2.6.3 Problem 3 (eq 41)
Internal
problem
ID
[19738]
Book
:
Elementary
Differential
Equations.
By
Thornton
C.
Fry.
D
Van
Nostrand.
NY.
First
Edition
(1929)
Section
:
Chapter
IV.
Methods
of
solution:
First
order
equations.
section
33.
Problems
at
page
91
Problem
number
:
3
(eq
41)
Date
solved
:
Thursday, December 11, 2025 at 01:51:30 PM
CAS
classification
:
[[_2nd_order, _missing_x]]
2.6.3.1 second order ode missing x
3.249 (sec)
\begin{align*}
y^{\prime \prime }&=\frac {m \sqrt {1+{y^{\prime }}^{2}}}{k} \\
\end{align*}
Entering second order ode missing \(x\) solverThis is missing independent variable second order ode.
Solved by reduction of order by using substitution which makes the dependent variable \(y\) an
independent variable. Using \begin{align*} y' &= p \end{align*}
Then
\begin{align*} y'' &= \frac {dp}{dx}\\ &= \frac {dp}{dy}\frac {dy}{dx}\\ &= p \frac {dp}{dy} \end{align*}
Hence the ode becomes
\begin{align*} p \left (y \right ) \left (\frac {d}{d y}p \left (y \right )\right ) = \frac {m \sqrt {1+p \left (y \right )^{2}}}{k} \end{align*}
Which is now solved as first order ode for \(p(y)\).
Entering first order ode autonomous solverIntegrating gives
\begin{align*} \int \frac {k p}{m \sqrt {p^{2}+1}}d p &= dy\\ \frac {\sqrt {p^{2}+1}\, k}{m}&= y +c_1 \end{align*}
Singular solutions are found by solving
\begin{align*} \frac {m \sqrt {p^{2}+1}}{k p}&= 0 \end{align*}
for \(p\). This is because we had to divide by this in the above step. This gives the following singular
solution(s), which also have to satisfy the given ODE.
\begin{align*} p = -i\\ p = i \end{align*}
For solution (1) found earlier, since \(p=y^{\prime }\) then we now have a new first order ode to solve which is
\begin{align*} \frac {\sqrt {1+{y^{\prime }}^{2}}\, k}{m} = y+c_1 \end{align*}
Entering first order ode dAlembert solverLet \(p=y^{\prime }\) the ode becomes
\begin{align*} \frac {\sqrt {p^{2}+1}\, k}{m} = y +c_1 \end{align*}
Solving for \(y\) from the above results in
\begin{align*}
\tag{1} y &= \frac {\sqrt {p^{2}+1}\, k -c_1 m}{m} \\
\end{align*}
This has the form \begin{align*} y=x f(p)+g(p)\tag {*} \end{align*}
Where \(f,g\) are functions of \(p=y'(x)\). The above ode is dAlembert ode which is now solved.
Taking derivative of (*) w.r.t. \(x\) gives
\begin{align*} p &= f+(x f'+g') \frac {dp}{dx}\\ p-f &= (x f'+g') \frac {dp}{dx}\tag {2} \end{align*}
Comparing the form \(y=x f + g\) to (1A) shows that
\begin{align*} f &= 0\\ g &= \frac {\sqrt {p^{2}+1}\, k -c_1 m}{m} \end{align*}
Hence (2) becomes
\begin{equation}
\tag{2A} p = \frac {k p p^{\prime }\left (x \right )}{\sqrt {p^{2}+1}\, m}
\end{equation}
The singular solution is found by setting \(\frac {dp}{dx}=0\) in the above which gives
\begin{align*} p = 0 \end{align*}
Solving the above for \(p\) results in
\begin{align*} p_{1} &=0 \end{align*}
Substituting these in (1A) and keeping singular solution that verifies the ode gives
\begin{align*} y = \frac {-c_1 m +k}{m} \end{align*}
The general solution is found when \( \frac { \mathop {\mathrm {d}p}}{\mathop {\mathrm {d}x}}\neq 0\). From eq. (2A). This results in
\begin{equation}
\tag{3} p^{\prime }\left (x \right ) = \frac {\sqrt {p \left (x \right )^{2}+1}\, m}{k}
\end{equation}
This ODE is now solved for \(p \left (x \right )\).
No inversion is needed.
Integrating gives
\begin{align*} \int \frac {k}{\sqrt {p^{2}+1}\, m}d p &= dx\\ \frac {k \,\operatorname {arcsinh}\left (p \right )}{m}&= x +c_2 \end{align*}
Singular solutions are found by solving
\begin{align*} \frac {\sqrt {p^{2}+1}\, m}{k}&= 0 \end{align*}
for \(p \left (x \right )\). This is because we had to divide by this in the above step. This gives the following singular
solution(s), which also have to satisfy the given ODE.
\begin{align*} p \left (x \right ) = -i\\ p \left (x \right ) = i \end{align*}
Substituing the above solution for \(p\) in (2A) gives
\begin{align*}
y &= \frac {\sqrt {\sinh \left (\frac {m \left (x +c_2 \right )}{k}\right )^{2}+1}\, k -c_1 m}{m} \\
y &= -c_1 \\
y &= -c_1 \\
\end{align*}
Simplifying the above gives \begin{align*}
y &= \frac {-c_1 m +k}{m} \\
y &= \frac {-c_1 m +k \sqrt {\frac {1}{2}+\frac {\cosh \left (\frac {2 m \left (x +c_2 \right )}{k}\right )}{2}}}{m} \\
y &= -c_1 \\
y &= -c_1 \\
\end{align*}
The solution \[
y = -c_1
\]
was
found not to satisfy the ode or the IC. Hence it is removed. For solution (2) found earlier, since \(p=y^{\prime }\)
then we now have a new first order ode to solve which is \begin{align*} y^{\prime } = -i \end{align*}
Entering first order ode quadrature solverSince the ode has the form \(y^{\prime }=f(x)\), then we only need to
integrate \(f(x)\).
\begin{align*} \int {dy} &= \int {-i\, dx}\\ y &= -i x + c_3 \end{align*}
For solution (3) found earlier, since \(p=y^{\prime }\) then we now have a new first order ode to solve which is
\begin{align*} y^{\prime } = i \end{align*}
Entering first order ode quadrature solverSince the ode has the form \(y^{\prime }=f(x)\), then we only need to
integrate \(f(x)\).
\begin{align*} \int {dy} &= \int {i\, dx}\\ y &= i x + c_4 \end{align*}
The solution
\[
y = \frac {-c_1 m +k}{m}
\]
was found not to satisfy the ode or the IC. Hence it is removed.
Summary of solutions found
\begin{align*}
y &= \frac {-c_1 m +k \sqrt {\frac {1}{2}+\frac {\cosh \left (\frac {2 m \left (x +c_2 \right )}{k}\right )}{2}}}{m} \\
y &= -i x +c_3 \\
y &= i x +c_4 \\
\end{align*}
2.6.3.2 second order ode missing y
0.512 (sec)
\begin{align*}
y^{\prime \prime }&=\frac {m \sqrt {1+{y^{\prime }}^{2}}}{k} \\
\end{align*}
Entering second order ode missing \(y\) solverThis is second order ode with missing dependent
variable \(y\). Let \begin{align*} u(x) &= y^{\prime } \end{align*}
Then
\begin{align*} u'(x) &= y^{\prime \prime } \end{align*}
Hence the ode becomes
\begin{align*} u^{\prime }\left (x \right )-\frac {m \sqrt {1+u \left (x \right )^{2}}}{k} = 0 \end{align*}
Which is now solved for \(u(x)\) as first order ode.
Entering first order ode autonomous solverIntegrating gives
\begin{align*} \int \frac {k}{m \sqrt {u^{2}+1}}d u &= dx\\ \frac {k \,\operatorname {arcsinh}\left (u \right )}{m}&= x +c_1 \end{align*}
Singular solutions are found by solving
\begin{align*} \frac {m \sqrt {u^{2}+1}}{k}&= 0 \end{align*}
for \(u \left (x \right )\). This is because we had to divide by this in the above step. This gives the following singular
solution(s), which also have to satisfy the given ODE.
\begin{align*} u \left (x \right ) = -i\\ u \left (x \right ) = i \end{align*}
Solving for \(u \left (x \right )\) gives
\begin{align*}
u \left (x \right ) &= -i \\
u \left (x \right ) &= i \\
u \left (x \right ) &= \sinh \left (\frac {m \left (x +c_1 \right )}{k}\right ) \\
\end{align*}
In summary, these are the solution found for \(y\) \begin{align*}
u \left (x \right ) &= -i \\
u \left (x \right ) &= i \\
u \left (x \right ) &= \sinh \left (\frac {m \left (x +c_1 \right )}{k}\right ) \\
\end{align*}
For solution \(u \left (x \right ) = -i\), since \(u=y^{\prime }\) then we
now have a new first order ode to solve which is \begin{align*} y^{\prime } = -i \end{align*}
Entering first order ode quadrature solverSince the ode has the form \(y^{\prime }=f(x)\), then we only need to
integrate \(f(x)\).
\begin{align*} \int {dy} &= \int {-i\, dx}\\ y &= -i x + c_2 \end{align*}
In summary, these are the solution found for \((y)\)
\begin{align*}
y &= -i x +c_2 \\
\end{align*}
For solution \(u \left (x \right ) = i\), since \(u=y^{\prime }\) then we now have a new first
order ode to solve which is \begin{align*} y^{\prime } = i \end{align*}
Entering first order ode quadrature solverSince the ode has the form \(y^{\prime }=f(x)\), then we only need to
integrate \(f(x)\).
\begin{align*} \int {dy} &= \int {i\, dx}\\ y &= i x + c_3 \end{align*}
In summary, these are the solution found for \((y)\)
\begin{align*}
y &= i x +c_3 \\
\end{align*}
For solution \(u \left (x \right ) = \sinh \left (\frac {m \left (x +c_1 \right )}{k}\right )\), since \(u=y^{\prime }\) then we now have a new first
order ode to solve which is \begin{align*} y^{\prime } = \sinh \left (\frac {m \left (x +c_1 \right )}{k}\right ) \end{align*}
Entering first order ode quadrature solverSince the ode has the form \(y^{\prime }=f(x)\), then we only need to
integrate \(f(x)\).
\begin{align*} \int {dy} &= \int {\sinh \left (\frac {m \left (x +c_1 \right )}{k}\right )\, dx}\\ y &= \frac {k \cosh \left (\frac {m x}{k}+\frac {c_1 m}{k}\right )}{m} + c_4 \end{align*}
\begin{align*} y&= \frac {k \cosh \left (\frac {m \left (x +c_1 \right )}{k}\right )}{m}+c_4 \end{align*}
In summary, these are the solution found for \((y)\)
\begin{align*}
y &= \frac {k \cosh \left (\frac {m \left (x +c_1 \right )}{k}\right )}{m}+c_4 \\
\end{align*}
Summary of solutions found
\begin{align*}
y &= -i x +c_2 \\
y &= i x +c_3 \\
y &= \frac {k \cosh \left (\frac {m \left (x +c_1 \right )}{k}\right )}{m}+c_4 \\
\end{align*}
2.6.3.3 ✓ Maple. Time used: 0.293 (sec). Leaf size: 38
ode:=diff(diff(y(x),x),x) = m/k*(1+diff(y(x),x)^2)^(1/2);
dsolve(ode,y(x), singsol=all);
\begin{align*}
y &= -i x +c_{1} \\
y &= i x +c_{1} \\
y &= \frac {k \cosh \left (\frac {m \left (c_{1} +x \right )}{k}\right )}{m}+c_{2} \\
\end{align*}
Maple trace
Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
-> Calling odsolve with the ODE, diff(diff(diff(y(x),x),x),x)-m^2/k^2*diff(y(x)
,x), y(x)
*** Sublevel 2 ***
Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
-> Computing symmetries using: way = 3
-> Calling odsolve with the ODE, diff(_b(_a),_a) = m/k*(1+_b(_a)^2)^(1/2), _b(
_a), HINT = [[1, 0]]
*** Sublevel 2 ***
symmetry methods on request
1st order, trying reduction of order with given symmetries:
[1, 0]
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- differential order: 2; canonical coordinates successful
<- differential order 2; missing variables successful
Maple step by step
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \frac {d^{2}}{d x^{2}}y \left (x \right )=\frac {m \sqrt {1+\left (\frac {d}{d x}y \left (x \right )\right )^{2}}}{k} \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & \frac {d^{2}}{d x^{2}}y \left (x \right ) \\ \bullet & {} & \textrm {Make substitution}\hspace {3pt} u =\frac {d}{d x}y \left (x \right )\hspace {3pt}\textrm {to reduce order of ODE}\hspace {3pt} \\ {} & {} & \frac {d}{d x}u \left (x \right )=\frac {m \sqrt {1+u \left (x \right )^{2}}}{k} \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d x}u \left (x \right )=\frac {m \sqrt {1+u \left (x \right )^{2}}}{k} \\ \bullet & {} & \textrm {Separate variables}\hspace {3pt} \\ {} & {} & \frac {\frac {d}{d x}u \left (x \right )}{\sqrt {1+u \left (x \right )^{2}}}=\frac {m}{k} \\ \bullet & {} & \textrm {Integrate both sides with respect to}\hspace {3pt} x \\ {} & {} & \int \frac {\frac {d}{d x}u \left (x \right )}{\sqrt {1+u \left (x \right )^{2}}}d x =\int \frac {m}{k}d x +\mathit {C1} \\ \bullet & {} & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & \mathrm {arcsinh}\left (u \left (x \right )\right )=\frac {m x}{k}+\mathit {C1} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} u \left (x \right ) \\ {} & {} & u \left (x \right )=\sinh \left (\frac {\mathit {C1} k +m x}{k}\right ) \\ \bullet & {} & \textrm {Redefine the integration constant(s)}\hspace {3pt} \\ {} & {} & u \left (x \right )=\sinh \left (\frac {m x}{k}+\mathit {C1} \right ) \\ \bullet & {} & \textrm {Solve 1st ODE for}\hspace {3pt} u \left (x \right ) \\ {} & {} & u \left (x \right )=\sinh \left (\frac {m x}{k}+\mathit {C1} \right ) \\ \bullet & {} & \textrm {Make substitution}\hspace {3pt} u =\frac {d}{d x}y \left (x \right ) \\ {} & {} & \frac {d}{d x}y \left (x \right )=\sinh \left (\frac {m x}{k}+\mathit {C1} \right ) \\ \bullet & {} & \textrm {Integrate both sides to solve for}\hspace {3pt} y \left (x \right ) \\ {} & {} & \int \left (\frac {d}{d x}y \left (x \right )\right )d x =\int \sinh \left (\frac {m x}{k}+\mathit {C1} \right )d x +\mathit {C2} \\ \bullet & {} & \textrm {Compute integrals}\hspace {3pt} \\ {} & {} & y \left (x \right )=\frac {k \cosh \left (\frac {m x}{k}+\mathit {C1} \right )}{m}+\mathit {C2} \end {array} \]
2.6.3.4 ✓ Mathematica. Time used: 0.252 (sec). Leaf size: 23
ode=D[y[x],{x,2}]==m/k*Sqrt[1+D[y[x],x]^2];
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\begin{align*} y(x)&\to \frac {k \cosh \left (\frac {m x}{k}+c_1\right )}{m}+c_2 \end{align*}
2.6.3.5 ✗ Sympy
from sympy import *
x = symbols("x")
k = symbols("k")
m = symbols("m")
y = Function("y")
ode = Eq(Derivative(y(x), (x, 2)) - m*sqrt(Derivative(y(x), x)**2 + 1)/k,0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
Timed Out