2.3.16 first order ode quadrature

Table 2.425: first order ode quadrature

#

ODE

CAS classification

Solved?

1

\[ {}y^{\prime } = 2 x +1 \]
i.c.

[_quadrature]

2

\[ {}y^{\prime } = \left (-2+x \right )^{2} \]
i.c.

[_quadrature]

3

\[ {}y^{\prime } = \sqrt {x} \]
i.c.

[_quadrature]

4

\[ {}y^{\prime } = \frac {1}{x^{2}} \]
i.c.

[_quadrature]

5

\[ {}y^{\prime } = \frac {1}{\sqrt {2+x}} \]
i.c.

[_quadrature]

6

\[ {}y^{\prime } = x \sqrt {x^{2}+9} \]
i.c.

[_quadrature]

7

\[ {}y^{\prime } = \frac {10}{x^{2}+1} \]
i.c.

[_quadrature]

8

\[ {}y^{\prime } = \cos \left (2 x \right ) \]
i.c.

[_quadrature]

9

\[ {}y^{\prime } = \frac {1}{\sqrt {-x^{2}+1}} \]
i.c.

[_quadrature]

10

\[ {}y^{\prime } = x \,{\mathrm e}^{-x} \]
i.c.

[_quadrature]

651

\[ {}y^{\prime } = 2 x +1 \]
i.c.

[_quadrature]

652

\[ {}y^{\prime } = \left (-2+x \right )^{2} \]
i.c.

[_quadrature]

653

\[ {}y^{\prime } = \sqrt {x} \]
i.c.

[_quadrature]

654

\[ {}y^{\prime } = \frac {1}{x^{2}} \]
i.c.

[_quadrature]

655

\[ {}y^{\prime } = \frac {1}{\sqrt {2+x}} \]
i.c.

[_quadrature]

656

\[ {}y^{\prime } = x \sqrt {x^{2}+9} \]
i.c.

[_quadrature]

657

\[ {}y^{\prime } = \frac {10}{x^{2}+1} \]
i.c.

[_quadrature]

658

\[ {}y^{\prime } = \cos \left (2 x \right ) \]
i.c.

[_quadrature]

659

\[ {}y^{\prime } = \frac {1}{\sqrt {-x^{2}+1}} \]
i.c.

[_quadrature]

660

\[ {}y^{\prime } = x \,{\mathrm e}^{-x} \]
i.c.

[_quadrature]

746

\[ {}\left (x +y\right ) y^{\prime } = 0 \]

[_quadrature]

1524

\[ {}y^{\prime } = -x \]

[_quadrature]

1525

\[ {}y^{\prime } = -x \sin \left (x \right ) \]

[_quadrature]

1526

\[ {}y^{\prime } = \ln \left (x \right ) x \]

[_quadrature]

1527

\[ {}y^{\prime } = -x \,{\mathrm e}^{x} \]
i.c.

[_quadrature]

1528

\[ {}y^{\prime } = x \sin \left (x^{2}\right ) \]
i.c.

[_quadrature]

1529

\[ {}y^{\prime } = \tan \left (x \right ) \]
i.c.

[_quadrature]

1684

\[ {}\left (x +y\right )^{2}+\left (x +y\right )^{2} y^{\prime } = 0 \]

[_quadrature]

2852

\[ {}x^{\prime } = 1-\sin \left (2 t \right ) \]

[_quadrature]

3286

\[ {}x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0 \]

[_quadrature]

3293

\[ {}{y^{\prime }}^{3}+\left (x +y-2 x y\right ) {y^{\prime }}^{2}-2 y^{\prime } x y \left (x +y\right ) = 0 \]

[_quadrature]

3309

\[ {}x = {y^{\prime }}^{2}+y^{\prime } \]

[_quadrature]

3403

\[ {}y^{\prime } = 2 \]

[_quadrature]

3404

\[ {}y^{\prime } = 2 \,{\mathrm e}^{3 x} \]

[_quadrature]

3405

\[ {}y^{\prime } = \frac {2}{\sqrt {-x^{2}+1}} \]

[_quadrature]

3406

\[ {}y^{\prime } = {\mathrm e}^{x^{2}} \]

[_quadrature]

3407

\[ {}y^{\prime } = x \,{\mathrm e}^{x^{2}} \]

[_quadrature]

3408

\[ {}y^{\prime } = \arcsin \left (x \right ) \]

[_quadrature]

3415

\[ {}{y^{\prime }}^{2}-3 y^{\prime }+2 = 0 \]

[_quadrature]

3416

\[ {}\left (x^{2}+1\right ) y^{\prime } = 1 \]

[_quadrature]

3417

\[ {}y^{\prime } \sin \left (x \right ) = 1 \]

[_quadrature]

3418

\[ {}y^{\prime } = t^{2}+3 \]

[_quadrature]

3419

\[ {}y^{\prime } = t \,{\mathrm e}^{2 t} \]

[_quadrature]

3420

\[ {}y^{\prime } = \sin \left (3 t \right ) \]

[_quadrature]

3421

\[ {}y^{\prime } = \sin \left (t \right )^{2} \]

[_quadrature]

3422

\[ {}y^{\prime } = \frac {t}{t^{2}+4} \]

[_quadrature]

3423

\[ {}y^{\prime } = \ln \left (t \right ) \]

[_quadrature]

3424

\[ {}y^{\prime } = \frac {t}{\sqrt {t}+1} \]

[_quadrature]

3428

\[ {}y^{\prime } = t \,{\mathrm e}^{2 t} \]
i.c.

[_quadrature]

3429

\[ {}y^{\prime } = \sin \left (t \right )^{2} \]
i.c.

[_quadrature]

3430

\[ {}y^{\prime } = 8 \,{\mathrm e}^{4 t}+t \]
i.c.

[_quadrature]

3543

\[ {}y^{\prime }+\frac {m}{x} = \ln \left (x \right ) \]

[_quadrature]

3582

\[ {}y^{\prime } = \sin \left (x \right ) \]

[_quadrature]

3583

\[ {}y^{\prime } = \frac {1}{x^{{2}/{3}}} \]

[_quadrature]

3586

\[ {}y^{\prime } = x^{2} \ln \left (x \right ) \]
i.c.

[_quadrature]

4091

\[ {}y^{\prime } = {\mathrm e}^{-x} \]

[_quadrature]

4092

\[ {}y^{\prime } = 1-x^{5}+\sqrt {x} \]

[_quadrature]

4106

\[ {}y^{\prime } = {\mathrm e}^{x} \sin \left (x \right ) \]
i.c.

[_quadrature]

4108

\[ {}y^{\prime } = x +\frac {1}{x} \]
i.c.

[_quadrature]

4115

\[ {}x +\left (2-x +2 y\right ) y^{\prime } = x y \left (y^{\prime }-1\right ) \]

[_quadrature]

4229

\[ {}\left (x^{3}+1\right ) y^{\prime } = 3 x^{2} \tan \left (x \right ) \]
i.c.

[_quadrature]

4360

\[ {}\left (\sin \left (y\right )^{2}+x \cot \left (y\right )\right ) y^{\prime } = 0 \]

[_quadrature]

4385

\[ {}x \left ({y^{\prime }}^{2}-1\right ) = 2 y^{\prime } \]

[_quadrature]

4387

\[ {}x = y^{\prime } \sqrt {1+{y^{\prime }}^{2}} \]

[_quadrature]

4439

\[ {}y^{\prime } \left (x -\ln \left (y^{\prime }\right )\right ) = 1 \]

[_quadrature]

4608

\[ {}y^{\prime } = a f \left (x \right ) \]

[_quadrature]

4708

\[ {}y^{\prime } = \sqrt {X Y} \]

[_quadrature]

4742

\[ {}x y^{\prime } = \sqrt {a^{2}-x^{2}} \]

[_quadrature]

4828

\[ {}\left (x +a \right ) y^{\prime } = b x \]

[_quadrature]

4995

\[ {}y^{\prime } \sqrt {X}+\sqrt {Y} = 0 \]

[_quadrature]

4996

\[ {}y^{\prime } \sqrt {X} = \sqrt {Y} \]

[_quadrature]

5002

\[ {}y^{\prime } \sqrt {X} = 0 \]

[_quadrature]

5003

\[ {}y^{\prime } \sqrt {X}+\sqrt {Y} = 0 \]

[_quadrature]

5004

\[ {}y^{\prime } \sqrt {X} = \sqrt {Y} \]

[_quadrature]

5007

\[ {}X^{{2}/{3}} y^{\prime } = Y^{{2}/{3}} \]

[_quadrature]

5333

\[ {}{y^{\prime }}^{2} = a \,x^{n} \]

[_quadrature]

5356

\[ {}{y^{\prime }}^{2}+2 y^{\prime }+x = 0 \]

[_quadrature]

5359

\[ {}{y^{\prime }}^{2}-5 y^{\prime }+6 = 0 \]

[_quadrature]

5360

\[ {}{y^{\prime }}^{2}-7 y^{\prime }+12 = 0 \]

[_quadrature]

5361

\[ {}{y^{\prime }}^{2}+a y^{\prime }+b = 0 \]

[_quadrature]

5362

\[ {}{y^{\prime }}^{2}+a y^{\prime }+b x = 0 \]

[_quadrature]

5364

\[ {}{y^{\prime }}^{2}+x y^{\prime }+1 = 0 \]

[_quadrature]

5373

\[ {}{y^{\prime }}^{2}-2 x y^{\prime }+1 = 0 \]

[_quadrature]

5374

\[ {}{y^{\prime }}^{2}+2 x y^{\prime }-3 x^{2} = 0 \]

[_quadrature]

5378

\[ {}{y^{\prime }}^{2}-\left (2 x +1\right ) y^{\prime }-x \left (1-x \right ) = 0 \]

[_quadrature]

5382

\[ {}{y^{\prime }}^{2}+a x y^{\prime } = b c \,x^{2} \]

[_quadrature]

5386

\[ {}{y^{\prime }}^{2}-2 x^{2} y^{\prime }+2 x y^{\prime } = 0 \]

[_quadrature]

5390

\[ {}{y^{\prime }}^{2}-2 y^{\prime } \cosh \left (x \right )+1 = 0 \]

[_quadrature]

5391

\[ {}{y^{\prime }}^{2}+y y^{\prime } = \left (x +y\right ) x \]

[_quadrature]

5404

\[ {}{y^{\prime }}^{2}-\left (2 x y+1\right ) y^{\prime }+2 x y = 0 \]

[_quadrature]

5420

\[ {}4 {y^{\prime }}^{2} = 9 x \]

[_quadrature]

5426

\[ {}{y^{\prime }}^{2} x = a \]

[_quadrature]

5427

\[ {}{y^{\prime }}^{2} x = -x^{2}+a \]

[_quadrature]

5435

\[ {}{y^{\prime }}^{2} x -\left (x^{2}+1\right ) y^{\prime }+x = 0 \]

[_quadrature]

5451

\[ {}{y^{\prime }}^{2} x -\left (2 x +3 y\right ) y^{\prime }+6 y = 0 \]

[_quadrature]

5456

\[ {}{y^{\prime }}^{2} x +\left (1-x^{2} y\right ) y^{\prime }-x y = 0 \]

[_quadrature]

5464

\[ {}4 {y^{\prime }}^{2} x = \left (a -3 x \right )^{2} \]

[_quadrature]

5469

\[ {}4 \left (2-x \right ) {y^{\prime }}^{2}+1 = 0 \]

[_quadrature]

5471

\[ {}x^{2} {y^{\prime }}^{2} = a^{2} \]

[_quadrature]

5496

\[ {}\left (a^{2}+x^{2}\right ) {y^{\prime }}^{2} = b^{2} \]

[_quadrature]

5497

\[ {}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}+b^{2} = 0 \]

[_quadrature]

5498

\[ {}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{2} = b^{2} \]

[_quadrature]

5499

\[ {}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{2} = x^{2} \]

[_quadrature]

5506

\[ {}x^{3} {y^{\prime }}^{2} = a \]

[_quadrature]

5510

\[ {}4 x \left (-x +a \right ) \left (b -x \right ) {y^{\prime }}^{2} = \left (a b -2 x \left (a +b \right )+2 x^{2}\right )^{2} \]

[_quadrature]

5514

\[ {}x^{2} \left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}+1 = 0 \]

[_quadrature]

5527

\[ {}y {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }-x = 0 \]

[_quadrature]

5529

\[ {}y {y^{\prime }}^{2}-\left (1+x y\right ) y^{\prime }+x = 0 \]

[_quadrature]

5537

\[ {}\left (x^{2}-a y\right ) {y^{\prime }}^{2}-2 x y y^{\prime } = 0 \]

[_quadrature]

5538

\[ {}x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0 \]

[_quadrature]

5584

\[ {}{y^{\prime }}^{3} = b x +a \]

[_quadrature]

5585

\[ {}{y^{\prime }}^{3} = a \,x^{n} \]

[_quadrature]

5591

\[ {}{y^{\prime }}^{3}+y^{\prime }+a -b x = 0 \]

[_quadrature]

5594

\[ {}{y^{\prime }}^{3}-7 y^{\prime }+6 = 0 \]

[_quadrature]

5598

\[ {}{y^{\prime }}^{3}-a x y^{\prime }+x^{3} = 0 \]

[_quadrature]

5611

\[ {}{y^{\prime }}^{3}+\left (1-3 x \right ) {y^{\prime }}^{2}-x \left (1-3 x \right ) y^{\prime }-1-x^{3} = 0 \]

[_quadrature]

5616

\[ {}{y^{\prime }}^{3}-\left (y^{2}+x y+x^{2}\right ) {y^{\prime }}^{2}+x y \left (y^{2}+x y+x^{2}\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

5617

\[ {}{y^{\prime }}^{3}-\left (x^{2}+x y^{2}+y^{4}\right ) {y^{\prime }}^{2}+x y^{2} \left (x^{2}+x y^{2}+y^{4}\right ) y^{\prime }-x^{3} y^{6} = 0 \]

[_quadrature]

5621

\[ {}4 {y^{\prime }}^{3}+4 y^{\prime } = x \]

[_quadrature]

5624

\[ {}x {y^{\prime }}^{3}-\left (x +x^{2}+y\right ) {y^{\prime }}^{2}+\left (x^{2}+y+x y\right ) y^{\prime }-x y = 0 \]

[_quadrature]

5630

\[ {}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{3}+b x \left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}-y^{\prime }-b x = 0 \]

[_quadrature]

5663

\[ {}\sqrt {1+{y^{\prime }}^{2}}+a y^{\prime } = x \]

[_quadrature]

5665

\[ {}\sqrt {1+{y^{\prime }}^{2}} = x y^{\prime } \]

[_quadrature]

5672

\[ {}a \cos \left (y^{\prime }\right )+b y^{\prime }+x = 0 \]

[_quadrature]

5673

\[ {}\sin \left (y^{\prime }\right )+y^{\prime } = x \]

[_quadrature]

5679

\[ {}\ln \left (y^{\prime }\right )+x y^{\prime }+a = 0 \]

[_quadrature]

5750

\[ {}{y^{\prime }}^{2}-5 y^{\prime }+6 = 0 \]

[_quadrature]

5751

\[ {}{y^{\prime }}^{2}-\frac {a^{2}}{x^{2}} = 0 \]

[_quadrature]

5752

\[ {}{y^{\prime }}^{2} = \frac {1-x}{x} \]

[_quadrature]

5755

\[ {}x = a y^{\prime }+b {y^{\prime }}^{2} \]

[_quadrature]

5757

\[ {}x = \sqrt {1+{y^{\prime }}^{2}}+a y^{\prime } \]

[_quadrature]

5758

\[ {}y^{\prime }-\frac {\sqrt {1+{y^{\prime }}^{2}}}{x} = 0 \]

[_quadrature]

5759

\[ {}x^{2} \left (1+{y^{\prime }}^{2}\right )^{3}-a^{2} = 0 \]

[_quadrature]

5760

\[ {}1+{y^{\prime }}^{2} = \frac {\left (x +a \right )^{2}}{2 a x +x^{2}} \]

[_quadrature]

5787

\[ {}x +y+1+\left (2 x +2 y+2\right ) y^{\prime } = 0 \]

[_quadrature]

6028

\[ {}{y^{\prime }}^{2} \left (-x^{2}+1\right )+1 = 0 \]

[_quadrature]

6097

\[ {}x y y^{\prime }-x y = y \]
i.c.

[_quadrature]

6282

\[ {}y^{\prime } = {\mathrm e}^{x^{2}} \]
i.c.

[_quadrature]

6418

\[ {}x y^{\prime } = x^{2}+2 x -3 \]

[_quadrature]

6422

\[ {}x^{2} y^{\prime } = x^{3} \sin \left (3 x \right )+4 \]

[_quadrature]

6618

\[ {}1-\sqrt {a^{2}-x^{2}}\, y^{\prime } = 0 \]

[_quadrature]

6667

\[ {}{y^{\prime }}^{2} x +\left (y-1-x^{2}\right ) y^{\prime }-x \left (y-1\right ) = 0 \]

[_quadrature]

6890

\[ {}\left (y-x \right ) y^{\prime } = y-x \]

[_quadrature]

6926

\[ {}y^{\prime } = f \left (x \right ) \]

[_quadrature]

6928

\[ {}{y^{\prime }}^{2} x -4 y^{\prime }-12 x^{3} = 0 \]

[_quadrature]

6982

\[ {}x y^{\prime } = 2 x \]

[_quadrature]

6983

\[ {}y^{\prime } = 2 \]

[_quadrature]

6994

\[ {}{y^{\prime }}^{2} = 4 x^{2} \]

[_quadrature]

7030

\[ {}y^{\prime } = x \]
i.c.

[_quadrature]

7031

\[ {}y^{\prime } = x \]
i.c.

[_quadrature]

7063

\[ {}y^{\prime } = \sin \left (5 x \right ) \]

[_quadrature]

7064

\[ {}y^{\prime } = \left (x +1\right )^{2} \]

[_quadrature]

7065

\[ {}1+{\mathrm e}^{3 x} y^{\prime } = 0 \]

[_quadrature]

7121

\[ {}y^{\prime } = \frac {1}{\sin \left (x \right )+1} \]

[_quadrature]

7137

\[ {}1+{x^{\prime }}^{2} = \frac {a}{y} \]

[_quadrature]

7406

\[ {}x^{\prime }+t = 1 \]

[_quadrature]

7439

\[ {}y^{\prime } \left (y^{\prime }+y\right ) = \left (x +y\right ) x \]
i.c.

[_quadrature]

7516

\[ {}{y^{\prime }}^{2} = 4 x^{2} \]

[_quadrature]

7580

\[ {}y^{\prime } = {\mathrm e}^{3 x}+\sin \left (x \right ) \]

[_quadrature]

7773

\[ {}y^{\prime } = 2 x \]

[_quadrature]

7787

\[ {}y^{\prime } = {\mathrm e}^{3 x}-x \]

[_quadrature]

7788

\[ {}y^{\prime } = x \,{\mathrm e}^{x^{2}} \]

[_quadrature]

7789

\[ {}\left (x +1\right ) y^{\prime } = x \]

[_quadrature]

7790

\[ {}\left (x^{2}+1\right ) y^{\prime } = x \]

[_quadrature]

7791

\[ {}\left (x^{2}+1\right ) y^{\prime } = \arctan \left (x \right ) \]

[_quadrature]

7792

\[ {}x y^{\prime } = 1 \]

[_quadrature]

7793

\[ {}y^{\prime } = \arcsin \left (x \right ) \]

[_quadrature]

7794

\[ {}y^{\prime } \sin \left (x \right ) = 1 \]

[_quadrature]

7795

\[ {}\left (x^{3}+1\right ) y^{\prime } = x \]

[_quadrature]

7796

\[ {}\left (x^{2}-3 x +2\right ) y^{\prime } = x \]

[_quadrature]

7797

\[ {}y^{\prime } = x \,{\mathrm e}^{x} \]
i.c.

[_quadrature]

7798

\[ {}y^{\prime } = 2 \sin \left (x \right ) \cos \left (x \right ) \]
i.c.

[_quadrature]

7799

\[ {}y^{\prime } = \ln \left (x \right ) \]
i.c.

[_quadrature]

7800

\[ {}\left (x^{2}-1\right ) y^{\prime } = 1 \]
i.c.

[_quadrature]

7801

\[ {}x \left (x^{2}-4\right ) y^{\prime } = 1 \]
i.c.

[_quadrature]

7802

\[ {}\left (x +1\right ) \left (x^{2}+1\right ) y^{\prime } = 2 x^{2}+x \]
i.c.

[_quadrature]

8436

\[ {}{y^{\prime }}^{2} x -\left (2 x +3 y\right ) y^{\prime }+6 y = 0 \]

[_quadrature]

8439

\[ {}{y^{\prime }}^{2} x +\left (1-x^{2} y\right ) y^{\prime }-x y = 0 \]

[_quadrature]

8440

\[ {}{y^{\prime }}^{2}-\left (x^{2} y+3\right ) y^{\prime }+3 x^{2} y = 0 \]

[_quadrature]

8452

\[ {}x {y^{\prime }}^{3}-\left (x +x^{2}+y\right ) {y^{\prime }}^{2}+\left (x^{2}+y+x y\right ) y^{\prime }-x y = 0 \]

[_quadrature]

8453

\[ {}x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0 \]

[_quadrature]

8534

\[ {}6 {y^{\prime }}^{2} x -\left (3 x +2 y\right ) y^{\prime }+y = 0 \]

[_quadrature]

8545

\[ {}{y^{\prime }}^{2} x -\left (x^{2}+1\right ) y^{\prime }+x = 0 \]

[_quadrature]

8718

\[ {}y^{\prime } = x +1 \]

[_quadrature]

8719

\[ {}y^{\prime } = x \]

[_quadrature]

8721

\[ {}y^{\prime } = 0 \]

[_quadrature]

8722

\[ {}y^{\prime } = 1+\frac {\sec \left (x \right )}{x} \]

[_quadrature]

8727

\[ {}y^{\prime } = \frac {1}{x} \]

[_quadrature]

8736

\[ {}\left (x +y\right ) y^{\prime } = 0 \]

[_quadrature]

8737

\[ {}x y^{\prime } = 0 \]

[_quadrature]

8738

\[ {}\frac {y^{\prime }}{x +y} = 0 \]

[_quadrature]

8739

\[ {}\frac {y^{\prime }}{x} = 0 \]

[_quadrature]

8740

\[ {}y^{\prime } = 0 \]

[_quadrature]

8985

\[ {}y^{\prime } = 0 \]

[_quadrature]

8986

\[ {}y^{\prime } = a \]

[_quadrature]

8987

\[ {}y^{\prime } = x \]

[_quadrature]

8988

\[ {}y^{\prime } = 1 \]

[_quadrature]

8989

\[ {}y^{\prime } = a x \]

[_quadrature]

8996

\[ {}c y^{\prime } = 0 \]

[_quadrature]

8997

\[ {}c y^{\prime } = a \]

[_quadrature]

8998

\[ {}c y^{\prime } = a x \]

[_quadrature]

9008

\[ {}a \sin \left (x \right ) y x y^{\prime } = 0 \]

[_quadrature]

9009

\[ {}f \left (x \right ) \sin \left (x \right ) y x y^{\prime } \pi = 0 \]

[_quadrature]

9015

\[ {}x y^{\prime } = 0 \]

[_quadrature]

9016

\[ {}5 y^{\prime } = 0 \]

[_quadrature]

9017

\[ {}{\mathrm e} y^{\prime } = 0 \]

[_quadrature]

9018

\[ {}\pi y^{\prime } = 0 \]

[_quadrature]

9019

\[ {}y^{\prime } \sin \left (x \right ) = 0 \]

[_quadrature]

9020

\[ {}f \left (x \right ) y^{\prime } = 0 \]

[_quadrature]

9021

\[ {}x y^{\prime } = 1 \]

[_quadrature]

9022

\[ {}x y^{\prime } = \sin \left (x \right ) \]

[_quadrature]

9023

\[ {}\left (-1+x \right ) y^{\prime } = 0 \]

[_quadrature]

9024

\[ {}y y^{\prime } = 0 \]

[_quadrature]

9025

\[ {}x y y^{\prime } = 0 \]

[_quadrature]

9026

\[ {}x y \sin \left (x \right ) y^{\prime } = 0 \]

[_quadrature]

9027

\[ {}\pi y \sin \left (x \right ) y^{\prime } = 0 \]

[_quadrature]

9028

\[ {}x \sin \left (x \right ) y^{\prime } = 0 \]

[_quadrature]

9029

\[ {}x \sin \left (x \right ) {y^{\prime }}^{2} = 0 \]

[_quadrature]

9030

\[ {}y {y^{\prime }}^{2} = 0 \]

[_quadrature]

9031

\[ {}{y^{\prime }}^{n} = 0 \]

[_quadrature]

9032

\[ {}x {y^{\prime }}^{n} = 0 \]

[_quadrature]

9033

\[ {}{y^{\prime }}^{2} = x \]

[_quadrature]

10015

\[ {}y^{\prime }-\frac {1}{\sqrt {\operatorname {a4} \,x^{4}+\operatorname {a3} \,x^{3}+\operatorname {a2} \,x^{2}+\operatorname {a1} x +\operatorname {a0}}} = 0 \]

[_quadrature]

10101

\[ {}x y^{\prime }-\sqrt {a^{2}-x^{2}} = 0 \]

[_quadrature]

10380

\[ {}{y^{\prime }}^{2}+a y^{\prime }+b x = 0 \]

[_quadrature]

10387

\[ {}{y^{\prime }}^{2}+a x y^{\prime }-b \,x^{2}-c = 0 \]

[_quadrature]

10437

\[ {}y^{\prime }-1 = 0 \]

[_quadrature]

10449

\[ {}\left (x^{2}-1\right ) {y^{\prime }}^{2}-1 = 0 \]

[_quadrature]

10460

\[ {}x^{2} \left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}-1 = 0 \]

[_quadrature]

10472

\[ {}y {y^{\prime }}^{2}-\left (y-x \right ) y^{\prime }-x = 0 \]

[_quadrature]

10524

\[ {}{y^{\prime }}^{3}-a x y^{\prime }+x^{3} = 0 \]

[_quadrature]

10527

\[ {}{y^{\prime }}^{3}-\left (y^{2}+x y+x^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+y^{2} x^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

10537

\[ {}\left (-a^{2}+x^{2}\right ) {y^{\prime }}^{3}+b x \left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}+y^{\prime }+b x = 0 \]

[_quadrature]

10550

\[ {}x^{2} \left (1+{y^{\prime }}^{2}\right )^{3}-a^{2} = 0 \]

[_quadrature]

10567

\[ {}\sin \left (y^{\prime }\right )+y^{\prime }-x = 0 \]

[_quadrature]

10568

\[ {}a \cos \left (y^{\prime }\right )+b y^{\prime }+x = 0 \]

[_quadrature]

11922

\[ {}y^{\prime } = f \left (x \right ) \]

[_quadrature]

12801

\[ {}\left (x^{2}+1\right ) {y^{\prime }}^{2} = 1 \]

[_quadrature]

12836

\[ {}x^{2} {y^{\prime }}^{2}-\left (-1+x \right )^{2} = 0 \]

[_quadrature]

12838

\[ {}4 {y^{\prime }}^{2} = 9 x \]

[_quadrature]

12957

\[ {}x^{\prime } = t \cos \left (t^{2}\right ) \]
i.c.

[_quadrature]

12958

\[ {}x^{\prime } = \frac {t +1}{\sqrt {t}} \]
i.c.

[_quadrature]

12960

\[ {}x^{\prime } = t \,{\mathrm e}^{-2 t} \]

[_quadrature]

12961

\[ {}x^{\prime } = \frac {1}{t \ln \left (t \right )} \]

[_quadrature]

12962

\[ {}\sqrt {t}\, x^{\prime } = \cos \left (\sqrt {t}\right ) \]

[_quadrature]

12963

\[ {}x^{\prime } = \frac {{\mathrm e}^{-t}}{\sqrt {t}} \]
i.c.

[_quadrature]

13625

\[ {}x^{\prime } = \sin \left (t \right )+\cos \left (t \right ) \]

[_quadrature]

13626

\[ {}y^{\prime } = \frac {1}{x^{2}-1} \]

[_quadrature]

13627

\[ {}u^{\prime } = 4 t \ln \left (t \right ) \]

[_quadrature]

13628

\[ {}z^{\prime } = x \,{\mathrm e}^{-2 x} \]

[_quadrature]

13629

\[ {}T^{\prime } = {\mathrm e}^{-t} \sin \left (2 t \right ) \]

[_quadrature]

13630

\[ {}x^{\prime } = \sec \left (t \right )^{2} \]
i.c.

[_quadrature]

13631

\[ {}y^{\prime } = x -\frac {1}{3} x^{3} \]
i.c.

[_quadrature]

13632

\[ {}x^{\prime } = 2 \sin \left (t \right )^{2} \]
i.c.

[_quadrature]

13633

\[ {}x V^{\prime } = x^{2}+1 \]
i.c.

[_quadrature]

13782

\[ {}x^{2}+{y^{\prime }}^{2} = 1 \]

[_quadrature]

13784

\[ {}x = {y^{\prime }}^{3}-y^{\prime }+2 \]

[_quadrature]

13794

\[ {}{y^{\prime }}^{3}-y^{\prime } {\mathrm e}^{2 x} = 0 \]

[_quadrature]

14242

\[ {}x y^{\prime }-\sin \left (x \right ) = 0 \]

[_quadrature]

14253

\[ {}{y^{\prime }}^{2} = x^{6} \]

[_quadrature]

14272

\[ {}y^{\prime } = 1-x \]

[_quadrature]

14273

\[ {}y^{\prime } = -1+x \]

[_quadrature]

14309

\[ {}y^{\prime } = x^{2}+{\mathrm e}^{x}-\sin \left (x \right ) \]
i.c.

[_quadrature]

14318

\[ {}y^{\prime } = 3 x +1 \]
i.c.

[_quadrature]

14319

\[ {}y^{\prime } = x +\frac {1}{x} \]
i.c.

[_quadrature]

14320

\[ {}y^{\prime } = 2 \sin \left (x \right ) \]
i.c.

[_quadrature]

14321

\[ {}y^{\prime } = x \sin \left (x \right ) \]
i.c.

[_quadrature]

14322

\[ {}y^{\prime } = \frac {1}{-1+x} \]
i.c.

[_quadrature]

14323

\[ {}y^{\prime } = \frac {1}{-1+x} \]
i.c.

[_quadrature]

14324

\[ {}y^{\prime } = \frac {1}{x^{2}-1} \]
i.c.

[_quadrature]

14325

\[ {}y^{\prime } = \frac {1}{x^{2}-1} \]
i.c.

[_quadrature]

14326

\[ {}y^{\prime } = \tan \left (x \right ) \]
i.c.

[_quadrature]

14327

\[ {}y^{\prime } = \tan \left (x \right ) \]
i.c.

[_quadrature]

14356

\[ {}y^{\prime } = \frac {1}{-1+x} \]
i.c.

[_quadrature]

14557

\[ {}y^{\prime } = t^{2}+t \]

[_quadrature]

14558

\[ {}y^{\prime } = t^{2}+1 \]

[_quadrature]

14575

\[ {}y^{\prime } = -t^{2}+2 \]

[_quadrature]

14579

\[ {}y^{\prime } = t^{2}-2 \]

[_quadrature]

14581

\[ {}\theta ^{\prime } = 2 \]

[_quadrature]

14687

\[ {}y^{\prime } = t^{2} \left (t^{2}+1\right ) \]

[_quadrature]

14900

\[ {}y^{\prime } = 3-\sin \left (x \right ) \]

[_quadrature]

14903

\[ {}x y^{\prime } = \arcsin \left (x^{2}\right ) \]

[_quadrature]

14910

\[ {}y^{\prime } = 4 x^{3} \]

[_quadrature]

14911

\[ {}y^{\prime } = 20 \,{\mathrm e}^{-4 x} \]

[_quadrature]

14912

\[ {}x y^{\prime }+\sqrt {x} = 2 \]

[_quadrature]

14913

\[ {}\sqrt {x +4}\, y^{\prime } = 1 \]

[_quadrature]

14914

\[ {}y^{\prime } = x \cos \left (x^{2}\right ) \]

[_quadrature]

14915

\[ {}y^{\prime } = \cos \left (x \right ) x \]

[_quadrature]

14916

\[ {}x = \left (x^{2}-9\right ) y^{\prime } \]

[_quadrature]

14917

\[ {}1 = \left (x^{2}-9\right ) y^{\prime } \]

[_quadrature]

14918

\[ {}1 = x^{2}-9 y^{\prime } \]

[_quadrature]

14922

\[ {}y^{\prime } = 40 x \,{\mathrm e}^{2 x} \]
i.c.

[_quadrature]

14923

\[ {}\left (x +6\right )^{{1}/{3}} y^{\prime } = 1 \]
i.c.

[_quadrature]

14924

\[ {}y^{\prime } = \frac {-1+x}{x +1} \]
i.c.

[_quadrature]

14925

\[ {}x y^{\prime }+2 = \sqrt {x} \]
i.c.

[_quadrature]

14926

\[ {}\cos \left (x \right ) y^{\prime }-\sin \left (x \right ) = 0 \]
i.c.

[_quadrature]

14927

\[ {}\left (x^{2}+1\right ) y^{\prime } = 1 \]
i.c.

[_quadrature]

14929

\[ {}y^{\prime } = \sin \left (\frac {x}{2}\right ) \]

[_quadrature]

14930

\[ {}y^{\prime } = \sin \left (\frac {x}{2}\right ) \]
i.c.

[_quadrature]

14931

\[ {}y^{\prime } = \sin \left (\frac {x}{2}\right ) \]
i.c.

[_quadrature]

14932

\[ {}y^{\prime } = 3 \sqrt {x +3} \]

[_quadrature]

14933

\[ {}y^{\prime } = 3 \sqrt {x +3} \]
i.c.

[_quadrature]

14934

\[ {}y^{\prime } = 3 \sqrt {x +3} \]
i.c.

[_quadrature]

14935

\[ {}y^{\prime } = 3 \sqrt {x +3} \]
i.c.

[_quadrature]

14936

\[ {}y^{\prime } = x \,{\mathrm e}^{-x^{2}} \]
i.c.

[_quadrature]

14937

\[ {}y^{\prime } = \frac {x}{\sqrt {x^{2}+5}} \]
i.c.

[_quadrature]

14938

\[ {}y^{\prime } = \frac {1}{x^{2}+1} \]
i.c.

[_quadrature]

14939

\[ {}y^{\prime } = {\mathrm e}^{-9 x^{2}} \]
i.c.

[_quadrature]

14940

\[ {}x y^{\prime } = \sin \left (x \right ) \]
i.c.

[_quadrature]

14941

\[ {}x y^{\prime } = \sin \left (x^{2}\right ) \]
i.c.

[_quadrature]

14942

\[ {}y^{\prime } = \left \{\begin {array}{cc} 0 & x <0 \\ 1 & 0\le x \end {array}\right . \]
i.c.

[_quadrature]

14943

\[ {}y^{\prime } = \left \{\begin {array}{cc} 0 & x <1 \\ 1 & 1\le x \end {array}\right . \]
i.c.

[_quadrature]

14944

\[ {}y^{\prime } = \left \{\begin {array}{cc} 0 & x <1 \\ 1 & 1\le x <2 \\ 0 & 2\le x \end {array}\right . \]
i.c.

[_quadrature]

14959

\[ {}y^{\prime } = \sqrt {x^{2}+1} \]

[_quadrature]

15010

\[ {}y^{\prime }-{\mathrm e}^{2 x} = 0 \]

[_quadrature]

15084

\[ {}x^{2} y^{\prime }-\sqrt {x} = 3 \]

[_quadrature]

15095

\[ {}\left (x^{2}-4\right ) y^{\prime } = x \]

[_quadrature]

15100

\[ {}\sin \left (x \right )+2 \cos \left (x \right ) y^{\prime } = 0 \]

[_quadrature]

15111

\[ {}\left (2+x \right ) y^{\prime }-x^{3} = 0 \]

[_quadrature]

15121

\[ {}y^{\prime }+2 x = \sin \left (x \right ) \]

[_quadrature]

15709

\[ {}2 x -1-y^{\prime } = 0 \]

[_quadrature]

15728

\[ {}y^{\prime } = \left (x^{2}-1\right ) \left (x^{3}-3 x \right )^{3} \]

[_quadrature]

15729

\[ {}y^{\prime } = x \sin \left (x^{2}\right ) \]

[_quadrature]

15730

\[ {}y^{\prime } = \frac {x}{\sqrt {x^{2}-16}} \]

[_quadrature]

15731

\[ {}y^{\prime } = \frac {1}{\ln \left (x \right ) x} \]

[_quadrature]

15732

\[ {}y^{\prime } = \ln \left (x \right ) x \]

[_quadrature]

15733

\[ {}y^{\prime } = x \,{\mathrm e}^{-x} \]

[_quadrature]

15734

\[ {}y^{\prime } = \frac {-2 x -10}{\left (2+x \right ) \left (x -4\right )} \]

[_quadrature]

15735

\[ {}y^{\prime } = \frac {-x^{2}+x}{\left (x +1\right ) \left (x^{2}+1\right )} \]

[_quadrature]

15736

\[ {}y^{\prime } = \frac {\sqrt {x^{2}-16}}{x} \]

[_quadrature]

15737

\[ {}y^{\prime } = \left (-x^{2}+4\right )^{{3}/{2}} \]

[_quadrature]

15738

\[ {}y^{\prime } = \frac {1}{x^{2}-16} \]

[_quadrature]

15739

\[ {}y^{\prime } = \cos \left (x \right ) \cot \left (x \right ) \]

[_quadrature]

15740

\[ {}y^{\prime } = \sin \left (x \right )^{3} \tan \left (x \right ) \]

[_quadrature]

15749

\[ {}y^{\prime } = 4 x^{3}-x +2 \]
i.c.

[_quadrature]

15750

\[ {}y^{\prime } = \sin \left (2 t \right )-\cos \left (2 t \right ) \]
i.c.

[_quadrature]

15751

\[ {}y^{\prime } = \frac {\cos \left (\frac {1}{x}\right )}{x^{2}} \]
i.c.

[_quadrature]

15752

\[ {}y^{\prime } = \frac {\ln \left (x \right )}{x} \]
i.c.

[_quadrature]

15759

\[ {}y^{\prime } = \sin \left (x \right )^{4} \]
i.c.

[_quadrature]

15773

\[ {}y^{\prime } = x \,{\mathrm e}^{-x^{2}} \]

[_quadrature]

15774

\[ {}y^{\prime } = \sin \left (x \right ) x^{2} \]

[_quadrature]

15775

\[ {}y^{\prime } = \frac {2 x^{2}-x +1}{\left (-1+x \right ) \left (x^{2}+1\right )} \]

[_quadrature]

15776

\[ {}y^{\prime } = \frac {x^{2}}{\sqrt {x^{2}-1}} \]

[_quadrature]

15780

\[ {}y^{\prime } = \cos \left (x \right )^{2} \sin \left (x \right ) \]
i.c.

[_quadrature]

15781

\[ {}y^{\prime } = \frac {4 x -9}{3 \left (x -3\right )^{{2}/{3}}} \]
i.c.

[_quadrature]

15792

\[ {}y^{\prime } = \frac {1}{t^{2}+1} \]
i.c.

[_quadrature]

15855

\[ {}y^{\prime } = x^{3} \]
i.c.

[_quadrature]

15856

\[ {}y^{\prime } = \cos \left (t \right ) \]
i.c.

[_quadrature]

15858

\[ {}\sin \left (y \right )^{2} = x^{\prime } \]
i.c.

[_quadrature]

15864

\[ {}y^{\prime } = t \sin \left (t^{2}\right ) \]
i.c.

[_quadrature]

15865

\[ {}y^{\prime } = \frac {1}{x^{2}+1} \]
i.c.

[_quadrature]

15954

\[ {}3 t^{2}-y^{\prime } = 0 \]

[_quadrature]

15996

\[ {}2 t +2 y+\left (2 t +2 y\right ) y^{\prime } = 0 \]

[_quadrature]

16599

\[ {}y^{\prime } = x +1 \]

[_quadrature]

16611

\[ {}y^{\prime } = 1-x \]

[_quadrature]

16615

\[ {}y^{\prime } = 1 \]

[_quadrature]

16616

\[ {}y^{\prime } = \frac {1}{x} \]

[_quadrature]

16643

\[ {}\cos \left (y^{\prime }\right ) = 0 \]

[_quadrature]

16644

\[ {}{\mathrm e}^{y^{\prime }} = 1 \]

[_quadrature]

16645

\[ {}\sin \left (y^{\prime }\right ) = x \]

[_quadrature]

16646

\[ {}\ln \left (y^{\prime }\right ) = x \]

[_quadrature]

16647

\[ {}\tan \left (y^{\prime }\right ) = 0 \]

[_quadrature]

16648

\[ {}{\mathrm e}^{y^{\prime }} = x \]

[_quadrature]

16649

\[ {}\tan \left (y^{\prime }\right ) = x \]

[_quadrature]

16738

\[ {}4 {y^{\prime }}^{2}-9 x = 0 \]

[_quadrature]

16740

\[ {}{y^{\prime }}^{2}-2 x y^{\prime }-8 x^{2} = 0 \]

[_quadrature]

16742

\[ {}{y^{\prime }}^{2}-\left (2 x +y\right ) y^{\prime }+x^{2}+x y = 0 \]

[_quadrature]

16750

\[ {}x = {y^{\prime }}^{2}-2 y^{\prime }+2 \]

[_quadrature]

16753

\[ {}{y^{\prime }}^{2} x = {\mathrm e}^{\frac {1}{y^{\prime }}} \]

[_quadrature]

16754

\[ {}x \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} = a \]

[_quadrature]

16756

\[ {}x = \sin \left (y^{\prime }\right )+y^{\prime } \]

[_quadrature]

16797

\[ {}x^{2}+x y^{\prime } = 3 x +y^{\prime } \]

[_quadrature]

16831

\[ {}{y^{\prime }}^{4} = 1 \]

[_quadrature]

17336

\[ {}\frac {y^{\prime }}{\frac {x}{y}-\sin \left (y\right )} = 0 \]

[_quadrature]

17373

\[ {}x y^{\prime } = -\frac {1}{\ln \left (x \right )} \]

[_quadrature]

17812

\[ {}y^{\prime } = 2 \]

[_quadrature]

17813

\[ {}y^{\prime } = -x^{3} \]

[_quadrature]

17857

\[ {}y {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }-x = 0 \]

[_quadrature]

17859

\[ {}{y^{\prime }}^{3}-\left (y^{2}+x y+x^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+y^{2} x^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

17861

\[ {}x {y^{\prime }}^{3} = 1+y^{\prime } \]

[_quadrature]

17862

\[ {}{y^{\prime }}^{3}-x^{3} \left (1-y^{\prime }\right ) = 0 \]

[_quadrature]

17977

\[ {}y^{\prime } = 2 x \]

[_quadrature]

17991

\[ {}y^{\prime } = {\mathrm e}^{3 x}-x \]

[_quadrature]

17992

\[ {}x y^{\prime } = 1 \]

[_quadrature]

17993

\[ {}y^{\prime } = x \,{\mathrm e}^{x^{2}} \]

[_quadrature]

17994

\[ {}y^{\prime } = \arcsin \left (x \right ) \]

[_quadrature]

17995

\[ {}\left (x +1\right ) y^{\prime } = x \]

[_quadrature]

17996

\[ {}\left (x^{2}+1\right ) y^{\prime } = x \]

[_quadrature]

17997

\[ {}\left (x^{3}+1\right ) y^{\prime } = x \]

[_quadrature]

17998

\[ {}\left (x^{2}+1\right ) y^{\prime } = \arctan \left (x \right ) \]

[_quadrature]

18004

\[ {}y^{\prime } \sin \left (x \right ) = 1 \]

[_quadrature]

18009

\[ {}y^{\prime } = x \,{\mathrm e}^{x} \]
i.c.

[_quadrature]

18010

\[ {}y^{\prime } = 2 \sin \left (x \right ) \cos \left (x \right ) \]
i.c.

[_quadrature]

18011

\[ {}y^{\prime } = \ln \left (x \right ) \]
i.c.

[_quadrature]

18012

\[ {}\left (x^{2}-1\right ) y^{\prime } = 1 \]
i.c.

[_quadrature]

18013

\[ {}x \left (x^{2}-4\right ) y^{\prime } = 1 \]
i.c.

[_quadrature]

18014

\[ {}\left (x +1\right ) \left (x^{2}+1\right ) y^{\prime } = 2 x^{2}+x \]
i.c.

[_quadrature]

18016

\[ {}x y^{\prime } = 2 x^{2}+1 \]
i.c.

[_quadrature]

18019

\[ {}y^{\prime } = {\mathrm e}^{x} \cos \left (x \right ) \]
i.c.

[_quadrature]

18409

\[ {}x^{\prime } = 3 t^{2}+4 t \]
i.c.

[_quadrature]

18410

\[ {}x^{\prime } = b \,{\mathrm e}^{t} \]
i.c.

[_quadrature]

18411

\[ {}x^{\prime } = \frac {1}{t^{2}+1} \]
i.c.

[_quadrature]

18412

\[ {}x^{\prime } = \frac {1}{\sqrt {t^{2}+1}} \]
i.c.

[_quadrature]

18413

\[ {}x^{\prime } = \cos \left (t \right ) \]
i.c.

[_quadrature]

18414

\[ {}x^{\prime } = \frac {\cos \left (t \right )}{\sin \left (t \right )} \]
i.c.

[_quadrature]

18482

\[ {}y^{\prime } = {\mathrm e}^{z -y^{\prime }} \]

[_quadrature]

18484

\[ {}\left (x^{2}-1\right ) {y^{\prime }}^{2} = 1 \]

[_quadrature]

18487

\[ {}\sec \left (\theta \right )^{2} = \frac {m s^{\prime }}{k} \]

[_quadrature]

18494

\[ {}\sqrt {1+v^{\prime }} = \frac {{\mathrm e}^{u}}{2} \]

[_quadrature]

18723

\[ {}{y^{\prime }}^{2}-a \,x^{3} = 0 \]

[_quadrature]

18725

\[ {}{y^{\prime }}^{3} = a \,x^{4} \]

[_quadrature]

18727

\[ {}{y^{\prime }}^{2}-7 y^{\prime }+12 = 0 \]

[_quadrature]

18733

\[ {}x \left (1+{y^{\prime }}^{2}\right ) = 1 \]

[_quadrature]

18734

\[ {}x^{2} = a^{2} \left (1+{y^{\prime }}^{2}\right ) \]

[_quadrature]

18748

\[ {}{y^{\prime }}^{2}-9 y^{\prime }+18 = 0 \]

[_quadrature]

18759

\[ {}x +\frac {y^{\prime }}{\sqrt {1+{y^{\prime }}^{2}}} = a \]

[_quadrature]

18762

\[ {}{y^{\prime }}^{3}-\left (y^{2}+x y+x^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+y^{2} x^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

18775

\[ {}{y^{\prime }}^{2} x -\left (x -a \right )^{2} = 0 \]

[_quadrature]

18783

\[ {}4 {y^{\prime }}^{2} = 9 x \]

[_quadrature]

18784

\[ {}4 x \left (-1+x \right ) \left (-2+x \right ) {y^{\prime }}^{2}-\left (3 x^{2}-6 x +2\right )^{2} = 0 \]

[_quadrature]

19132

\[ {}{y^{\prime }}^{2}-7 y^{\prime }+12 = 0 \]

[_quadrature]

19133

\[ {}{y^{\prime }}^{2}-5 y^{\prime }+6 = 0 \]

[_quadrature]

19134

\[ {}{y^{\prime }}^{2}-9 y^{\prime }+18 = 0 \]

[_quadrature]

19135

\[ {}{y^{\prime }}^{2}+2 x y^{\prime }-3 x^{2} = 0 \]

[_quadrature]

19137

\[ {}{y^{\prime }}^{2}-2 y^{\prime } \cosh \left (x \right )+1 = 0 \]

[_quadrature]

19138

\[ {}y^{\prime } \left (y^{\prime }-y\right ) = \left (x +y\right ) x \]

[_quadrature]

19139

\[ {}y {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }-x = 0 \]

[_quadrature]

19140

\[ {}x +y {y^{\prime }}^{2} = \left (1+x y\right ) y^{\prime } \]

[_quadrature]

19141

\[ {}{y^{\prime }}^{2} x +\left (y-x \right ) y^{\prime }-y = 0 \]

[_quadrature]

19142

\[ {}{y^{\prime }}^{3}-a \,x^{4} = 0 \]

[_quadrature]

19144

\[ {}{y^{\prime }}^{3}-y^{\prime } \left (y^{2}+x y+x^{2}\right )+x y \left (x +y\right ) = 0 \]

[_quadrature]

19145

\[ {}\left (y^{\prime }+y+x \right ) \left (y+x +x y^{\prime }\right ) \left (y^{\prime }+2 x \right ) = 0 \]

[_quadrature]

19146

\[ {}x^{2} {y^{\prime }}^{3}+y \left (x^{2} y+1\right ) {y^{\prime }}^{2}+y^{2} y^{\prime } = 0 \]

[_quadrature]

19164

\[ {}x \left (1+{y^{\prime }}^{2}\right ) = 1 \]

[_quadrature]

19165

\[ {}x^{2} = a^{2} \left (1+{y^{\prime }}^{2}\right ) \]

[_quadrature]

19177

\[ {}x +\frac {y^{\prime }}{\sqrt {1+{y^{\prime }}^{2}}} = a \]

[_quadrature]

19184

\[ {}2 {y^{\prime }}^{3}-\left (2 x +4 \sin \left (x \right )-\cos \left (x \right )\right ) {y^{\prime }}^{2}-\left (\cos \left (x \right ) x -4 x \sin \left (x \right )+\sin \left (2 x \right )\right ) y^{\prime }+x \sin \left (2 x \right ) = 0 \]

[_quadrature]

19207

\[ {}4 {y^{\prime }}^{2} = 9 x \]

[_quadrature]

19208

\[ {}4 x \left (-1+x \right ) \left (-2+x \right ) {y^{\prime }}^{2}-\left (3 x^{2}-6 x +2\right )^{2} = 0 \]

[_quadrature]

19209

\[ {}\left (8 {y^{\prime }}^{3}-27\right ) x = \frac {12 {y^{\prime }}^{2}}{x} \]

[_quadrature]

19213

\[ {}4 {y^{\prime }}^{2} x = \left (3 x -1\right )^{2} \]

[_quadrature]

19214

\[ {}{y^{\prime }}^{2} x -\left (x -a \right )^{2} = 0 \]

[_quadrature]

19465

\[ {}{y^{\prime }}^{3}-\left (y^{2}+x y+x^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+y^{2} x^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

19467

\[ {}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{3}+b x \left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}-y^{\prime }-b x = 0 \]

[_quadrature]

19472

\[ {}x {y^{\prime }}^{3} = a +b y^{\prime } \]

[_quadrature]

19490

\[ {}4 {y^{\prime }}^{2} x = \left (3 x -a \right )^{2} \]

[_quadrature]

19491

\[ {}4 {y^{\prime }}^{2} x \left (x -a \right ) \left (x -b \right ) = \left (3 x^{2}-2 x \left (a +b \right )+a b \right )^{2} \]

[_quadrature]