2.4.7 second order ode missing y

Table 2.467: second order ode missing y

#

ODE

ODE classification

Solved?

11

\[ {}x^{\prime \prime } = 50 \]
i.c.

[[_2nd_order, _quadrature]]

12

\[ {}x^{\prime \prime } = -20 \]
i.c.

[[_2nd_order, _quadrature]]

13

\[ {}x^{\prime \prime } = 3 t \]
i.c.

[[_2nd_order, _quadrature]]

14

\[ {}x^{\prime \prime } = 2 t +1 \]
i.c.

[[_2nd_order, _quadrature]]

15

\[ {}x^{\prime \prime } = 4 \left (t +3\right )^{2} \]
i.c.

[[_2nd_order, _quadrature]]

16

\[ {}x^{\prime \prime } = \frac {1}{\sqrt {t +4}} \]
i.c.

[[_2nd_order, _quadrature]]

17

\[ {}x^{\prime \prime } = \frac {1}{\left (1+t \right )^{3}} \]
i.c.

[[_2nd_order, _quadrature]]

18

\[ {}x^{\prime \prime } = 50 \sin \left (5 t \right ) \]
i.c.

[[_2nd_order, _quadrature]]

147

\[ {}x y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_y]]

150

\[ {}x y^{\prime \prime }+y^{\prime } = 4 x \]

[[_2nd_order, _missing_y]]

151

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

152

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x = 2 \]

[[_2nd_order, _missing_y]]

154

\[ {}y^{\prime \prime } = \left (x +y^{\prime }\right )^{2} \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_xy]]

170

\[ {}r y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

[[_2nd_order, _missing_x]]

221

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

222

\[ {}y^{\prime \prime }-3 y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

236

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

237

\[ {}2 y^{\prime \prime }+3 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

247

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

272

\[ {}2 y^{\prime \prime }-3 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

813

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

814

\[ {}y^{\prime \prime }-3 y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

825

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

826

\[ {}2 y^{\prime \prime }+3 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

836

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

846

\[ {}2 y^{\prime \prime }-3 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

1253

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

1260

\[ {}y^{\prime \prime }+3 y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2607

\[ {}y^{\prime \prime }+2 y^{\prime } = 1+t^{2}+{\mathrm e}^{-2 t} \]

[[_2nd_order, _missing_y]]

3089

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

3141

\[ {}2 y^{\prime \prime }+y^{\prime } = 8 \sin \left (2 x \right )+{\mathrm e}^{-x} \]
i.c.

[[_2nd_order, _missing_y]]

3217

\[ {}y^{\prime \prime }+2 y^{\prime } = x^{3} \sin \left (2 x \right ) \]

[[_2nd_order, _missing_y]]

3218

\[ {}y^{\prime \prime }-y^{\prime } = x \,{\mathrm e}^{2 x} \sin \left (x \right ) \]

[[_2nd_order, _missing_y]]

3220

\[ {}y^{\prime \prime }+2 y^{\prime } = x^{2} {\mathrm e}^{-x} \sin \left (x \right ) \]

[[_2nd_order, _missing_y]]

3244

\[ {}y^{\prime \prime } = \cos \left (t \right ) \]

[[_2nd_order, _quadrature]]

3249

\[ {}x y^{\prime \prime } = x^{2}+1 \]

[[_2nd_order, _quadrature]]

3250

\[ {}\left (1-x \right ) y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_y]]

3251

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x \left (y^{\prime }+1\right ) = 0 \]

[[_2nd_order, _missing_y]]

3252

\[ {}y^{\prime \prime } = {y^{\prime }}^{3}+y^{\prime } \]

[[_2nd_order, _missing_x]]

3253

\[ {}x y^{\prime \prime }+x = y^{\prime } \]

[[_2nd_order, _missing_y]]

3254

\[ {}x^{\prime \prime }+x^{\prime } t = t^{3} \]

[[_2nd_order, _missing_y]]

3255

\[ {}x^{2} y^{\prime \prime } = y^{\prime } x +1 \]

[[_2nd_order, _missing_y]]

3256

\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

3257

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x = 1 \]

[[_2nd_order, _missing_y]]

3258

\[ {}y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

[[_2nd_order, _missing_x]]

3259

\[ {}y^{\prime \prime } = {y^{\prime }}^{2}+y^{\prime } \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

3261

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

3263

\[ {}y^{\prime \prime }+2 {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

3269

\[ {}y^{\prime \prime }+2 {y^{\prime }}^{2} = 2 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

3270

\[ {}y^{\prime \prime }+y^{\prime } = {y^{\prime }}^{3} \]

[[_2nd_order, _missing_x]]

3272

\[ {}y^{\prime \prime } = \sec \left (x \right ) \tan \left (x \right ) \]
i.c.

[[_2nd_order, _quadrature]]

3277

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

3284

\[ {}\left (1-{\mathrm e}^{x}\right ) y^{\prime \prime } = {\mathrm e}^{x} y^{\prime } \]
i.c.

[[_2nd_order, _missing_y]]

3483

\[ {}y^{\prime \prime }+{y^{\prime }}^{2}+y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

3584

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]

[[_2nd_order, _quadrature]]

3585

\[ {}y^{\prime \prime } = x^{n} \]

[[_2nd_order, _quadrature]]

3587

\[ {}y^{\prime \prime } = \cos \left (x \right ) \]
i.c.

[[_2nd_order, _quadrature]]

3589

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]
i.c.

[[_2nd_order, _quadrature]]

3631

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x} = 9 x \]

[[_2nd_order, _missing_y]]

3699

\[ {}y^{\prime \prime }+4 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

4124

\[ {}2 y^{\prime \prime }+3 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

4127

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

4426

\[ {}x y^{\prime \prime } = x +y^{\prime } \]

[[_2nd_order, _missing_y]]

4484

\[ {}y^{\prime \prime }-y^{\prime } = {\mathrm e}^{x} \left (x^{2}+10\right ) \]

[[_2nd_order, _missing_y]]

4508

\[ {}y^{\prime \prime }+y^{\prime } = \frac {1}{{\mathrm e}^{x}+1} \]

[[_2nd_order, _missing_y]]

5916

\[ {}y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

5945

\[ {}y^{\prime \prime } = 0 \]
i.c.

[[_2nd_order, _quadrature]]

5958

\[ {}y^{\prime \prime }-3 y^{\prime } = 2 \,{\mathrm e}^{2 x} \sin \left (x \right ) \]

[[_2nd_order, _missing_y]]

5959

\[ {}y^{\prime \prime }+y^{\prime } = x^{2}+2 x \]

[[_2nd_order, _missing_y]]

5960

\[ {}y^{\prime \prime }+y^{\prime } = x +\sin \left (2 x \right ) \]

[[_2nd_order, _missing_y]]

5998

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x = 1 \]

[[_2nd_order, _missing_y]]

5999

\[ {}x y^{\prime \prime }-y^{\prime } = x^{2} \]

[[_2nd_order, _missing_y]]

6008

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

6009

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x \left (y^{\prime }+1\right ) = 0 \]

[[_2nd_order, _missing_y]]

6014

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x = 1 \]
i.c.

[[_2nd_order, _missing_y]]

6015

\[ {}x y^{\prime \prime }-y^{\prime } = x^{2} \]
i.c.

[[_2nd_order, _missing_y]]

6030

\[ {}\left (1+{y^{\prime }}^{2}\right )^{3} = a^{2} {y^{\prime \prime }}^{2} \]

[[_2nd_order, _missing_x]]

6137

\[ {}y^{\prime \prime }+9 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

6142

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

6151

\[ {}y^{\prime \prime }-4 y^{\prime } = 10 \]

[[_2nd_order, _missing_x]]

6172

\[ {}2 y^{\prime \prime }+y^{\prime } = 2 x \]

[[_2nd_order, _missing_y]]

6182

\[ {}y^{\prime \prime }-2 y^{\prime } = 9 x \,{\mathrm e}^{-x}-6 x^{2}+4 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _missing_y]]

6187

\[ {}y^{\prime \prime }+2 y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

6189

\[ {}x y^{\prime \prime } = {y^{\prime }}^{3}+y^{\prime } \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

6190

\[ {}{y^{\prime \prime }}^{2} = k^{2} \left (1+{y^{\prime }}^{2}\right ) \]

[[_2nd_order, _missing_x]]

6191

\[ {}k = \frac {y^{\prime \prime }}{\left (y^{\prime }+1\right )^{{3}/{2}}} \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear]]

6219

\[ {}x y^{\prime \prime }+y^{\prime } = 4 x \]

[[_2nd_order, _missing_y]]

6513

\[ {}y^{\prime \prime } = 9 x^{2}+2 x -1 \]

[[_2nd_order, _quadrature]]

6539

\[ {}y^{\prime \prime }-7 y^{\prime } = -3 \]

[[_2nd_order, _missing_x]]

6541

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x = x^{3} {\mathrm e}^{x} \]

[[_2nd_order, _missing_y]]

6698

\[ {}y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

6712

\[ {}y^{\prime \prime }-4 y^{\prime } = 5 \]

[[_2nd_order, _missing_x]]

6772

\[ {}y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

6773

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x = \frac {2}{x^{3}} \]

[[_2nd_order, _missing_y]]

6774

\[ {}x y^{\prime \prime }-y^{\prime } = -\frac {2}{x}-\ln \left (x \right ) \]

[[_2nd_order, _missing_y]]

6880

\[ {}y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

[[_2nd_order, _missing_x]]

6910

\[ {}x y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

6927

\[ {}y^{\prime \prime } = f \left (x \right ) \]

[[_2nd_order, _quadrature]]

6987

\[ {}x y^{\prime \prime }-y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

6988

\[ {}y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_x]]

7551

\[ {}u^{\prime \prime }-\cot \left (\theta \right ) u^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

7581

\[ {}y^{\prime \prime } = x +2 \]

[[_2nd_order, _quadrature]]

7589

\[ {}y^{\prime \prime } = 3 x +1 \]

[[_2nd_order, _quadrature]]

7615

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

7759

\[ {}y^{\prime \prime }+y^{\prime } = 1 \]

[[_2nd_order, _missing_x]]

7760

\[ {}y^{\prime \prime }+{\mathrm e}^{x} y^{\prime } = {\mathrm e}^{x} \]

[[_2nd_order, _missing_y]]

7764

\[ {}x y^{\prime \prime }-2 y^{\prime } = x^{3} \]

[[_2nd_order, _missing_y]]

7765

\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

7823

\[ {}\frac {y^{\prime \prime }}{y^{\prime }} = x^{2} \]

[[_2nd_order, _missing_y]]

7824

\[ {}y^{\prime } y^{\prime \prime } = x \left (x +1\right ) \]
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]

7908

\[ {}x^{2} y^{\prime \prime } = 2 y^{\prime } x +{y^{\prime }}^{2} \]

[[_2nd_order, _missing_y]]

7911

\[ {}x y^{\prime \prime }+y^{\prime } = 4 x \]

[[_2nd_order, _missing_y]]

7915

\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

7916

\[ {}y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

7934

\[ {}x y^{\prime \prime } = y^{\prime }-2 {y^{\prime }}^{3} \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

7936

\[ {}x y^{\prime \prime }-3 y^{\prime } = 5 x \]

[[_2nd_order, _missing_y]]

7977

\[ {}y^{\prime \prime }-2 y^{\prime } = 12 x -10 \]

[[_2nd_order, _missing_y]]

7980

\[ {}y^{\prime \prime }+y^{\prime } = 10 x^{4}+2 \]

[[_2nd_order, _missing_y]]

8053

\[ {}y^{\prime \prime } = \tan \left (x \right ) \]
i.c.

[[_2nd_order, _quadrature]]

8054

\[ {}y^{\prime \prime }-2 y^{\prime } = \ln \left (x \right ) \]
i.c.

[[_2nd_order, _missing_y]]

8223

\[ {}y^{\prime \prime }-y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

8225

\[ {}y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

8362

\[ {}t y^{\prime \prime }-y^{\prime } = 2 t^{2} \]
i.c.

[[_2nd_order, _missing_y]]

8489

\[ {}y^{\prime \prime } = x {y^{\prime }}^{3} \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

8490

\[ {}x^{2} y^{\prime \prime }+{y^{\prime }}^{2}-2 y^{\prime } x = 0 \]
i.c.

[[_2nd_order, _missing_y]]

8491

\[ {}x^{2} y^{\prime \prime }+{y^{\prime }}^{2}-2 y^{\prime } x = 0 \]
i.c.

[[_2nd_order, _missing_y]]

8495

\[ {}2 a y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]]

8496

\[ {}x y^{\prime \prime } = y^{\prime }+x^{5} \]
i.c.

[[_2nd_order, _missing_y]]

8497

\[ {}x y^{\prime \prime }+y^{\prime }+x = 0 \]
i.c.

[[_2nd_order, _missing_y]]

8502

\[ {}\cos \left (x \right ) y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_y]]

8503

\[ {}y^{\prime \prime } = x {y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

8504

\[ {}y^{\prime \prime } = x {y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

8509

\[ {}x^{3} y^{\prime \prime }-x^{2} y^{\prime } = -x^{2}+3 \]

[[_2nd_order, _missing_y]]

8510

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

8511

\[ {}y^{\prime \prime } = {\mathrm e}^{x} {y^{\prime }}^{2} \]

[[_2nd_order, _missing_y]]

8512

\[ {}2 y^{\prime \prime } = {y^{\prime }}^{3} \sin \left (2 x \right ) \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

8513

\[ {}x^{2} y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

8514

\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

8515

\[ {}y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

[[_2nd_order, _missing_x]]

8519

\[ {}x^{2} y^{\prime \prime } = y^{\prime } \left (2 x -y^{\prime }\right ) \]
i.c.

[[_2nd_order, _missing_y]]

8520

\[ {}x^{2} y^{\prime \prime } = y^{\prime } \left (3 x -2 y^{\prime }\right ) \]

[[_2nd_order, _missing_y]]

8521

\[ {}x y^{\prime \prime } = y^{\prime } \left (2-3 y^{\prime } x \right ) \]

[[_2nd_order, _missing_y], _Liouville, [_2nd_order, _reducible, _mu_xy]]

8522

\[ {}x^{4} y^{\prime \prime } = y^{\prime } \left (y^{\prime }+x^{3}\right ) \]
i.c.

[[_2nd_order, _missing_y]]

8523

\[ {}y^{\prime \prime } = 2 x +\left (x^{2}-y^{\prime }\right )^{2} \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_xy]]

8524

\[ {}{y^{\prime \prime }}^{2}-2 y^{\prime \prime }+{y^{\prime }}^{2}-2 y^{\prime } x +x^{2} = 0 \]
i.c.

[[_2nd_order, _missing_y]]

8525

\[ {}{y^{\prime \prime }}^{2}-x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

8526

\[ {}{y^{\prime \prime }}^{3} = 12 y^{\prime } \left (x y^{\prime \prime }-2 y^{\prime }\right ) \]

[[_2nd_order, _missing_y]]

8759

\[ {}t y^{\prime \prime }+4 y^{\prime } = t^{2} \]

[[_2nd_order, _missing_y]]

8760

\[ {}\left (t^{2}+9\right ) y^{\prime \prime }+2 y^{\prime } t = 0 \]
i.c.

[[_2nd_order, _missing_y]]

8762

\[ {}t y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

8763

\[ {}t^{2} y^{\prime \prime }-2 y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

8766

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

8767

\[ {}y^{\prime \prime } = 1 \]

[[_2nd_order, _quadrature]]

8768

\[ {}y^{\prime \prime } = f \left (t \right ) \]

[[_2nd_order, _quadrature]]

8769

\[ {}y^{\prime \prime } = k \]

[[_2nd_order, _quadrature]]

8772

\[ {}y^{\prime \prime } = 4 \sin \left (x \right )-4 \]

[[_2nd_order, _quadrature]]

8879

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

8881

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+x {y^{\prime }}^{2} = 1 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

8883

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

8885

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

9072

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

9073

\[ {}{y^{\prime \prime }}^{2} = 0 \]

[[_2nd_order, _quadrature]]

9075

\[ {}a y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

9076

\[ {}a {y^{\prime \prime }}^{2} = 0 \]

[[_2nd_order, _quadrature]]

9077

\[ {}a {y^{\prime \prime }}^{n} = 0 \]

[[_2nd_order, _quadrature]]

9078

\[ {}y^{\prime \prime } = 1 \]

[[_2nd_order, _quadrature]]

9079

\[ {}{y^{\prime \prime }}^{2} = 1 \]

[[_2nd_order, _quadrature]]

9080

\[ {}y^{\prime \prime } = x \]

[[_2nd_order, _quadrature]]

9081

\[ {}{y^{\prime \prime }}^{2} = x \]

[[_2nd_order, _quadrature]]

9082

\[ {}{y^{\prime \prime }}^{3} = 0 \]

[[_2nd_order, _quadrature]]

9083

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

9084

\[ {}{y^{\prime \prime }}^{2}+y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

9085

\[ {}y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

9086

\[ {}y^{\prime \prime }+y^{\prime } = 1 \]

[[_2nd_order, _missing_x]]

9087

\[ {}{y^{\prime \prime }}^{2}+y^{\prime } = 1 \]

[[_2nd_order, _missing_x]]

9088

\[ {}y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

9089

\[ {}y^{\prime \prime }+y^{\prime } = x \]

[[_2nd_order, _missing_y]]

9090

\[ {}{y^{\prime \prime }}^{2}+y^{\prime } = x \]

[[_2nd_order, _missing_y]]

9091

\[ {}y^{\prime \prime }+{y^{\prime }}^{2} = x \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_xy]]

9102

\[ {}y^{\prime \prime }+y^{\prime } = 1 \]

[[_2nd_order, _missing_x]]

9103

\[ {}y^{\prime \prime }+y^{\prime } = x \]

[[_2nd_order, _missing_y]]

9104

\[ {}y^{\prime \prime }+y^{\prime } = x +1 \]

[[_2nd_order, _missing_y]]

9105

\[ {}y^{\prime \prime }+y^{\prime } = x^{2}+x +1 \]

[[_2nd_order, _missing_y]]

9106

\[ {}y^{\prime \prime }+y^{\prime } = x^{3}+x^{2}+x +1 \]

[[_2nd_order, _missing_y]]

9107

\[ {}y^{\prime \prime }+y^{\prime } = \sin \left (x \right ) \]

[[_2nd_order, _missing_y]]

9108

\[ {}y^{\prime \prime }+y^{\prime } = \cos \left (x \right ) \]

[[_2nd_order, _missing_y]]

9133

\[ {}y^{\prime \prime }+y^{\prime } \sin \left (x \right )+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_y], _Liouville, [_2nd_order, _reducible, _mu_xy]]

10997

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

11075

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

11150

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

11214

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime } x +2 = 0 \]

[[_2nd_order, _missing_y]]

11217

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+2 y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

11218

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+2 y^{\prime } x -a = 0 \]

[[_2nd_order, _missing_y]]

11237

\[ {}x \left (x -1\right ) y^{\prime \prime }+\left (\left (a +1\right ) x +b \right ) y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

11240

\[ {}x \left (x -1\right ) y^{\prime \prime }+\left (\left (\operatorname {a1} +\operatorname {b1} +1\right ) x -\operatorname {d1} \right ) y^{\prime }+\operatorname {a1} \operatorname {b1} \operatorname {d1} = 0 \]

[[_2nd_order, _missing_y]]

11278

\[ {}\left (a^{2} x^{2}-1\right ) y^{\prime \prime }+2 a^{2} x y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

11301

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }+2 x \left (3 x +2\right ) y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

11597

\[ {}y^{\prime \prime } = a \sqrt {1+{y^{\prime }}^{2}} \]

[[_2nd_order, _missing_x]]

11598

\[ {}y^{\prime \prime } = a \sqrt {1+{y^{\prime }}^{2}}+b \]

[[_2nd_order, _missing_x]]

11600

\[ {}y^{\prime \prime } = a \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

[[_2nd_order, _missing_x]]

11601

\[ {}y^{\prime \prime }-2 a x \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

11605

\[ {}8 y^{\prime \prime }+9 {y^{\prime }}^{4} = 0 \]

[[_2nd_order, _missing_x]]

11614

\[ {}2 x y^{\prime \prime }+{y^{\prime }}^{3}+y^{\prime } = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

11621

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

11753

\[ {}a^{2} {y^{\prime \prime }}^{2}-2 a x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

12465

\[ {}y^{\prime \prime }+a \,x^{n} y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

12498

\[ {}x y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c x \left (-c \,x^{2}+a x +b +1\right ) = 0 \]

[[_2nd_order, _missing_y]]

12875

\[ {}y^{\prime \prime }-2 y^{\prime } = {\mathrm e}^{2 x}+1 \]

[[_2nd_order, _missing_y]]

12917

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

12919

\[ {}y^{\prime \prime }+y^{\prime } x = x \]

[[_2nd_order, _missing_y]]

12920

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]

[[_2nd_order, _quadrature]]

12921

\[ {}\left (y^{\prime }-x y^{\prime \prime }\right )^{2} = 1+{y^{\prime \prime }}^{2} \]

[[_2nd_order, _missing_y]]

12936

\[ {}y^{\prime \prime }+2 \cot \left (x \right ) y^{\prime }+2 \tan \left (x \right ) {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_y]]

12941

\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

12942

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x = 2 \]

[[_2nd_order, _missing_y]]

12947

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x} = 0 \]

[[_2nd_order, _missing_y]]

12949

\[ {}y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

12950

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-\frac {y^{\prime }}{x}+x^{2} = 0 \]

[[_2nd_order, _missing_y]]

12967

\[ {}x^{\prime \prime } = -3 \sqrt {t} \]
i.c.

[[_2nd_order, _quadrature]]

12972

\[ {}t x^{\prime \prime }+x^{\prime } = 1 \]
i.c.

[[_2nd_order, _missing_y]]

13001

\[ {}\frac {t x^{\prime \prime }+x^{\prime }}{t} = -2 \]

[[_2nd_order, _missing_y]]

13025

\[ {}x^{\prime \prime }+x^{\prime } = 3 t \]

[[_2nd_order, _missing_y]]

13042

\[ {}x^{\prime \prime }-2 x^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13046

\[ {}x^{\prime \prime }-2 x^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13070

\[ {}x^{\prime \prime }-x^{\prime } = 6+{\mathrm e}^{2 t} \]

[[_2nd_order, _missing_y]]

13078

\[ {}x^{\prime \prime }-2 x^{\prime } = 4 \]
i.c.

[[_2nd_order, _missing_x]]

13089

\[ {}t^{2} x^{\prime \prime }+x^{\prime } t = 0 \]
i.c.

[[_2nd_order, _missing_y]]

13098

\[ {}x^{\prime \prime }+\frac {x^{\prime }}{t} = a \]

[[_2nd_order, _missing_y]]

13683

\[ {}y^{\prime \prime }-4 y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13695

\[ {}x^{\prime \prime }-4 x^{\prime } = t^{2} \]

[[_2nd_order, _missing_y]]

13723

\[ {}x^{\prime \prime }-4 x^{\prime } = \tan \left (t \right ) \]

[[_2nd_order, _missing_y]]

13837

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

13845

\[ {}y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

13848

\[ {}u^{\prime \prime }+\frac {2 u^{\prime }}{r} = 0 \]

[[_2nd_order, _missing_y]]

13857

\[ {}m x^{\prime \prime } = f \left (x^{\prime }\right ) \]

[[_2nd_order, _missing_x]]

13863

\[ {}{y^{\prime \prime }}^{3}+y^{\prime \prime }+1 = x \]

[[_2nd_order, _quadrature]]

13869

\[ {}x y^{\prime \prime } = y^{\prime } \ln \left (\frac {y^{\prime }}{x}\right ) \]

[[_2nd_order, _missing_y]]

14090

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x} = 0 \]

[[_2nd_order, _missing_y]]

14155

\[ {}y^{\prime \prime } = \frac {1}{2 y^{\prime }} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_poly_yn]]

14159

\[ {}x y^{\prime \prime }-y^{\prime } = x^{2} {\mathrm e}^{x} \]
i.c.

[[_2nd_order, _missing_y]]

14161

\[ {}y^{\prime \prime }+y^{\prime } \tan \left (x \right ) = \sin \left (2 x \right ) \]
i.c.

[[_2nd_order, _missing_y]]

14163

\[ {}y^{\prime \prime } = \frac {1}{2 y^{\prime }} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_poly_yn]]

14190

\[ {}y^{\prime \prime }-3 y^{\prime } = 2-6 x \]

[[_2nd_order, _missing_y]]

14256

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

14411

\[ {}x \left (x -3\right ) y^{\prime \prime }+3 y^{\prime } = x^{2} \]
i.c.

[[_2nd_order, _missing_y]]

14412

\[ {}x \left (x -3\right ) y^{\prime \prime }+3 y^{\prime } = x^{2} \]
i.c.

[[_2nd_order, _missing_y]]

14856

\[ {}y^{\prime \prime }+2 y^{\prime } = 3 t +2 \]
i.c.

[[_2nd_order, _missing_y]]

14857

\[ {}y^{\prime \prime }+4 y^{\prime } = 3 t +2 \]
i.c.

[[_2nd_order, _missing_y]]

14913

\[ {}y^{\prime \prime } = \frac {x +1}{x -1} \]

[[_2nd_order, _quadrature]]

14914

\[ {}x^{2} y^{\prime \prime } = 1 \]

[[_2nd_order, _quadrature]]

14917

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

14927

\[ {}y^{\prime \prime } = \sin \left (2 x \right ) \]

[[_2nd_order, _quadrature]]

14928

\[ {}y^{\prime \prime }-3 = x \]

[[_2nd_order, _quadrature]]

14936

\[ {}x y^{\prime \prime }+2 = \sqrt {x} \]
i.c.

[[_2nd_order, _quadrature]]

15138

\[ {}x y^{\prime \prime }+4 y^{\prime } = 18 x^{2} \]

[[_2nd_order, _missing_y]]

15139

\[ {}x y^{\prime \prime } = 2 y^{\prime } \]

[[_2nd_order, _missing_y]]

15140

\[ {}y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_x]]

15141

\[ {}y^{\prime \prime }+2 y^{\prime } = 8 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _missing_y]]

15142

\[ {}x y^{\prime \prime } = y^{\prime }-2 x^{2} y^{\prime } \]

[[_2nd_order, _missing_y]]

15143

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

15144

\[ {}y^{\prime \prime } = 4 x \sqrt {y^{\prime }} \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

15145

\[ {}y^{\prime } y^{\prime \prime } = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]]

15147

\[ {}x y^{\prime \prime } = {y^{\prime }}^{2}-y^{\prime } \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

15148

\[ {}x y^{\prime \prime }-{y^{\prime }}^{2} = 6 x^{5} \]

[[_2nd_order, _missing_y]]

15150

\[ {}y^{\prime \prime } = 2 y^{\prime }-6 \]

[[_2nd_order, _missing_x]]

15152

\[ {}y^{\prime \prime }+4 y^{\prime } = 9 \,{\mathrm e}^{-3 x} \]

[[_2nd_order, _missing_y]]

15160

\[ {}y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_x]]

15163

\[ {}y^{\prime \prime } = 4 x \sqrt {y^{\prime }} \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

15164

\[ {}y^{\prime } y^{\prime \prime } = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]]

15165

\[ {}x y^{\prime \prime } = {y^{\prime }}^{2}-y^{\prime } \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

15166

\[ {}x y^{\prime \prime }-y^{\prime } = 6 x^{5} \]

[[_2nd_order, _missing_y]]

15170

\[ {}y^{\prime \prime }+4 y^{\prime } = 9 \,{\mathrm e}^{-3 x} \]

[[_2nd_order, _missing_y]]

15171

\[ {}y^{\prime \prime } = y^{\prime } \left (y^{\prime }-2\right ) \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

15172

\[ {}x y^{\prime \prime }+4 y^{\prime } = 18 x^{2} \]
i.c.

[[_2nd_order, _missing_y]]

15173

\[ {}x y^{\prime \prime } = 2 y^{\prime } \]
i.c.

[[_2nd_order, _missing_y]]

15174

\[ {}y^{\prime \prime } = y^{\prime } \]
i.c.

[[_2nd_order, _missing_x]]

15175

\[ {}y^{\prime \prime }+2 y^{\prime } = 8 \,{\mathrm e}^{2 x} \]
i.c.

[[_2nd_order, _missing_y]]

15178

\[ {}x y^{\prime \prime }+2 y^{\prime } = 6 \]
i.c.

[[_2nd_order, _missing_y]]

15179

\[ {}2 x y^{\prime } y^{\prime \prime } = {y^{\prime }}^{2}-1 \]
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]

15183

\[ {}y^{\prime \prime } = -2 x {y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

15184

\[ {}y^{\prime \prime } = -2 x {y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

15186

\[ {}y^{\prime \prime } = -2 x {y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

15241

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15247

\[ {}y^{\prime \prime }+3 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

15310

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

15322

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

15364

\[ {}y^{\prime \prime }+3 y^{\prime } = {\mathrm e}^{\frac {x}{2}} \]

[[_2nd_order, _missing_y]]

15368

\[ {}y^{\prime \prime }+3 y^{\prime } = 26 \cos \left (\frac {x}{3}\right )-12 \sin \left (\frac {x}{3}\right ) \]

[[_2nd_order, _missing_y]]

15379

\[ {}y^{\prime \prime } = 6 x \,{\mathrm e}^{x} \sin \left (x \right ) \]

[[_2nd_order, _quadrature]]

15384

\[ {}y^{\prime \prime }+4 y^{\prime } = 20 \]

[[_2nd_order, _missing_x]]

15385

\[ {}y^{\prime \prime }+4 y^{\prime } = x^{2} \]

[[_2nd_order, _missing_y]]

15470

\[ {}2 x y^{\prime \prime }+y^{\prime } = \sqrt {x} \]

[[_2nd_order, _missing_y]]

15479

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

15490

\[ {}2 y^{\prime \prime }-7 y^{\prime }+3 = 0 \]

[[_2nd_order, _missing_x]]

15492

\[ {}x y^{\prime \prime } = 3 y^{\prime } \]

[[_2nd_order, _missing_y]]

15493

\[ {}y^{\prime \prime }-5 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

15505

\[ {}x y^{\prime \prime }-y^{\prime } = -3 x {y^{\prime }}^{3} \]

[[_2nd_order, _missing_y]]

15723

\[ {}y^{\prime \prime }+9 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

15752

\[ {}y^{\prime \prime }+9 y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16135

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

16137

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

16150

\[ {}y^{\prime \prime }-y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16151

\[ {}3 y^{\prime \prime }-y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16185

\[ {}y^{\prime \prime }+2 y^{\prime } = 3-4 t \]

[[_2nd_order, _missing_y]]

16190

\[ {}y^{\prime \prime } = 3 t^{4}-2 t \]

[[_2nd_order, _quadrature]]

16200

\[ {}y^{\prime \prime }-2 y^{\prime } = 52 \sin \left (3 t \right ) \]

[[_2nd_order, _missing_y]]

16208

\[ {}y^{\prime \prime }+4 y^{\prime } = 8 \,{\mathrm e}^{4 t}-4 \,{\mathrm e}^{-4 t} \]

[[_2nd_order, _missing_y]]

16209

\[ {}y^{\prime \prime }-3 y^{\prime } = t^{2}-{\mathrm e}^{3 t} \]

[[_2nd_order, _missing_y]]

16210

\[ {}y^{\prime \prime }+4 y^{\prime } = -24 t -6-4 t \,{\mathrm e}^{-4 t}+{\mathrm e}^{-4 t} \]

[[_2nd_order, _missing_y]]

16211

\[ {}y^{\prime \prime }-3 y^{\prime } = t^{2}-{\mathrm e}^{3 t} \]

[[_2nd_order, _missing_y]]

16212

\[ {}y^{\prime \prime } = t^{2}+{\mathrm e}^{t}+\sin \left (t \right ) \]

[[_2nd_order, _quadrature]]

16213

\[ {}y^{\prime \prime }+3 y^{\prime } = 18 \]
i.c.

[[_2nd_order, _missing_x]]

16221

\[ {}y^{\prime \prime }-3 y^{\prime } = -{\mathrm e}^{3 t}-2 t \]
i.c.

[[_2nd_order, _missing_y]]

16222

\[ {}y^{\prime \prime }-y^{\prime } = -3 t -4 \,{\mathrm e}^{2 t} t^{2} \]
i.c.

[[_2nd_order, _missing_y]]

16223

\[ {}y^{\prime \prime }-2 y^{\prime } = 2 t^{2} \]
i.c.

[[_2nd_order, _missing_y]]

16224

\[ {}y^{\prime \prime }+4 y^{\prime } = -24 t -6-4 t \,{\mathrm e}^{-4 t}+{\mathrm e}^{-4 t} \]
i.c.

[[_2nd_order, _missing_y]]

16225

\[ {}y^{\prime \prime }-3 y^{\prime } = {\mathrm e}^{-3 t}-{\mathrm e}^{3 t} \]
i.c.

[[_2nd_order, _missing_y]]

16238

\[ {}y^{\prime \prime }+16 y^{\prime } = t \]

[[_2nd_order, _missing_y]]

16505

\[ {}y^{\prime \prime }+5 y^{\prime } = 5 t^{2} \]

[[_2nd_order, _missing_y]]

16506

\[ {}y^{\prime \prime }-4 y^{\prime } = -3 \sin \left (t \right ) \]

[[_2nd_order, _missing_y]]

16509

\[ {}y^{\prime \prime }-2 y^{\prime } = \frac {1}{1+{\mathrm e}^{2 t}} \]

[[_2nd_order, _missing_y]]

16837

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

16838

\[ {}\left (x -1\right ) y^{\prime \prime } = 1 \]

[[_2nd_order, _quadrature]]

16842

\[ {}y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

[[_2nd_order, _missing_x]]

16846

\[ {}y^{\prime \prime } \left (x +2\right )^{5} = 1 \]
i.c.

[[_2nd_order, _quadrature]]

16847

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]
i.c.

[[_2nd_order, _quadrature]]

16848

\[ {}y^{\prime \prime } = 2 x \ln \left (x \right ) \]

[[_2nd_order, _quadrature]]

16849

\[ {}x y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_y]]

16850

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

16851

\[ {}x y^{\prime \prime } = \left (2 x^{2}+1\right ) y^{\prime } \]

[[_2nd_order, _missing_y]]

16852

\[ {}x y^{\prime \prime } = y^{\prime }+x^{2} \]

[[_2nd_order, _missing_y]]

16853

\[ {}x \ln \left (x \right ) y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_y]]

16858

\[ {}y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

[[_2nd_order, _missing_x]]

16859

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

16860

\[ {}y^{\prime \prime } = \sqrt {1-{y^{\prime }}^{2}} \]

[[_2nd_order, _missing_x]]

16861

\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

16862

\[ {}y^{\prime \prime } = \sqrt {y^{\prime }+1} \]

[[_2nd_order, _missing_x]]

16863

\[ {}y^{\prime \prime } = y^{\prime } \ln \left (y^{\prime }\right ) \]
i.c.

[[_2nd_order, _missing_x]]

16864

\[ {}y^{\prime \prime }+y^{\prime }+2 = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16865

\[ {}y^{\prime \prime } = y^{\prime } \left (y^{\prime }+1\right ) \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

16866

\[ {}3 y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

[[_2nd_order, _missing_x]]

16903

\[ {}y^{\prime \prime }+3 y^{\prime } = 3 \]

[[_2nd_order, _missing_x]]

16904

\[ {}y^{\prime \prime }-7 y^{\prime } = \left (x -1\right )^{2} \]

[[_2nd_order, _missing_y]]

16905

\[ {}y^{\prime \prime }+3 y^{\prime } = {\mathrm e}^{x} \]

[[_2nd_order, _missing_y]]

16906

\[ {}y^{\prime \prime }+7 y^{\prime } = {\mathrm e}^{-7 x} \]

[[_2nd_order, _missing_y]]

16909

\[ {}4 y^{\prime \prime }-3 y^{\prime } = x \,{\mathrm e}^{\frac {3 x}{4}} \]

[[_2nd_order, _missing_y]]

16910

\[ {}y^{\prime \prime }-4 y^{\prime } = x \,{\mathrm e}^{4 x} \]

[[_2nd_order, _missing_y]]

16940

\[ {}y^{\prime \prime }+2 y^{\prime } = -2 \]

[[_2nd_order, _missing_x]]

16948

\[ {}y^{\prime \prime }+8 y^{\prime } = 8 x \]

[[_2nd_order, _missing_y]]

16952

\[ {}7 y^{\prime \prime }-y^{\prime } = 14 x \]

[[_2nd_order, _missing_y]]

16953

\[ {}y^{\prime \prime }+3 y^{\prime } = 3 x \,{\mathrm e}^{-3 x} \]

[[_2nd_order, _missing_y]]

16962

\[ {}y^{\prime \prime }-y^{\prime } = {\mathrm e}^{x} \sin \left (x \right ) \]

[[_2nd_order, _missing_y]]

16963

\[ {}y^{\prime \prime }+2 y^{\prime } = 4 \,{\mathrm e}^{x} \left (\cos \left (x \right )+\sin \left (x \right )\right ) \]

[[_2nd_order, _missing_y]]

16965

\[ {}4 y^{\prime \prime }+8 y^{\prime } = x \sin \left (x \right ) \]

[[_2nd_order, _missing_y]]

16980

\[ {}y^{\prime \prime }+4 y^{\prime } = x +{\mathrm e}^{-4 x} \]

[[_2nd_order, _missing_y]]

16986

\[ {}y^{\prime \prime }-4 y^{\prime } = 2 \cos \left (4 x \right )^{2} \]

[[_2nd_order, _missing_y]]

16988

\[ {}y^{\prime \prime }-3 y^{\prime } = 18 x -10 \cos \left (x \right ) \]

[[_2nd_order, _missing_y]]

16995

\[ {}y^{\prime \prime }+y^{\prime } = \cos \left (x \right )^{2}+{\mathrm e}^{x}+x^{2} \]

[[_2nd_order, _missing_y]]

16998

\[ {}y^{\prime \prime }+y^{\prime } = x^{2}-{\mathrm e}^{-x}+{\mathrm e}^{x} \]

[[_2nd_order, _missing_y]]

17005

\[ {}y^{\prime \prime }-3 y^{\prime } = 1+{\mathrm e}^{x}+\cos \left (x \right )+\sin \left (x \right ) \]

[[_2nd_order, _missing_y]]

17011

\[ {}y^{\prime \prime }+2 y^{\prime }+1 = 3 \sin \left (2 x \right )+\cos \left (x \right ) \]

[[_2nd_order, _missing_y]]

17023

\[ {}y^{\prime \prime }+y^{\prime } = {\mathrm e}^{-x} \]
i.c.

[[_2nd_order, _missing_y]]

17030

\[ {}y^{\prime \prime }-y^{\prime } = -5 \,{\mathrm e}^{-x} \left (\cos \left (x \right )+\sin \left (x \right )\right ) \]
i.c.

[[_2nd_order, _missing_y]]

17049

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

17078

\[ {}y^{\prime \prime }+y^{\prime } = \frac {1}{{\mathrm e}^{x}+1} \]

[[_2nd_order, _missing_y]]

17084

\[ {}y^{\prime \prime }+y^{\prime } = {\mathrm e}^{2 x} \cos \left ({\mathrm e}^{x}\right ) \]

[[_2nd_order, _missing_y]]

17086

\[ {}x y^{\prime \prime }-\left (2 x^{2}+1\right ) y^{\prime } = 4 x^{3} {\mathrm e}^{x^{2}} \]

[[_2nd_order, _missing_y]]

17087

\[ {}y^{\prime \prime }-2 y^{\prime } \tan \left (x \right ) = 1 \]

[[_2nd_order, _missing_y]]

17088

\[ {}x \ln \left (x \right ) y^{\prime \prime }-y^{\prime } = \ln \left (x \right )^{2} \]

[[_2nd_order, _missing_y]]

17089

\[ {}x y^{\prime \prime }+\left (2 x -1\right ) y^{\prime } = -4 x^{2} \]

[[_2nd_order, _missing_y]]

17090

\[ {}y^{\prime \prime }+y^{\prime } \tan \left (x \right ) = \cos \left (x \right ) \cot \left (x \right ) \]

[[_2nd_order, _missing_y]]

17093

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x = \frac {1}{x^{2}+1} \]
i.c.

[[_2nd_order, _missing_y]]

17117

\[ {}y^{\prime \prime }+\alpha y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17124

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

17524

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

17546

\[ {}y^{\prime \prime }+3 y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17574

\[ {}y^{\prime \prime }+2 y^{\prime } = 3+4 \sin \left (2 t \right ) \]

[[_2nd_order, _missing_y]]

17592

\[ {}y^{\prime \prime }+3 y^{\prime } = 2 t^{4}+t^{2} {\mathrm e}^{-3 t}+\sin \left (3 t \right ) \]

[[_2nd_order, _missing_y]]

17822

\[ {}y^{\prime \prime } = \sin \left (x \right ) \]

[[_2nd_order, _quadrature]]

17915

\[ {}a^{2} y^{\prime \prime } = 2 x \sqrt {1+{y^{\prime }}^{2}} \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

17920

\[ {}{y^{\prime \prime }}^{2}+2 x y^{\prime \prime }-y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

17921

\[ {}{y^{\prime \prime }}^{2}-2 x y^{\prime \prime }-y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

18117

\[ {}x y^{\prime \prime } = {y^{\prime }}^{3}+y^{\prime } \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

18119

\[ {}x^{2} y^{\prime \prime } = 2 y^{\prime } x +{y^{\prime }}^{2} \]

[[_2nd_order, _missing_y]]

18122

\[ {}x y^{\prime \prime }+y^{\prime } = 4 x \]

[[_2nd_order, _missing_y]]

18126

\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

18127

\[ {}y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

18138

\[ {}y^{\prime \prime }+2 x {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

18143

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x = 1 \]

[[_2nd_order, _missing_y]]

18150

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

18162

\[ {}x^{2} y^{\prime \prime } = y^{\prime } \left (3 x -2 y^{\prime }\right ) \]

[[_2nd_order, _missing_y]]

18173

\[ {}x^{2} y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

18178

\[ {}x y^{\prime \prime }-y^{\prime } = 3 x^{2} \]

[[_2nd_order, _missing_y]]

18179

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

18182

\[ {}y^{\prime \prime }-2 y^{\prime } = 6 \]

[[_2nd_order, _missing_x]]

18184

\[ {}y^{\prime \prime } = {\mathrm e}^{x} \]

[[_2nd_order, _quadrature]]

18185

\[ {}y^{\prime \prime }-2 y^{\prime } = 4 \]

[[_2nd_order, _missing_x]]

18188

\[ {}y^{\prime \prime }+2 y^{\prime } = 6 \,{\mathrm e}^{x} \]

[[_2nd_order, _missing_y]]

18198

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

18199

\[ {}y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

18225

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

18259

\[ {}y^{\prime \prime }-2 y^{\prime } = 12 x -10 \]

[[_2nd_order, _missing_y]]

18262

\[ {}y^{\prime \prime }+y^{\prime } = 10 x^{4}+2 \]

[[_2nd_order, _missing_y]]

18449

\[ {}x^{\prime \prime }+3 x^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

18496

\[ {}y^{\prime \prime } = \frac {m \sqrt {1+{y^{\prime }}^{2}}}{k} \]

[[_2nd_order, _missing_x]]

18525

\[ {}y^{\prime \prime } = c \left (1+{y^{\prime }}^{2}\right ) \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

18526

\[ {}y^{\prime \prime } = c \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

[[_2nd_order, _missing_x]]

18529

\[ {}1+{y^{\prime }}^{2}+\frac {m y^{\prime \prime }}{\sqrt {1+{y^{\prime }}^{2}}} = 0 \]

[[_2nd_order, _missing_x]]

18537

\[ {}v^{\prime \prime }+\frac {2 v^{\prime }}{r} = 0 \]

[[_2nd_order, _missing_y]]

18540

\[ {}\left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} = r y^{\prime \prime } \]

[[_2nd_order, _missing_x]]

18545

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

18607

\[ {}e y^{\prime \prime } = \frac {P \left (\frac {L}{2}-x \right )}{2} \]

[[_2nd_order, _quadrature]]

18608

\[ {}e y^{\prime \prime } = \frac {w \left (\frac {L^{2}}{4}-x^{2}\right )}{2} \]

[[_2nd_order, _quadrature]]

18609

\[ {}e y^{\prime \prime } = -\frac {\left (w L +P \right ) x}{2}-\frac {w \,x^{2}}{2} \]

[[_2nd_order, _quadrature]]

18610

\[ {}e y^{\prime \prime } = -P \left (L -x \right ) \]

[[_2nd_order, _quadrature]]

18611

\[ {}e y^{\prime \prime } = -P L +\left (w L +P \right ) x -\frac {w \left (L^{2}+x^{2}\right )}{2} \]

[[_2nd_order, _quadrature]]

18618

\[ {}x y^{\prime \prime }+2 y^{\prime } = 2 x \]

[[_2nd_order, _missing_y]]

18627

\[ {}y^{\prime \prime } = \cos \left (x \right ) \]

[[_2nd_order, _quadrature]]

18628

\[ {}x^{2} y^{\prime \prime } = \ln \left (x \right ) \]

[[_2nd_order, _quadrature]]

18633

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-1-{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

18634

\[ {}x y^{\prime \prime }+3 y^{\prime } = 3 x \]

[[_2nd_order, _missing_y]]

18635

\[ {}x = y^{\prime \prime }+y^{\prime } \]

[[_2nd_order, _missing_y]]

18638

\[ {}V^{\prime \prime }+\frac {2 V^{\prime }}{r} = 0 \]

[[_2nd_order, _missing_y]]

18639

\[ {}V^{\prime \prime }+\frac {V^{\prime }}{r} = 0 \]

[[_2nd_order, _missing_y]]

18654

\[ {}v^{\prime \prime }+\frac {2 v^{\prime }}{r} = 0 \]

[[_2nd_order, _missing_y]]

18885

\[ {}y^{\prime \prime } = x^{2} \sin \left (x \right ) \]

[[_2nd_order, _quadrature]]

18891

\[ {}y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

[[_2nd_order, _missing_x]]

18892

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

18894

\[ {}y^{\prime \prime }-a {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

18897

\[ {}y^{\prime \prime }+2 y^{\prime }+4 {y^{\prime }}^{3} = 0 \]

[[_2nd_order, _missing_x]]

18901

\[ {}a^{2} y^{\prime \prime } y^{\prime } = x \]

[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]

18902

\[ {}a y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

[[_2nd_order, _missing_x]]

18903

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

18912

\[ {}y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x \left (a^{2}-x^{2}\right )} = \frac {x^{2}}{a \left (a^{2}-x^{2}\right )} \]

[[_2nd_order, _missing_y]]

18918

\[ {}y^{\prime \prime }+y^{\prime }+{y^{\prime }}^{3} = 0 \]

[[_2nd_order, _missing_x]]

18919

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x = 2 \]

[[_2nd_order, _missing_y]]

18922

\[ {}y^{\prime \prime } = \frac {a}{x} \]

[[_2nd_order, _quadrature]]

18925

\[ {}y^{\prime \prime }+y^{\prime } = {\mathrm e}^{x} \]

[[_2nd_order, _missing_y]]

18928

\[ {}a y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_x]]

18931

\[ {}y^{\prime \prime } = a^{2}+k^{2} {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

18937

\[ {}a^{2} {y^{\prime \prime }}^{2} = 1+{y^{\prime }}^{2} \]

[[_2nd_order, _missing_x]]

18975

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{r} = 0 \]

[[_2nd_order, _missing_y]]

19261

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x = \ln \left (x \right ) \]

[[_2nd_order, _missing_y]]

19275

\[ {}\left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime } = \left (2 x +3\right ) \left (4+2 x \right ) \]

[[_2nd_order, _missing_y]]

19295

\[ {}y^{\prime \prime } = \sin \left (x \right )+x \]

[[_2nd_order, _quadrature]]

19296

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]

[[_2nd_order, _quadrature]]

19297

\[ {}\cos \left (x \right )^{2} y^{\prime \prime } = 1 \]

[[_2nd_order, _quadrature]]

19299

\[ {}y^{\prime \prime } = \frac {a}{x} \]

[[_2nd_order, _quadrature]]

19301

\[ {}y^{\prime \prime } \sqrt {a^{2}+x^{2}} = x \]

[[_2nd_order, _quadrature]]

19302

\[ {}x^{2} y^{\prime \prime } = \ln \left (x \right ) \]

[[_2nd_order, _quadrature]]

19309

\[ {}y^{\prime \prime } = y^{\prime } x \]

[[_2nd_order, _missing_y]]

19310

\[ {}y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

[[_2nd_order, _missing_x]]

19311

\[ {}y^{\prime \prime }+y^{\prime } = {\mathrm e}^{x} \]

[[_2nd_order, _missing_y]]

19312

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x} = 0 \]

[[_2nd_order, _missing_y]]

19314

\[ {}y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x \left (a^{2}-x^{2}\right )} = \frac {x^{2}}{a \left (a^{2}-x^{2}\right )} \]

[[_2nd_order, _missing_y]]

19315

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +a x = 0 \]

[[_2nd_order, _missing_y]]

19316

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x = a x \]

[[_2nd_order, _missing_y]]

19317

\[ {}x y^{\prime \prime }+x {y^{\prime }}^{2}-y^{\prime } = 0 \]

[[_2nd_order, _missing_y], _Liouville, [_2nd_order, _reducible, _mu_xy]]

19319

\[ {}y^{\prime }-x y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x}+\frac {x^{2}}{a} = 0 \]

[[_2nd_order, _missing_y]]

19320

\[ {}x y^{\prime \prime }+y^{\prime } = x \]

[[_2nd_order, _missing_y]]

19321

\[ {}\left (a^{2}-x^{2}\right ) y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x}+\frac {x^{2}}{a} = 0 \]

[[_2nd_order, _missing_y]]

19325

\[ {}y^{\prime \prime }+2 y^{\prime }+4 {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

19326

\[ {}y^{\prime \prime } = a {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

19329

\[ {}a y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_x]]

19330

\[ {}a^{2} y^{\prime \prime } y^{\prime } = x \]

[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]

19332

\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

19333

\[ {}a y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

[[_2nd_order, _missing_x]]

19334

\[ {}y^{\prime \prime } = a^{2}+k^{2} {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

19335

\[ {}a^{2} {y^{\prime \prime }}^{2} = 1+{y^{\prime }}^{2} \]

[[_2nd_order, _missing_x]]

19336

\[ {}y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

19357

\[ {}-a y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

[[_2nd_order, _missing_x]]

19359

\[ {}{\mathrm e}^{x} \left (x y^{\prime \prime }-y^{\prime }\right ) = x^{3} \]

[[_2nd_order, _missing_y]]

19360

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x = 2 \]

[[_2nd_order, _missing_y]]

19532

\[ {}y^{\prime \prime } = x^{2} \sin \left (x \right ) \]

[[_2nd_order, _quadrature]]

19533

\[ {}y^{\prime \prime } = \sec \left (x \right )^{2} \]

[[_2nd_order, _quadrature]]

19534

\[ {}y^{\prime \prime }+y^{\prime }+{y^{\prime }}^{3} = 0 \]

[[_2nd_order, _missing_x]]

19535

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

19539

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]