# |
ODE |
CAS classification |
Solved? |
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = x^{3}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +3 y = 8 x^{{4}/{3}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x y^{\prime \prime }+2 y^{\prime }+y x = 0
\] |
[_Lienard] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = x^{3}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +3 y = 8 x^{{4}/{3}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }+4 y^{\prime } t +2 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }-4 y^{\prime } t +6 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }-t \left (t +2\right ) y^{\prime }+\left (t +2\right ) y = 2 t^{3}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = g \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}\left (x^{2}-1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (-16 x^{2}+3\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (x^{2}-4\right ) y^{\prime \prime }+4 y^{\prime } x +2 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x y^{\prime \prime }+\left (2-2 x \right ) y^{\prime }+\left (x -2\right ) y = {\mathrm e}^{2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = x^{{5}/{2}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = x^{3} \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (-16 x^{2}+3\right ) y = 8 x^{{5}/{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}+3\right ) y = x^{{7}/{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x -\left (x^{2}-2\right ) y = 3 x^{4}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 x \left (x +1\right ) y^{\prime }+\left (x^{2}+2 x +2\right ) y = x^{3} {\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-x \left (x +4\right ) y^{\prime }+2 \left (x +3\right ) y = x^{4} {\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (x^{2}+6\right ) y = x^{4}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}4 x^{2} y^{\prime \prime }-4 x \left (x +1\right ) y^{\prime }+\left (2 x +3\right ) y = x^{{5}/{2}} {\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}\left (x -1\right )^{2} y^{\prime \prime }-\left (x^{2}-1\right ) y^{\prime }+\left (x +1\right ) y = \left (x -1\right )^{3} {\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime } t +\left (4 t^{2}-2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }+y^{\prime } t +\left (t^{2}-\frac {1}{4}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (t -1\right )^{2} y^{\prime \prime }-2 \left (t -1\right ) y^{\prime }+2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}\left (t -1\right )^{2} y^{\prime \prime }-2 \left (t -1\right ) y^{\prime }+2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 4 x +\sin \left (\ln \left (x \right )\right )
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+6\right ) y = {\mathrm e}^{-x^{2}} \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = x^{4} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = 4 \ln \left (x \right )
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = \cos \left (x \right )
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = x^{4} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+6 y^{\prime } x +6 y = 4 \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = x^{2}+2
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\frac {2 y}{x^{2}} = x \ln \left (x \right )
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}u^{\prime \prime }+\frac {2 u^{\prime }}{x}-a^{2} u = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}u^{\prime \prime }+\frac {2 u^{\prime }}{x}+a^{2} u = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x -\left (x^{2}+\frac {1}{4}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x \left (1-x \right ) y^{\prime \prime }+2 \left (-2 x +1\right ) y^{\prime }-2 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}t^{2} N^{\prime \prime }-2 t N^{\prime }+2 N = t \ln \left (t \right )
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = \ln \left (x \right )^{2}-\ln \left (x^{2}\right )
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }-10 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (9 x^{2}+6\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x y^{\prime \prime }+2 y^{\prime }+4 y x = 4
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x y^{\prime \prime }+2 y^{\prime }+y x = \sec \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 x^{2} y^{\prime }+\left (x^{4}+2 x -1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\sin \left (x \right ) u^{\prime \prime }+2 \cos \left (x \right ) u^{\prime }+\sin \left (x \right ) u = 0
\] |
[_Lienard] |
✓ |
|
\[
{}u^{\prime \prime }-\left (2 x +1\right ) u^{\prime }+\left (x^{2}+x -1\right ) u = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (x^{2}+2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = x \,{\mathrm e}^{-x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (36 x^{2}-\frac {1}{4}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (x^{2}+2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (16 x^{2}+3\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime } x +\left (x^{2}+1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 \cot \left (x \right ) y^{\prime }-y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\cos \left (x \right )^{2} y^{\prime \prime }-2 \sin \left (x \right ) \cos \left (x \right ) y^{\prime }+\cos \left (x \right )^{2} y = 0
\] |
[_Lienard] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-1\right ) y = -3 \,{\mathrm e}^{x^{2}} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 b x y^{\prime }+b^{2} x^{2} y = x
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-3\right ) y = {\mathrm e}^{x^{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }+5 y = {\mathrm e}^{x^{2}} \sec \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 \left (x^{2}+1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x y^{\prime \prime }+2 y^{\prime }-y x = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x y^{\prime \prime }+2 y^{\prime }+y x = 0
\] |
[_Lienard] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-3\right ) y-{\mathrm e}^{x^{2}} = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 a x y^{\prime }+a^{2} x^{2} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } \sqrt {x}+\left (\frac {1}{4 \sqrt {x}}+\frac {x}{4}-9\right ) y-x \,{\mathrm e}^{-\frac {x^{{3}/{2}}}{3}} = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+f \left (x \right ) y^{\prime }+\left (\frac {f \left (x \right )^{2}}{4}+\frac {f^{\prime }\left (x \right )}{2}+a \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}a^{2} y^{\prime \prime }+a \left (a^{2}-2 b \,{\mathrm e}^{-a x}\right ) y^{\prime }+b^{2} {\mathrm e}^{-2 a x} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x y^{\prime \prime }+2 y^{\prime }-y x -{\mathrm e}^{x} = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x y^{\prime \prime }+2 y^{\prime }+a x y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y-x^{5} \ln \left (x \right ) = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y-\frac {x^{2}}{\cos \left (x \right )} = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y-\frac {x^{3}}{\cos \left (x \right )} = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (a^{2} x^{2}+2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 x \left (x +1\right ) y^{\prime }+2 \left (x +1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y-2 \cos \left (x \right )+2 x = 0
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}\left (x^{2}-1\right ) y^{\prime \prime }+4 y^{\prime } x +\left (x^{2}+1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}4 x^{2} y^{\prime \prime }+4 y^{\prime } x -\left (a \,x^{2}+1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}4 x^{2} y^{\prime \prime }-4 x \left (2 x -1\right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 \left (a x +b \right ) y^{\prime }+\left (a^{2} x^{2}+2 a b x +c \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+\left (2 x^{2}+a \right ) y^{\prime }+\left (x^{4}+a \,x^{2}+b +2 x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 a \,x^{n} y^{\prime }+a \left (a \,x^{2 n}+n \,x^{n -1}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 a x y^{\prime }+\left (b^{2} x^{2}+a \left (a +1\right )\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 a x y^{\prime }+\left (-b^{2} x^{2}+a \left (a +1\right )\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} \left (a x +b \right ) y^{\prime \prime }-2 x \left (a x +2 b \right ) y^{\prime }+2 \left (a x +3 b \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 a \,{\mathrm e}^{\lambda x} y^{\prime }+a \,{\mathrm e}^{\lambda x} \left (a \,{\mathrm e}^{\lambda x}+\lambda \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-\left (a +2 b \,{\mathrm e}^{a x}\right ) y^{\prime }+b^{2} {\mathrm e}^{2 a x} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+\left (2 a \,{\mathrm e}^{\lambda x}+b \right ) y^{\prime }+\left (a^{2} {\mathrm e}^{2 \lambda x}+a \left (b +\lambda \right ) {\mathrm e}^{\lambda x}+c \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\sin \left (x \right ) y^{\prime \prime }+2 \cos \left (x \right ) y^{\prime }+3 \sin \left (x \right ) y = {\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }-\left (a^{2}+1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x y^{\prime \prime }+2 y^{\prime }-y x = 2 \,{\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+\left (2 \,{\mathrm e}^{x}-1\right ) y^{\prime }+{\mathrm e}^{2 x} y = {\mathrm e}^{4 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (-x^{2}+2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (x^{2}+6\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 x \left (x +1\right ) y^{\prime }+2 \left (x +1\right ) y = x^{3}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (x -1\right )^{2} y^{\prime \prime }+4 \left (x -1\right ) y^{\prime }+2 y = \cos \left (x \right )
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}t x^{\prime \prime }+4 x^{\prime }+\frac {2 x}{t} = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}\left (x +1\right )^{2} y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y = 1
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-x \left (x +2\right ) y^{\prime }+\left (x +2\right ) y = x^{3}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\sin \left (x \right )^{2} y^{\prime \prime }-2 \sin \left (x \right ) \cos \left (x \right ) y^{\prime }+\left (\cos \left (x \right )^{2}+1\right ) y = \sin \left (x \right )^{3}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +3 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 4 x -6
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = 4 \ln \left (x \right )
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 2
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x \ln \left (x \right ) y^{\prime \prime }+2 y^{\prime }-\frac {y}{x} = 1
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1-\frac {1}{4 x^{2}}\right ) y = x
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}4 x^{2} y^{\prime \prime }+4 y^{\prime } x -y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}\left (x +1\right )^{2} y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}4 x^{2} y^{\prime \prime }+4 y^{\prime } x -y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 10 x +12
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 1
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 22 x +24
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 3 \sqrt {x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x y^{\prime \prime }+\left (2 x +2\right ) y^{\prime }+2 y = 8 \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-12 y^{\prime } x +42 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }-12 y^{\prime } t +42 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }-4 y^{\prime } t +\left (t^{2}+6\right ) y = t^{3}+2 t
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}t y^{\prime \prime }+2 y^{\prime }+t y = -t
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}4 t^{2} y^{\prime \prime }+4 y^{\prime } t +\left (16 t^{2}-1\right ) y = 16 t^{{3}/{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = \ln \left (x \right )
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime } t +t^{2} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = 2 \ln \left (x \right )^{2}+12 x
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-x \left (x +2\right ) y^{\prime }+\left (x +2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 3 x^{2}+2 \ln \left (x \right )
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }-t \left (t +2\right ) y^{\prime }+\left (t +2\right ) y = 2 t^{3}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 3 x^{{3}/{2}} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = g \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+y = 0
\] |
[_Lienard] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 2 x^{3}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+y = 0
\] |
[_Lienard] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-1\right ) y = -3 \,{\mathrm e}^{x^{2}} \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (x^{2}+6\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime } x +\left (x^{2}+1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = x \,{\mathrm e}^{-x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}t^{2} x^{\prime \prime }-6 t x^{\prime }+12 x = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}t^{2} x^{\prime \prime }-2 t x^{\prime }+2 x = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x y^{\prime \prime }+2 y^{\prime } = y x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}v^{\prime \prime }+\frac {2 x v^{\prime }}{x^{2}+1}+\frac {v}{\left (x^{2}+1\right )^{2}} = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}\left (x^{2}-1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y = 2 x
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y = x
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}\left (3 x^{2}+x \right ) y^{\prime \prime }+2 \left (1+6 x \right ) y^{\prime }+6 y = \sin \left (x \right )
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\frac {2 y}{x^{2}} = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = {\mathrm e}^{x}
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}\left (x +a \right )^{2} y^{\prime \prime }-4 \left (x +a \right ) y^{\prime }+6 y = x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }+5 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 \left (x^{2}+x \right ) y^{\prime }+\left (x^{2}+2 x +2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+\frac {2 y^{\prime }}{x} = n^{2} y
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+n^{2} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\left (n^{2}+\frac {2}{x^{2}}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime } x +4 x^{2} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 x \left (x +1\right ) y^{\prime }+2 \left (x +1\right ) y = x^{3}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = x^{4}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = {\mathrm e}^{x}
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime } x +4 x^{2} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+n^{2} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+\frac {2 y^{\prime }}{x} = n^{2} y
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-2 b x y^{\prime }+b^{2} x^{2} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-2 b x y^{\prime }+b^{2} x^{2} y = x
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }+5 y = \sec \left (x \right ) {\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }-\left (a^{2}+1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\left (n^{2}+\frac {2}{x^{2}}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 n x y^{\prime }+\left (a^{2} x^{2}+n^{2}+n \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-3\right ) y = {\mathrm e}^{x^{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime \prime }-4 y^{\prime } x -\left (x^{2}+1\right ) y = x
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 x \left (x +1\right ) y^{\prime }+2 \left (x +1\right ) y = -4 x^{3}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 x \left (x +1\right ) y^{\prime }+2 \left (x +1\right ) y = x^{3}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\left (n^{2}+\frac {2}{x^{2}}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime } x +\left (x^{2}+5\right ) y = x \,{\mathrm e}^{-\frac {x^{2}}{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-\left (x^{2}+2 x \right ) y^{\prime }+\left (x +2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (x +a \right )^{2} y^{\prime \prime }-4 \left (x +a \right ) y^{\prime }+6 y = x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 \left (x^{2}+x \right ) y^{\prime }+\left (x^{2}+2 x +2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }+y = 0
\] |
[_Lienard] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-1\right ) y = -3 \,{\mathrm e}^{x^{2}} \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 x \left (x +1\right ) y^{\prime }+2 \left (x +1\right ) y = x^{3}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|