\[ {}t^{2} x^{\prime \prime }+t x^{\prime }-x = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

13578

\[ {}x^{2} z^{\prime \prime }+3 x z^{\prime }+4 z = 0 \]
i.c.

[[_Emden, _Fowler]]

13580

\[ {}4 t^{2} x^{\prime \prime }+8 t x^{\prime }+5 x = 0 \]
i.c.

[[_Emden, _Fowler]]

13581

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +5 y = 0 \]
i.c.

[[_Emden, _Fowler]]

13583

\[ {}t^{2} x^{\prime \prime }+3 t x^{\prime }+13 x = 0 \]
i.c.

[[_Emden, _Fowler]]

13682

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 2 \]

[[_2nd_order, _with_linear_symmetries]]

13709

\[ {}\left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y = 2 \cos \left (\ln \left (x +1\right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13781

\[ {}y^{\prime \prime }+\cot \left (x \right ) y^{\prime }-y \csc \left (x \right )^{2} = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13865

\[ {}t^{2} y^{\prime \prime }+3 y^{\prime } t +y = t^{7} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

13938

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x -a^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

14088

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

14106

\[ {}x^{2} y^{\prime \prime }+6 y^{\prime } x +4 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

14107

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler]]

14123

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

14124

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

14125

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

14126

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

14127

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

14273

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = -3 x -\frac {3}{x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

15078

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15079

\[ {}4 x^{2} y^{\prime \prime }+4 y^{\prime } x -y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15081

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15082

\[ {}\left (x +1\right )^{2} y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15083

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15084

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15157

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +8 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15160

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15161

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler]]

15162

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler]]

15164

\[ {}x^{2} y^{\prime \prime }-19 y^{\prime } x +100 y = 0 \]

[[_Emden, _Fowler]]

15165

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +29 y = 0 \]

[[_Emden, _Fowler]]

15166

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +10 y = 0 \]

[[_Emden, _Fowler]]

15167

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +29 y = 0 \]

[[_Emden, _Fowler]]

15168

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15169

\[ {}2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

15172

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -25 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15173

\[ {}4 x^{2} y^{\prime \prime }+8 y^{\prime } x +5 y = 0 \]

[[_Emden, _Fowler]]

15174

\[ {}3 x^{2} y^{\prime \prime }-7 y^{\prime } x +3 y = 0 \]

[[_Emden, _Fowler]]

15176

\[ {}4 x^{2} y^{\prime \prime }+4 y^{\prime } x -y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15179

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +2 y = 0 \]
i.c.

[[_Emden, _Fowler]]

15180

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +13 y = 0 \]
i.c.

[[_Emden, _Fowler]]

15197

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 10 x +12 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

15203

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 1 \]

[[_2nd_order, _with_linear_symmetries]]

15204

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = x \]

[[_2nd_order, _with_linear_symmetries]]

15205

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 22 x +24 \]

[[_2nd_order, _with_linear_symmetries]]

15206

\[ {}x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

15207

\[ {}x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y = x \]

[[_2nd_order, _with_linear_symmetries]]

15208

\[ {}x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y = 1 \]

[[_2nd_order, _with_linear_symmetries]]

15209

\[ {}x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y = 4 x^{2}+2 x +3 \]

[[_2nd_order, _with_linear_symmetries]]

15283

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +8 y = \frac {5}{x^{3}} \]

[[_2nd_order, _with_linear_symmetries]]

15284

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +y = \frac {50}{x^{3}} \]

[[_2nd_order, _with_linear_symmetries]]

15285

\[ {}2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y = 85 \cos \left (2 \ln \left (x \right )\right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15287

\[ {}3 x^{2} y^{\prime \prime }-7 y^{\prime } x +3 y = 4 x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

15288

\[ {}2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y = \frac {10}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15291

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 3 \sqrt {x} \]

[[_2nd_order, _with_linear_symmetries]]

15297

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = \sqrt {x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15298

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -9 y = 12 x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

15302

\[ {}x y^{\prime \prime }-y^{\prime }-4 x^{3} y = x^{3} {\mathrm e}^{x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15315

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -9 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15318

\[ {}x^{2} y^{\prime \prime }-7 y^{\prime } x +16 y = 0 \]

[[_Emden, _Fowler]]

15323

\[ {}x^{2} y^{\prime \prime }+7 y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler]]

15329

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15334

\[ {}4 x^{2} y^{\prime \prime }+8 y^{\prime } x +y = 0 \]

[[_Emden, _Fowler]]

15336

\[ {}2 x^{2} y^{\prime \prime }-3 y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15337

\[ {}9 x^{2} y^{\prime \prime }+3 y^{\prime } x +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15347

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -9 y = 3 \sqrt {x} \]

[[_2nd_order, _with_linear_symmetries]]

15355

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +2 y = 6 \]

[[_2nd_order, _with_linear_symmetries]]

15356

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = \frac {1}{x^{2}+1} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15563

\[ {}t^{2} y^{\prime \prime }+y^{\prime } t +2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15578

\[ {}x^{2} y^{\prime \prime }-12 y^{\prime } x +42 y = 0 \]

[[_Emden, _Fowler]]

15579

\[ {}t^{2} y^{\prime \prime }+3 y^{\prime } t +5 y = 0 \]

[[_Emden, _Fowler]]

15604

\[ {}t^{2} y^{\prime \prime }-12 y^{\prime } t +42 y = 0 \]
i.c.

[[_Emden, _Fowler]]

15605

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +5 y = 0 \]
i.c.

[[_Emden, _Fowler]]

15625

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler]]

15967

\[ {}t^{2} y^{\prime \prime }+y^{\prime } t -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

16018

\[ {}3 t^{2} y^{\prime \prime }-2 y^{\prime } t +2 y = 0 \]

[[_Emden, _Fowler]]

16019

\[ {}t^{2} y^{\prime \prime }-y^{\prime } t +y = 0 \]

[[_Emden, _Fowler]]

16133

\[ {}t^{2} y^{\prime \prime }+y^{\prime } t +4 y = t \]

[[_2nd_order, _with_linear_symmetries]]

16218

\[ {}4 x^{2} y^{\prime \prime }-8 y^{\prime } x +5 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16219

\[ {}3 x^{2} y^{\prime \prime }-4 y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16220

\[ {}2 x^{2} y^{\prime \prime }-8 y^{\prime } x +8 y = 0 \]

[[_Emden, _Fowler]]

16221

\[ {}2 x^{2} y^{\prime \prime }-7 y^{\prime } x +7 y = 0 \]

[[_Emden, _Fowler]]

16223

\[ {}9 x^{2} y^{\prime \prime }-9 y^{\prime } x +10 y = 0 \]

[[_Emden, _Fowler]]

16224

\[ {}2 x^{2} y^{\prime \prime }-2 y^{\prime } x +20 y = 0 \]

[[_Emden, _Fowler]]

16225

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +10 y = 0 \]

[[_Emden, _Fowler]]

16226

\[ {}4 x^{2} y^{\prime \prime }+8 y^{\prime } x +y = 0 \]

[[_Emden, _Fowler]]

16228

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler]]

16229

\[ {}x^{2} y^{\prime \prime }+7 y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler]]

16240

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = \frac {1}{x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

16241

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = \frac {1}{x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

16243

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -16 y = \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

16244

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = 8 \]

[[_2nd_order, _with_linear_symmetries]]

16245

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +36 y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

16248

\[ {}3 x^{2} y^{\prime \prime }-4 y^{\prime } x +2 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16249

\[ {}2 x^{2} y^{\prime \prime }-7 y^{\prime } x +7 y = 0 \]
i.c.

[[_Emden, _Fowler]]

16250

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16251

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +2 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16257

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = \ln \left (x \right ) \]
i.c.

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

16259

\[ {}9 x^{2} y^{\prime \prime }+27 y^{\prime } x +10 y = \frac {1}{x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

16260

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler]]

16261

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

16262

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16267

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16268

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = \arctan \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16269

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16270

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = \arctan \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16271

\[ {}\left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16272

\[ {}\left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (4 x^{2}-4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16273

\[ {}\left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (x^{2}-1\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16274

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

16275

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

16276

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16384

\[ {}t^{2} y^{\prime \prime }-5 y^{\prime } t +5 y = 0 \]

[[_Emden, _Fowler]]

16385

\[ {}x^{2} y^{\prime \prime }+7 y^{\prime } x +8 y = 0 \]

[[_Emden, _Fowler]]

16386

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16387

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16388

\[ {}2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

16389

\[ {}5 x^{2} y^{\prime \prime }-y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler]]

16390

\[ {}x^{2} y^{\prime \prime }-7 y^{\prime } x +25 y = 0 \]

[[_Emden, _Fowler]]

16391

\[ {}x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y = 8 x \]

[[_2nd_order, _with_linear_symmetries]]

16895

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

16896

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

16897

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x +6 y = 0 \]

[[_Emden, _Fowler]]

16900

\[ {}\left (2 x +1\right )^{2} y^{\prime \prime }-2 \left (2 x +1\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

16905

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = x \left (6-\ln \left (x \right )\right ) \]

[[_2nd_order, _with_linear_symmetries]]

16909

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = x^{m} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

16910

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = 2 \ln \left (x \right )^{2}+12 x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

16941

\[ {}4 x y^{\prime \prime }+2 y^{\prime }+y = \frac {6+x}{x^{2}} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16999

\[ {}x y^{\prime \prime }+\frac {y^{\prime }}{2}+\frac {y}{4} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

17341

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +\frac {\alpha \left (1+\alpha \right ) \mu ^{2} y}{-x^{2}+1} = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

17405

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

17406

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

17407

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +\frac {5 y}{4} = 0 \]

[[_Emden, _Fowler]]

17410

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler]]

17411

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler]]

17412

\[ {}2 x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]

[[_Emden, _Fowler]]

17414

\[ {}4 x^{2} y^{\prime \prime }+8 y^{\prime } x +17 y = 0 \]
i.c.

[[_Emden, _Fowler]]

17416

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +5 y = 0 \]
i.c.

[[_Emden, _Fowler]]

17451

\[ {}x^{2} y^{\prime \prime }+7 y^{\prime } x +5 y = x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

17452

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 3 x^{2}+2 \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

17453

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = \sin \left (\ln \left (x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17485

\[ {}t^{2} y^{\prime \prime }-2 y^{\prime } t +2 y = 4 t^{2} \]

[[_2nd_order, _with_linear_symmetries]]

17486

\[ {}t^{2} y^{\prime \prime }+7 y^{\prime } t +5 y = t \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

17779

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 2 x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

17787

\[ {}\sin \left (x \right )^{2} y^{\prime \prime }+\sin \left (x \right ) \cos \left (x \right ) y^{\prime } = y \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

17805

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = x \]

[[_2nd_order, _with_linear_symmetries]]

17806

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +2 y = x \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

17809

\[ {}\left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y = 4 \cos \left (\ln \left (x +1\right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17813

\[ {}x y^{\prime \prime }-y^{\prime }-x^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18030

\[ {}x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y x = 1 \]

[[_2nd_order, _with_linear_symmetries]]

18041

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18090

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +10 y = 0 \]

[[_Emden, _Fowler]]

18091

\[ {}2 x^{2} y^{\prime \prime }+10 y^{\prime } x +8 y = 0 \]

[[_Emden, _Fowler]]

18094

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18096

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x +3 y = 0 \]

[[_Emden, _Fowler]]

18097

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18098

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -16 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18099

\[ {}x y^{\prime \prime }+\left (x^{2}-1\right ) y^{\prime }+x^{3} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

18134

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = x \,{\mathrm e}^{-x} \]

[[_2nd_order, _with_linear_symmetries]]

18291

\[ {}t^{2} x^{\prime \prime }-6 t x^{\prime }+12 x = 0 \]

[[_Emden, _Fowler]]

18294

\[ {}t^{2} x^{\prime \prime }-2 t x^{\prime }+2 x = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18384

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +5 y = \frac {1}{x} \]

[[_2nd_order, _with_linear_symmetries]]

18393

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18396

\[ {}v^{\prime \prime }+\frac {2 x v^{\prime }}{x^{2}+1}+\frac {v}{\left (x^{2}+1\right )^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18502

\[ {}y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\frac {2 y}{x^{2}} = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

18706

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y = x^{4} \]

[[_2nd_order, _with_linear_symmetries]]

18708

\[ {}x^{2} y^{\prime \prime }+7 y^{\prime } x +5 y = x^{5} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

18712

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = {\mathrm e}^{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

18718

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = x^{m} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

18724

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +y = \frac {\ln \left (x \right ) \sin \left (\ln \left (x \right )\right )+1}{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

18784

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

18791

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+\frac {a^{2} y}{x^{4}} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18792

\[ {}y^{\prime \prime }+\cot \left (x \right ) y^{\prime }+4 y \csc \left (x \right )^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18793

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = x^{5} \]

[[_2nd_order, _linear, _nonhomogeneous]]

18794

\[ {}x^{6} y^{\prime \prime }+3 x^{5} y^{\prime }+a^{2} y = \frac {1}{x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

18809

\[ {}\left (a^{2}-x^{2}\right ) y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x}+\frac {x^{2} y}{a} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18810

\[ {}\left (x^{3}-x \right ) y^{\prime \prime }+y^{\prime }+n^{2} x^{3} y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18813

\[ {}x^{4} y^{\prime \prime }+2 x^{3} y^{\prime }+n^{2} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18823

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +5 y = \frac {1}{x} \]

[[_2nd_order, _with_linear_symmetries]]

19101

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +5 y = 0 \]

[[_Emden, _Fowler]]

19104

\[ {}x^{2} y^{\prime \prime }+7 y^{\prime } x +5 y = x^{5} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

19105

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y = x^{4} \]

[[_2nd_order, _with_linear_symmetries]]

19106

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = x^{4} \]

[[_2nd_order, _with_linear_symmetries]]

19108

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = x^{m} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

19111

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = {\mathrm e}^{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

19119

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +2 y = x \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

19120

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +5 y = x^{2} \sin \left (\ln \left (x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

19123

\[ {}\left (5+2 x \right )^{2} y^{\prime \prime }-6 \left (5+2 x \right ) y^{\prime }+8 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19133

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +y = 2 x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

19238

\[ {}y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+\cos \left (x \right )^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19239

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+\frac {a^{2} y}{x^{4}} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

19240

\[ {}\left (x^{3}-x \right ) y^{\prime \prime }+y^{\prime }+n^{2} x^{3} y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

19241

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +m^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

19242

\[ {}y^{\prime \prime }-\cot \left (x \right ) y^{\prime }-y \sin \left (x \right )^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19243

\[ {}\sin \left (x \right )^{2} y^{\prime \prime }+\sin \left (x \right ) \cos \left (x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

19244

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

19264

\[ {}\left (a^{2}-x^{2}\right ) y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x}+\frac {x^{2} y}{a} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

19265

\[ {}x^{4} y^{\prime \prime }+2 x^{3} y^{\prime }+n^{2} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

19266

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +\frac {a^{2} y}{-x^{2}+1} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

19268

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 8 x^{3} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

19274

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

19276

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x -a^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

19278

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = x^{5} \]

[[_2nd_order, _linear, _nonhomogeneous]]

19280

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime } x = m^{2} y \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

19281

\[ {}y^{\prime \prime }+\left (1-\frac {1}{x}\right ) y^{\prime }+4 x^{2} y \,{\mathrm e}^{-2 x} = 4 \left (x^{3}+x^{2}\right ) {\mathrm e}^{-3 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

19367

\[ {}\left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y = 4 \cos \left (\ln \left (x +1\right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

19370

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +y = \frac {\ln \left (x \right ) \sin \left (\ln \left (x \right )\right )+1}{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

19404

\[ {}y^{\prime \prime }-\left (8 \,{\mathrm e}^{2 x}+2\right ) y^{\prime }+4 \,{\mathrm e}^{4 x} y = {\mathrm e}^{6 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

19405

\[ {}y^{\prime \prime }+\cot \left (x \right ) y^{\prime }+\frac {y \csc \left (x \right )^{2}}{2} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

19406

\[ {}x^{6} y^{\prime \prime }+3 x^{5} y^{\prime }+a^{2} y = \frac {1}{x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

19407

\[ {}x y^{\prime \prime }-y^{\prime }-4 x^{3} y = 8 x^{3} \sin \left (x^{2}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

19408

\[ {}\cos \left (x \right ) y^{\prime \prime }+\sin \left (x \right ) y^{\prime }-2 y \cos \left (x \right )^{3} = 2 \cos \left (x \right )^{5} \]

[[_2nd_order, _linear, _nonhomogeneous]]

19409

\[ {}\left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y = 4 \cos \left (\ln \left (x +1\right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

19413

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = x^{2} {\mathrm e}^{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]