2.3.2 first order ode separable

Table 2.397: first order ode separable

#

ODE

ODE classification

Solved?

27

\[ {}y^{\prime } = 2 x^{2} y^{2} \]
i.c.

[_separable]

28

\[ {}y^{\prime } = \ln \left (y\right ) x \]
i.c.

[_separable]

33

\[ {}y y^{\prime } = x -1 \]
i.c.

[_separable]

34

\[ {}y y^{\prime } = x -1 \]
i.c.

[_separable]

41

\[ {}y^{\prime }+2 x y = 0 \]

[_separable]

42

\[ {}y^{\prime }+2 x y^{2} = 0 \]

[_separable]

43

\[ {}y^{\prime } = y \sin \left (x \right ) \]

[_separable]

44

\[ {}\left (x +1\right ) y^{\prime } = 4 y \]

[_separable]

45

\[ {}2 \sqrt {x}\, y^{\prime } = \sqrt {1-y^{2}} \]

[_separable]

48

\[ {}y^{\prime } = 2 x \sec \left (y\right ) \]

[_separable]

49

\[ {}\left (-x^{2}+1\right ) y^{\prime } = 2 y \]

[_separable]

50

\[ {}\left (x +1\right )^{2} y^{\prime } = \left (1+y\right )^{2} \]

[_separable]

51

\[ {}y^{\prime } = x y^{3} \]

[_separable]

52

\[ {}y y^{\prime } = x \left (1+y^{2}\right ) \]

[_separable]

53

\[ {}y^{3} y^{\prime } = \left (1+y^{4}\right ) \cos \left (x \right ) \]

[_separable]

54

\[ {}y^{\prime } = \frac {1+\sqrt {x}}{1+\sqrt {y}} \]

[_separable]

55

\[ {}y^{\prime } = \frac {\left (x -1\right ) y^{5}}{x^{2} \left (2 y^{3}-y\right )} \]

[_separable]

56

\[ {}\left (x^{2}+1\right ) \tan \left (y\right ) y^{\prime } = x \]

[_separable]

57

\[ {}y^{\prime } = 1+x +y+x y \]

[_separable]

58

\[ {}x^{2} y^{\prime } = 1-x^{2}+y^{2}-x^{2} y^{2} \]

[_separable]

59

\[ {}y^{\prime } = y \,{\mathrm e}^{x} \]
i.c.

[_separable]

60

\[ {}y^{\prime } = 3 x^{2} \left (1+y^{2}\right ) \]
i.c.

[_separable]

61

\[ {}2 y y^{\prime } = \frac {x}{\sqrt {x^{2}-16}} \]
i.c.

[_separable]

62

\[ {}y^{\prime } = 4 x^{3} y-y \]
i.c.

[_separable]

64

\[ {}y^{\prime } \tan \left (x \right ) = y \]
i.c.

[_separable]

65

\[ {}y^{\prime } x -y = 2 x^{2} y \]
i.c.

[_separable]

66

\[ {}y^{\prime } = 2 x y^{2}+3 x^{2} y^{2} \]
i.c.

[_separable]

67

\[ {}y^{\prime } = 6 \,{\mathrm e}^{2 x -y} \]
i.c.

[_separable]

68

\[ {}2 \sqrt {x}\, y^{\prime } = \cos \left (y\right )^{2} \]
i.c.

[_separable]

83

\[ {}y^{\prime } x +y = 3 x y \]
i.c.

[_separable]

87

\[ {}y^{\prime }+2 x y = x \]
i.c.

[_separable]

88

\[ {}y^{\prime } = \left (1-y\right ) \cos \left (x \right ) \]
i.c.

[_separable]

92

\[ {}y^{\prime } = 1+x +y+x y \]
i.c.

[_separable]

96

\[ {}\left (x^{2}+4\right ) y^{\prime }+3 x y = x \]
i.c.

[_separable]

103

\[ {}y^{\prime }+p \left (x \right ) y = 0 \]

[_separable]

124

\[ {}y^{2} y^{\prime }+2 x y^{3} = 6 x \]

[_separable]

146

\[ {}\frac {2 x^{{5}/{2}}-3 y^{{5}/{3}}}{2 x^{{5}/{2}} y^{{2}/{3}}}+\frac {\left (3 y^{{5}/{3}}-2 x^{{5}/{2}}\right ) y^{\prime }}{3 x^{{3}/{2}} y^{{5}/{3}}} = 0 \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

180

\[ {}x y^{2}+3 y^{2}-x^{2} y^{\prime } = 0 \]

[_separable]

183

\[ {}3 y+x^{4} y^{\prime } = 2 x y \]

[_separable]

184

\[ {}2 x y^{2}+x^{2} y^{\prime } = y^{2} \]

[_separable]

188

\[ {}y^{\prime } = 1+x^{2}+y^{2}+x^{2} y^{2} \]

[_separable]

191

\[ {}4 x y^{2}+y^{\prime } = 5 x^{4} y^{2} \]

[_separable]

197

\[ {}3 x^{5} y^{2}+x^{3} y^{\prime } = 2 y^{2} \]

[_separable]

202

\[ {}9 x^{2} y^{2}+x^{{3}/{2}} y^{\prime } = y^{2} \]

[_separable]

209

\[ {}y^{\prime } = 3 \left (y+7\right ) x^{2} \]

[_separable]

210

\[ {}y^{\prime } = x y^{3}-x y \]

[_separable]

213

\[ {}y^{\prime } = \frac {2 x y+2 x}{x^{2}+1} \]

[_separable]

214

\[ {}y^{\prime } = \frac {\sqrt {y}-y}{\tan \left (x \right )} \]

[_separable]

669

\[ {}y^{\prime } = 2 x^{2} y^{2} \]
i.c.

[_separable]

670

\[ {}y^{\prime } = \ln \left (y\right ) x \]

[_separable]

673

\[ {}y y^{\prime } = x -1 \]
i.c.

[_separable]

674

\[ {}y y^{\prime } = x -1 \]
i.c.

[_separable]

677

\[ {}y^{\prime }+2 x y = 0 \]

[_separable]

678

\[ {}y^{\prime }+2 x y^{2} = 0 \]

[_separable]

679

\[ {}y^{\prime } = y \sin \left (x \right ) \]

[_separable]

680

\[ {}\left (x +1\right ) y^{\prime } = 4 y \]

[_separable]

681

\[ {}2 \sqrt {x}\, y^{\prime } = \sqrt {1-y^{2}} \]

[_separable]

684

\[ {}y^{\prime } = 2 x \sec \left (y\right ) \]

[_separable]

685

\[ {}\left (-x^{2}+1\right ) y^{\prime } = 2 y \]

[_separable]

686

\[ {}\left (x^{2}+1\right ) y^{\prime } = \left (1+y\right )^{2} \]

[_separable]

687

\[ {}y^{\prime } = x y^{3} \]

[_separable]

688

\[ {}y y^{\prime } = x \left (1+y^{2}\right ) \]

[_separable]

689

\[ {}y^{\prime } = \frac {1+\sqrt {x}}{1+\sqrt {y}} \]

[_separable]

690

\[ {}y^{\prime } = \frac {\left (x -1\right ) y^{5}}{x^{2} \left (2 y^{3}-y\right )} \]

[_separable]

691

\[ {}\left (x^{2}+1\right ) \tan \left (y\right ) y^{\prime } = x \]

[_separable]

692

\[ {}y^{\prime } = 1+x +y+x y \]

[_separable]

693

\[ {}x^{2} y^{\prime } = 1-x^{2}+y^{2}-x^{2} y^{2} \]

[_separable]

694

\[ {}y^{\prime } = y \,{\mathrm e}^{x} \]
i.c.

[_separable]

695

\[ {}y^{\prime } = 3 x^{2} \left (1+y^{2}\right ) \]
i.c.

[_separable]

696

\[ {}2 y y^{\prime } = \frac {x}{\sqrt {x^{2}-16}} \]
i.c.

[_separable]

697

\[ {}y^{\prime } = 4 x^{3} y-y \]
i.c.

[_separable]

699

\[ {}y^{\prime } \tan \left (x \right ) = y \]
i.c.

[_separable]

700

\[ {}y^{\prime } x -y = 2 x^{2} y \]
i.c.

[_separable]

701

\[ {}y^{\prime } = 2 x y^{2}+3 x^{2} y^{2} \]
i.c.

[_separable]

702

\[ {}y^{\prime } = 6 \,{\mathrm e}^{2 x -y} \]
i.c.

[_separable]

703

\[ {}2 \sqrt {x}\, y^{\prime } = \cos \left (y\right )^{2} \]
i.c.

[_separable]

714

\[ {}y^{\prime } x +y = 3 x y \]
i.c.

[_separable]

718

\[ {}y^{\prime }+2 x y = x \]
i.c.

[_separable]

719

\[ {}y^{\prime } = \left (1-y\right ) \cos \left (x \right ) \]
i.c.

[_separable]

723

\[ {}y^{\prime } = 1+x +y+x y \]
i.c.

[_separable]

727

\[ {}\left (x^{2}+4\right ) y^{\prime }+3 x y = x \]
i.c.

[_separable]

748

\[ {}y^{2} y^{\prime }+2 x y^{3} = 6 x \]

[_separable]

770

\[ {}\frac {2 x^{{5}/{2}}-3 y^{{5}/{3}}}{2 x^{{5}/{2}} y^{{2}/{3}}}+\frac {\left (3 y^{{5}/{3}}-2 x^{{5}/{2}}\right ) y^{\prime }}{3 x^{{3}/{2}} y^{{5}/{3}}} = 0 \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

772

\[ {}x y^{2}+3 y^{2}-x^{2} y^{\prime } = 0 \]

[_separable]

775

\[ {}3 y+x^{4} y^{\prime } = 2 x y \]

[_separable]

776

\[ {}2 x y^{2}+x^{2} y^{\prime } = y^{2} \]

[_separable]

780

\[ {}y^{\prime } = 1+x^{2}+y^{2}+x^{2} y^{2} \]

[_separable]

789

\[ {}3 x^{5} y^{2}+x^{3} y^{\prime } = 2 y^{2} \]

[_separable]

794

\[ {}9 x^{2} y^{2}+x^{{3}/{2}} y^{\prime } = y^{2} \]

[_separable]

800

\[ {}y^{\prime } = 3 \left (y+7\right ) x^{2} \]

[_separable]

801

\[ {}y^{\prime } = 3 \left (y+7\right ) x^{2} \]

[_separable]

802

\[ {}y^{\prime } = x y^{3}-x y \]

[_separable]

805

\[ {}y^{\prime } = \frac {2 x y+2 x}{x^{2}+1} \]

[_separable]

806

\[ {}y^{\prime } = \cot \left (x \right ) \left (\sqrt {y}-y\right ) \]

[_separable]

1129

\[ {}y^{\prime } = \frac {x^{2}}{y} \]

[_separable]

1130

\[ {}y^{\prime } = \frac {x^{2}}{\left (x^{3}+1\right ) y} \]

[_separable]

1131

\[ {}\sin \left (x \right ) y^{2}+y^{\prime } = 0 \]

[_separable]

1132

\[ {}y^{\prime } = \frac {3 x^{2}-1}{3+2 y} \]

[_separable]

1133

\[ {}y^{\prime } = \cos \left (x \right )^{2} \cos \left (2 y\right )^{2} \]

[_separable]

1134

\[ {}y^{\prime } x = \sqrt {1-y^{2}} \]

[_separable]

1136

\[ {}y^{\prime } = \frac {x^{2}}{1+y^{2}} \]

[_separable]

1137

\[ {}y^{\prime } = \left (-2 x +1\right ) y^{2} \]
i.c.

[_separable]

1138

\[ {}y^{\prime } = \frac {-2 x +1}{y} \]
i.c.

[_separable]

1139

\[ {}x +y y^{\prime } {\mathrm e}^{-x} = 0 \]
i.c.

[_separable]

1140

\[ {}r^{\prime } = \frac {r^{2}}{x} \]
i.c.

[_separable]

1141

\[ {}y^{\prime } = \frac {2 x}{y+x^{2} y} \]
i.c.

[_separable]

1142

\[ {}y^{\prime } = \frac {x y^{2}}{\sqrt {x^{2}+1}} \]
i.c.

[_separable]

1143

\[ {}y^{\prime } = \frac {2 x}{1+2 y} \]
i.c.

[_separable]

1144

\[ {}y^{\prime } = \frac {x \left (x^{2}+1\right )}{4 y^{3}} \]
i.c.

[_separable]

1145

\[ {}y^{\prime } = \frac {-{\mathrm e}^{x}+3 x^{2}}{-5+2 y} \]
i.c.

[_separable]

1146

\[ {}y^{\prime } = \frac {{\mathrm e}^{-x}-{\mathrm e}^{x}}{3+4 y} \]
i.c.

[_separable]

1147

\[ {}\sin \left (2 x \right )+\cos \left (3 y\right ) y^{\prime } = 0 \]
i.c.

[_separable]

1148

\[ {}\sqrt {-x^{2}+1}\, y^{2} y^{\prime } = \arcsin \left (x \right ) \]
i.c.

[_separable]

1149

\[ {}y^{\prime } = \frac {3 x^{2}+1}{-6 y+3 y^{2}} \]
i.c.

[_separable]

1150

\[ {}y^{\prime } = \frac {3 x^{2}}{-4+3 y^{2}} \]
i.c.

[_separable]

1151

\[ {}y^{\prime } = 2 y^{2}+x y^{2} \]
i.c.

[_separable]

1152

\[ {}y^{\prime } = \frac {2-{\mathrm e}^{x}}{3+2 y} \]
i.c.

[_separable]

1153

\[ {}y^{\prime } = \frac {2 \cos \left (2 x \right )}{3+2 y} \]
i.c.

[_separable]

1154

\[ {}y^{\prime } = 2 \left (x +1\right ) \left (1+y^{2}\right ) \]
i.c.

[_separable]

1155

\[ {}y^{\prime } = \frac {t \left (4-y\right ) y}{3} \]

[_separable]

1156

\[ {}y^{\prime } = \frac {t y \left (4-y\right )}{1+t} \]

[_separable]

1167

\[ {}y+\left (t -4\right ) t y^{\prime } = 0 \]
i.c.

[_separable]

1172

\[ {}y^{\prime } = \frac {t^{2}+1}{3 y-y^{2}} \]

[_separable]

1173

\[ {}y^{\prime } = \frac {\cot \left (t \right ) y}{1+y} \]

[_separable]

1174

\[ {}y^{\prime } = -\frac {4 t}{y} \]

[_separable]

1175

\[ {}y^{\prime } = 2 t y^{2} \]

[_separable]

1177

\[ {}y^{\prime } = \frac {t^{2}}{\left (t^{3}+1\right ) y} \]

[_separable]

1178

\[ {}y^{\prime } = t \left (3-y\right ) y \]

[_separable]

1193

\[ {}3+2 x +\left (-2+2 y\right ) y^{\prime } = 0 \]

[_separable]

1196

\[ {}2 y+2 x y^{2}+\left (2 x +2 x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

1204

\[ {}\frac {x}{\left (x^{2}+y^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (x^{2}+y^{2}\right )^{{3}/{2}}} = 0 \]

[_separable]

1207

\[ {}x^{2} y^{3}+x \left (1+y^{2}\right ) y^{\prime } = 0 \]

[_separable]

1209

\[ {}\left (x +2\right ) \sin \left (y\right )+x \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

1219

\[ {}y^{\prime } = \frac {\cos \left (x \right )+1}{2-\sin \left (y\right )} \]

[_separable]

1221

\[ {}y^{\prime } = 3-6 x +y-2 x y \]

[_separable]

1224

\[ {}y^{\prime } = \frac {4 x^{3}+1}{y \left (2+3 y\right )} \]

[_separable]

1227

\[ {}\frac {-x^{2}+x +1}{x^{2}}+\frac {y y^{\prime }}{-2+y} = 0 \]

[_separable]

1230

\[ {}y^{\prime } = 1+2 x +y^{2}+2 x y^{2} \]

[_separable]

1232

\[ {}\left ({\mathrm e}^{x}+1\right ) y^{\prime } = y-y \,{\mathrm e}^{x} \]

[_separable]

1237

\[ {}y^{\prime } = {\mathrm e}^{x +y} \]

[_separable]

1239

\[ {}y^{\prime } = \frac {x^{2}-1}{1+y^{2}} \]
i.c.

[_separable]

1241

\[ {}2 \cos \left (x \right ) \sin \left (x \right ) \sin \left (y\right )+\cos \left (y\right ) \sin \left (x \right )^{2} y^{\prime } = 0 \]

[_separable]

1521

\[ {}y^{\prime }+2 x y = x \]

[_separable]

1522

\[ {}2 y^{\prime }+x \left (-1+y^{2}\right ) = 0 \]

[_separable]

1523

\[ {}y^{\prime } = x^{2} \left (1+y^{2}\right ) \]

[_separable]

1532

\[ {}y^{\prime } = x \left (1+y^{2}\right ) \]
i.c.

[_separable]

1533

\[ {}y^{\prime } = -\frac {y \left (1+y\right )}{x} \]
i.c.

[_separable]

1538

\[ {}y^{\prime }+3 x^{2} y = 0 \]

[_separable]

1539

\[ {}y^{\prime } x +y \ln \left (x \right ) = 0 \]

[_separable]

1540

\[ {}y^{\prime } x +3 y = 0 \]

[_separable]

1541

\[ {}x^{2} y^{\prime }+y = 0 \]

[_separable]

1542

\[ {}y^{\prime }+\frac {\left (x +1\right ) y}{x} = 0 \]
i.c.

[_separable]

1543

\[ {}y^{\prime } x +\left (1+\frac {1}{\ln \left (x \right )}\right ) y = 0 \]
i.c.

[_separable]

1544

\[ {}y^{\prime } x +\left (1+x \cot \left (x \right )\right ) y = 0 \]
i.c.

[_separable]

1545

\[ {}y^{\prime }-\frac {2 x y}{x^{2}+1} = 0 \]
i.c.

[_separable]

1546

\[ {}y^{\prime }+\frac {k y}{x} = 0 \]
i.c.

[_separable]

1547

\[ {}y^{\prime }+\tan \left (k x \right ) y = 0 \]
i.c.

[_separable]

1569

\[ {}y^{\prime }+2 x y = x \]
i.c.

[_separable]

1573

\[ {}y^{\prime } x -2 y = -1 \]
i.c.

[_separable]

1578

\[ {}y^{\prime } = \frac {3 x^{2}+2 x +1}{-2+y} \]

[_separable]

1579

\[ {}\sin \left (x \right ) \sin \left (y\right )+y^{\prime } \cos \left (y\right ) = 0 \]

[_separable]

1580

\[ {}y^{\prime } x +y^{2}+y = 0 \]

[_separable]

1581

\[ {}\left (3 y^{3}+3 y \cos \left (y\right )+1\right ) y^{\prime }+\frac {\left (2 x +1\right ) y}{x^{2}+1} = 0 \]

[_separable]

1582

\[ {}x^{2} y y^{\prime } = \left (-1+y^{2}\right )^{{3}/{2}} \]

[_separable]

1583

\[ {}y^{\prime } = x^{2} \left (1+y^{2}\right ) \]

[_separable]

1584

\[ {}\left (x^{2}+1\right ) y^{\prime }+x y = 0 \]

[_separable]

1585

\[ {}y^{\prime } = \left (x -1\right ) \left (-1+y\right ) \left (-2+y\right ) \]

[_separable]

1586

\[ {}\left (-1+y\right )^{2} y^{\prime } = 2 x +3 \]

[_separable]

1587

\[ {}y^{\prime } = \frac {x^{2}+3 x +2}{-2+y} \]
i.c.

[_separable]

1588

\[ {}y^{\prime }+x \left (y^{2}+y\right ) = 0 \]
i.c.

[_separable]

1589

\[ {}\left (3 y^{2}+4 y\right ) y^{\prime }+2 x +\cos \left (x \right ) = 0 \]
i.c.

[_separable]

1590

\[ {}y^{\prime }+\frac {\left (1+y\right ) \left (-1+y\right ) \left (-2+y\right )}{x +1} = 0 \]
i.c.

[_separable]

1591

\[ {}y^{\prime }+2 x \left (1+y\right ) = 0 \]
i.c.

[_separable]

1592

\[ {}y^{\prime } = 2 x y \left (1+y^{2}\right ) \]
i.c.

[_separable]

1593

\[ {}\left (x^{2}+2\right ) y^{\prime } = 4 x \left (y^{2}+2 y+1\right ) \]

[_separable]

1594

\[ {}y^{\prime } = -2 x \left (y^{3}-3 y+2\right ) \]
i.c.

[_separable]

1595

\[ {}y^{\prime } = \frac {2 x}{1+2 y} \]
i.c.

[_separable]

1597

\[ {}y y^{\prime }+x = 0 \]
i.c.

[_separable]

1598

\[ {}y^{\prime }+x^{2} \left (1+y\right ) \left (-2+y\right )^{2} = 0 \]

[_separable]

1599

\[ {}\left (x +1\right ) \left (x -2\right ) y^{\prime }+y = 0 \]
i.c.

[_separable]

1600

\[ {}y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \]

[_separable]

1601

\[ {}y^{\prime } \sqrt {-x^{2}+1}+\sqrt {1-y^{2}} = 0 \]

[_separable]

1602

\[ {}y^{\prime } = \frac {\cos \left (x \right )}{\sin \left (y\right )} \]
i.c.

[_separable]

1613

\[ {}y^{\prime } = 2 x y \]

[_separable]

1617

\[ {}y^{\prime } = x \left (-1+y^{2}\right )^{{2}/{3}} \]

[_separable]

1620

\[ {}y^{\prime } = \frac {\tan \left (y\right )}{x -1} \]

[_separable]

1622

\[ {}y^{\prime } = 3 x \left (-1+y\right )^{{1}/{3}} \]
i.c.

[_separable]

1623

\[ {}y^{\prime } = 3 x \left (-1+y\right )^{{1}/{3}} \]
i.c.

[_separable]

1624

\[ {}y^{\prime } = 3 x \left (-1+y\right )^{{1}/{3}} \]
i.c.

[_separable]

1636

\[ {}y^{\prime }-x y = x y^{{3}/{2}} \]
i.c.

[_separable]

1680

\[ {}6 x^{2} y^{2}+4 x^{3} y y^{\prime } = 0 \]

[_separable]

1690

\[ {}\frac {1}{x}+2 x +\left (\frac {1}{y}+2 y\right ) y^{\prime } = 0 \]

[_separable]

1692

\[ {}\frac {x}{\left (x^{2}+y^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (x^{2}+y^{2}\right )^{{3}/{2}}} = 0 \]

[_separable]

1699

\[ {}\left (y^{3}-1\right ) {\mathrm e}^{x}+3 y^{2} \left ({\mathrm e}^{x}+1\right ) y^{\prime } = 0 \]
i.c.

[_separable]

1701

\[ {}\left (2 x -1\right ) \left (-1+y\right )+\left (x +2\right ) \left (x -3\right ) y^{\prime } = 0 \]
i.c.

[_separable]

1712

\[ {}-y^{2}+x^{2} y^{\prime } = 0 \]

[_separable]

1713

\[ {}y-y^{\prime } x = 0 \]

[_separable]

1714

\[ {}3 x^{2} y+2 x^{3} y^{\prime } = 0 \]

[_separable]

1722

\[ {}x^{2} y+4 x y+2 y+\left (x^{2}+x \right ) y^{\prime } = 0 \]

[_separable]

1723

\[ {}-y+\left (x^{4}-x \right ) y^{\prime } = 0 \]

[_separable]

1726

\[ {}y \sin \left (y\right )+x \left (\sin \left (y\right )-y \cos \left (y\right )\right ) y^{\prime } = 0 \]

[_separable]

1727

\[ {}a y+b x y+\left (c x +d x y\right ) y^{\prime } = 0 \]

[_separable]

1729

\[ {}2 y+3 \left (x^{2}+x^{2} y^{3}\right ) y^{\prime } = 0 \]

[_separable]

1731

\[ {}x^{4} y^{4}+x^{5} y^{3} y^{\prime } = 0 \]

[_separable]

1732

\[ {}y \left (x \cos \left (x \right )+2 \sin \left (x \right )\right )+x \left (1+y\right ) y^{\prime } = 0 \]

[_separable]

2299

\[ {}\cos \left (t \right ) y+y^{\prime } = 0 \]

[_separable]

2300

\[ {}\sqrt {t}\, \sin \left (t \right ) y+y^{\prime } = 0 \]

[_separable]

2304

\[ {}t^{2} y+y^{\prime } = t^{2} \]

[_separable]

2306

\[ {}\sqrt {t^{2}+1}\, y+y^{\prime } = 0 \]
i.c.

[_separable]

2307

\[ {}\sqrt {t^{2}+1}\, y \,{\mathrm e}^{-t}+y^{\prime } = 0 \]

[_separable]

2308

\[ {}y^{\prime }-2 t y = t \]
i.c.

[_separable]

2313

\[ {}4 t y+\left (t^{2}+1\right ) y^{\prime } = t \]
i.c.

[_separable]

2318

\[ {}\left (t^{2}+1\right ) y^{\prime } = 1+y^{2} \]

[_separable]

2319

\[ {}y^{\prime } = \left (1+t \right ) \left (1+y\right ) \]

[_separable]

2320

\[ {}y^{\prime } = 1-t +y^{2}-t y^{2} \]

[_separable]

2321

\[ {}y^{\prime } = {\mathrm e}^{3+t +y} \]

[_separable]

2322

\[ {}\cos \left (y\right ) \sin \left (t \right ) y^{\prime } = \cos \left (t \right ) \sin \left (y\right ) \]

[_separable]

2323

\[ {}t^{2} \left (1+y^{2}\right )+2 y y^{\prime } = 0 \]
i.c.

[_separable]

2324

\[ {}y^{\prime } = \frac {2 t}{y+t^{2} y} \]
i.c.

[_separable]

2325

\[ {}\sqrt {t^{2}+1}\, y^{\prime } = \frac {t y^{3}}{\sqrt {t^{2}+1}} \]
i.c.

[_separable]

2326

\[ {}y^{\prime } = \frac {3 t^{2}+4 t +2}{-2+2 y} \]
i.c.

[_separable]

2327

\[ {}\cos \left (y\right ) y^{\prime } = -\frac {t \sin \left (y\right )}{t^{2}+1} \]
i.c.

[_separable]

2329

\[ {}3 y^{\prime } t = \cos \left (t \right ) y \]
i.c.

[_separable]

2342

\[ {}2 t y^{3}+3 t^{2} y^{2} y^{\prime } = 0 \]
i.c.

[_separable]

2360

\[ {}y^{\prime } = t \left (1+y\right ) \]
i.c.

[_separable]

2361

\[ {}y^{\prime } = t \sqrt {1-y^{2}} \]
i.c.

[_separable]

2472

\[ {}\cos \left (t \right ) y+y^{\prime } = 0 \]

[_separable]

2473

\[ {}\sqrt {t}\, \sin \left (t \right ) y+y^{\prime } = 0 \]

[_separable]

2477

\[ {}t^{2} y+y^{\prime } = t^{2} \]

[_separable]

2479

\[ {}\sqrt {t^{2}+1}\, y+y^{\prime } = 0 \]
i.c.

[_separable]

2480

\[ {}\sqrt {t^{2}+1}\, y \,{\mathrm e}^{-t}+y^{\prime } = 0 \]
i.c.

[_separable]

2481

\[ {}\sqrt {t^{2}+1}\, y \,{\mathrm e}^{-t}+y^{\prime } = 0 \]
i.c.

[_separable]

2482

\[ {}y^{\prime }-2 t y = t \]
i.c.

[_separable]

2487

\[ {}4 t y+\left (t^{2}+1\right ) y^{\prime } = t \]
i.c.

[_separable]

2489

\[ {}\left (t^{2}+1\right ) y^{\prime } = 1+y^{2} \]

[_separable]

2490

\[ {}y^{\prime } = \left (1+t \right ) \left (1+y\right ) \]

[_separable]

2491

\[ {}y^{\prime } = 1-t +y^{2}-t y^{2} \]

[_separable]

2492

\[ {}y^{\prime } = {\mathrm e}^{3+t +y} \]

[_separable]

2493

\[ {}\cos \left (y\right ) \sin \left (t \right ) y^{\prime } = \cos \left (t \right ) \sin \left (y\right ) \]

[_separable]

2494

\[ {}t^{2} \left (1+y^{2}\right )+2 y y^{\prime } = 0 \]
i.c.

[_separable]

2495

\[ {}y^{\prime } = \frac {2 t}{y+t^{2} y} \]
i.c.

[_separable]

2496

\[ {}\sqrt {1+y^{2}}\, y^{\prime } = \frac {t y^{3}}{\sqrt {t^{2}+1}} \]
i.c.

[_separable]

2497

\[ {}y^{\prime } = \frac {3 t^{2}+4 t +2}{-2+2 y} \]
i.c.

[_separable]

2498

\[ {}\cos \left (y\right ) y^{\prime } = -\frac {t \sin \left (y\right )}{t^{2}+1} \]
i.c.

[_separable]

2500

\[ {}3 y^{\prime } t = \cos \left (t \right ) y \]
i.c.

[_separable]

2514

\[ {}2 t y^{3}+3 t^{2} y^{2} y^{\prime } = 0 \]
i.c.

[_separable]

2519

\[ {}y^{\prime } = 2 t \left (1+y\right ) \]
i.c.

[_separable]

2535

\[ {}y^{\prime } = t \left (1+y\right ) \]
i.c.

[_separable]

2536

\[ {}y^{\prime } = t y^{a} \]
i.c.

[_separable]

2537

\[ {}y^{\prime } = t \sqrt {1-y^{2}} \]
i.c.

[_separable]

2841

\[ {}\left (x^{2}+1\right ) y^{\prime }+x y = 0 \]

[_separable]

2842

\[ {}x y^{2}+x +\left (y-x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

2843

\[ {}1+y^{2}+\left (x^{2}+1\right ) y^{\prime } = 0 \]

[_separable]

2844

\[ {}y^{\prime } x +y = 0 \]

[_separable]

2845

\[ {}y^{\prime } = 2 x y \]

[_separable]

2846

\[ {}x y^{2}+x +\left (x^{2} y-y\right ) y^{\prime } = 0 \]

[_separable]

2847

\[ {}\sqrt {-x^{2}+1}+\sqrt {1-y^{2}}\, y^{\prime } = 0 \]

[_separable]

2848

\[ {}\left (x +1\right ) y^{\prime }-1+y = 0 \]

[_separable]

2849

\[ {}y^{\prime } \tan \left (x \right )-y = 1 \]

[_separable]

2850

\[ {}y+3+\cot \left (x \right ) y^{\prime } = 0 \]

[_separable]

2851

\[ {}y^{\prime } = \frac {x}{y} \]

[_separable]

2853

\[ {}y^{\prime } x +y = y^{2} \]

[_separable]

2854

\[ {}\sin \left (x \right ) \cos \left (y\right )^{2}+\cos \left (x \right )^{2} y^{\prime } = 0 \]

[_separable]

2855

\[ {}\sec \left (x \right ) \cos \left (y\right )^{2} = \cos \left (x \right ) \sin \left (y\right ) y^{\prime } \]

[_separable]

2856

\[ {}y^{\prime } x +y = x y \left (y^{\prime }-1\right ) \]

[_separable]

2857

\[ {}x y+\sqrt {x^{2}+1}\, y^{\prime } = 0 \]

[_separable]

2858

\[ {}y = x y+x^{2} y^{\prime } \]

[_separable]

2859

\[ {}\tan \left (x \right ) \sin \left (x \right )^{2}+\cos \left (x \right )^{2} \cot \left (y\right ) y^{\prime } = 0 \]

[_separable]

2860

\[ {}y^{2}+y y^{\prime }+x^{2} y y^{\prime }-1 = 0 \]

[_separable]

2861

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

2862

\[ {}y^{\prime } x +2 y = 0 \]
i.c.

[_separable]

2863

\[ {}\sin \left (x \right ) \cos \left (y\right )+\cos \left (x \right ) \sin \left (y\right ) y^{\prime } = 0 \]
i.c.

[_separable]

2864

\[ {}x^{2} y^{\prime }+y^{2} = 0 \]
i.c.

[_separable]

2867

\[ {}1+y^{2} = \frac {y^{\prime }}{x^{3} \left (x -1\right )} \]
i.c.

[_separable]

2869

\[ {}\left (x^{2}+x +1\right ) y^{\prime } = y^{2}+2 y+5 \]
i.c.

[_separable]

2870

\[ {}\left (x^{2}-2 x -8\right ) y^{\prime } = y^{2}+y-2 \]
i.c.

[_separable]

2925

\[ {}\frac {2}{y}-\frac {y}{x^{2}}+\left (\frac {1}{x}-\frac {2 x}{y^{2}}\right ) y^{\prime } = 0 \]

[_separable]

2939

\[ {}\left (x -2 x y\right ) y^{\prime }+2 y = 0 \]

[_separable]

2953

\[ {}\left (x^{2}-1\right ) y+x \left (x^{2}+1\right ) y^{\prime } = 0 \]
i.c.

[_separable]

2991

\[ {}y^{\prime }-x y = \frac {x}{y} \]

[_separable]

2993

\[ {}r^{\prime }+\left (r-\frac {1}{r}\right ) \theta = 0 \]

[_separable]

2996

\[ {}y^{\prime } \cos \left (y\right )+\left (\sin \left (y\right )-1\right ) \cos \left (x \right ) = 0 \]

[_separable]

3004

\[ {}\left (1-x \right ) y^{\prime }-1-y = 0 \]

[_separable]

3011

\[ {}6+2 y = x y^{\prime } y \]

[_separable]

3015

\[ {}y-y^{\prime } x = 2 y^{\prime }+2 y^{2} \]

[_separable]

3016

\[ {}\tan \left (y\right ) = \left (3 x +4\right ) y^{\prime } \]

[_separable]

3020

\[ {}r^{\prime } = r \cot \left (\theta \right ) \]

[_separable]

3024

\[ {}y^{\prime } = \cos \left (y\right ) \cos \left (x \right )^{2} \]

[_separable]

3028

\[ {}3 x -6 = x y^{\prime } y \]

[_separable]

3031

\[ {}y^{\prime } x +y \left (1+y^{2}\right ) = 0 \]

[_separable]

3033

\[ {}3 \,{\mathrm e}^{x} \tan \left (y\right ) = \left (1-{\mathrm e}^{x}\right ) \sec \left (y\right )^{2} y^{\prime } \]

[_separable]

3040

\[ {}x \sqrt {1-y}-y^{\prime } \sqrt {-x^{2}+1} = 0 \]
i.c.

[_separable]

3042

\[ {}x \,{\mathrm e}^{-y^{2}}+y y^{\prime } = 0 \]
i.c.

[_separable]

3052

\[ {}4 x y^{2}+\left (x^{2}+1\right ) y^{\prime } = 0 \]
i.c.

[_separable]

3057

\[ {}2 \left (x^{2}+1\right ) y^{\prime } = \left (2 y^{2}-1\right ) x y \]
i.c.

[_separable]

3293

\[ {}{y^{\prime }}^{3}+\left (x +y-2 x y\right ) {y^{\prime }}^{2}-2 y^{\prime } x y \left (x +y\right ) = 0 \]

[_quadrature]

3334

\[ {}y^{2}-2 x y^{\prime } y+{y^{\prime }}^{2} \left (x^{2}-1\right ) = 0 \]

[_separable]

3409

\[ {}y^{\prime } = x y \]

[_separable]

3410

\[ {}y^{\prime } = x^{2} y^{2} \]

[_separable]

3411

\[ {}y^{\prime } = -x \,{\mathrm e}^{y} \]

[_separable]

3412

\[ {}y^{\prime } \sin \left (y\right ) = x^{2} \]

[_separable]

3413

\[ {}y^{\prime } x = \sqrt {1-y^{2}} \]

[_separable]

3427

\[ {}y^{\prime } = \frac {{\mathrm e}^{t}}{y} \]
i.c.

[_separable]

3431

\[ {}y^{\prime } = \frac {y}{t} \]

[_separable]

3432

\[ {}y^{\prime } = -\frac {t}{y} \]

[_separable]

3438

\[ {}y^{\prime } = \left (t^{2}+1\right ) y \]

[_separable]

3451

\[ {}y^{\prime } = \frac {2 y}{1+t} \]
i.c.

[_separable]

3453

\[ {}y^{\prime }+4 \tan \left (2 t \right ) y = \tan \left (2 t \right ) \]
i.c.

[_separable]

3457

\[ {}y^{\prime }-x y^{3} = 0 \]

[_separable]

3458

\[ {}\frac {y^{\prime }}{\tan \left (x \right )}-\frac {y}{x^{2}+1} = 0 \]

[_separable]

3459

\[ {}x^{2} y^{\prime }+x y^{2} = 4 y^{2} \]

[_separable]

3470

\[ {}y^{\prime } = \tan \left (x \right ) \cos \left (y\right ) \left (\cos \left (y\right )+\sin \left (y\right )\right ) \]

[_separable]

3473

\[ {}y^{\prime } = \frac {4 y^{2}}{x^{2}}-y^{2} \]

[_separable]

3515

\[ {}y^{\prime } = 2 x y \]

[_separable]

3516

\[ {}y^{\prime } = \frac {y^{2}}{x^{2}+1} \]

[_separable]

3517

\[ {}{\mathrm e}^{x +y} y^{\prime }-1 = 0 \]

[_separable]

3518

\[ {}y^{\prime } = \frac {y}{x \ln \left (x \right )} \]

[_separable]

3519

\[ {}y-\left (x -2\right ) y^{\prime } = 0 \]

[_separable]

3520

\[ {}y^{\prime } = \frac {2 x \left (-1+y\right )}{x^{2}+3} \]

[_separable]

3521

\[ {}y-y^{\prime } x = 3-2 x^{2} y^{\prime } \]

[_separable]

3522

\[ {}y^{\prime } = \frac {\cos \left (x -y\right )}{\sin \left (x \right ) \sin \left (y\right )}-1 \]

[_separable]

3523

\[ {}y^{\prime } = \frac {x \left (-1+y^{2}\right )}{2 \left (x -2\right ) \left (x -1\right )} \]

[_separable]

3525

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime }-y+c = 0 \]

[_separable]

3526

\[ {}\left (x^{2}+1\right ) y^{\prime }+y^{2} = -1 \]
i.c.

[_separable]

3527

\[ {}\left (-x^{2}+1\right ) y^{\prime }+x y = a x \]
i.c.

[_separable]

3528

\[ {}y^{\prime } = 1-\frac {\sin \left (x +y\right )}{\sin \left (y\right ) \cos \left (x \right )} \]
i.c.

[_separable]

3529

\[ {}y^{\prime } = y^{3} \sin \left (x \right ) \]

[_separable]

3562

\[ {}y^{\prime } = \frac {y}{2 x} \]

[_separable]

3593

\[ {}y^{\prime } = 2 x y \]

[_separable]

3594

\[ {}y^{\prime } = \frac {y^{2}}{x^{2}+1} \]

[_separable]

3595

\[ {}{\mathrm e}^{x +y} y^{\prime }-1 = 0 \]

[_separable]

3596

\[ {}y^{\prime } = \frac {y}{x \ln \left (x \right )} \]

[_separable]

3597

\[ {}y-\left (x -1\right ) y^{\prime } = 0 \]

[_separable]

3598

\[ {}y^{\prime } = \frac {2 x \left (-1+y\right )}{x^{2}+3} \]

[_separable]

3599

\[ {}y-y^{\prime } x = 3-2 x^{2} y^{\prime } \]

[_separable]

3600

\[ {}y^{\prime } = \frac {\cos \left (x -y\right )}{\sin \left (x \right ) \sin \left (y\right )}-1 \]

[_separable]

3601

\[ {}y^{\prime } = \frac {x \left (-1+y^{2}\right )}{2 \left (x -2\right ) \left (x -1\right )} \]

[_separable]

3602

\[ {}y^{\prime } = \frac {x^{2} y-32}{-x^{2}+16}+2 \]

[_separable]

3603

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime }-y+c = 0 \]

[_separable]

3604

\[ {}\left (x^{2}+1\right ) y^{\prime }+y^{2} = -1 \]
i.c.

[_separable]

3605

\[ {}\left (-x^{2}+1\right ) y^{\prime }+x y = a x \]
i.c.

[_separable]

3606

\[ {}y^{\prime } = 1-\frac {\sin \left (x +y\right )}{\sin \left (y\right ) \cos \left (x \right )} \]
i.c.

[_separable]

3607

\[ {}y^{\prime } = y^{3} \sin \left (x \right ) \]
i.c.

[_separable]

3642

\[ {}y \left (x^{2}-y^{2}\right )-x \left (x^{2}-y^{2}\right ) y^{\prime } = 0 \]

[_separable]

3669

\[ {}\left (1-\sqrt {3}\right ) y^{\prime }+y \sec \left (x \right ) = y^{\sqrt {3}} \sec \left (x \right ) \]

[_separable]

3683

\[ {}\sec \left (y\right )^{2} y^{\prime }+\frac {\tan \left (y\right )}{2 \sqrt {x +1}} = \frac {1}{2 \sqrt {x +1}} \]

[_separable]

4094

\[ {}x^{2}+x -1+\left (2 x y+y\right ) y^{\prime } = 0 \]

[_separable]

4095

\[ {}{\mathrm e}^{2 y}+\left (x +1\right ) y^{\prime } = 0 \]

[_separable]

4096

\[ {}\left (x +1\right ) y^{\prime }-x^{2} y^{2} = 0 \]

[_separable]

4102

\[ {}y^{\prime } = {\mathrm e}^{x -2 y} \]
i.c.

[_separable]

4105

\[ {}{\mathrm e}^{-y}+\left (x^{2}+1\right ) y^{\prime } = 0 \]
i.c.

[_separable]

4110

\[ {}2 \sin \left (3 x \right ) \sin \left (2 y\right ) y^{\prime }-3 \cos \left (3 x \right ) \cos \left (2 y\right ) = 0 \]
i.c.

[_separable]

4111

\[ {}x y^{\prime } y = \left (x +1\right ) \left (1+y\right ) \]
i.c.

[_separable]

4190

\[ {}y y^{\prime } = x \]

[_separable]

4213

\[ {}3 y^{2} y^{\prime } = 2 x -1 \]

[_separable]

4214

\[ {}y^{\prime } = 6 x y^{2} \]

[_separable]

4215

\[ {}y^{\prime } = {\mathrm e}^{y} \sin \left (x \right ) \]

[_separable]

4216

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

4217

\[ {}y^{\prime } = x \sec \left (y\right ) \]

[_separable]

4219

\[ {}y^{\prime } x = y \]

[_separable]

4220

\[ {}\left (1-x \right ) y^{\prime } = y \]

[_separable]

4221

\[ {}y^{\prime } = \frac {4 x y}{x^{2}+1} \]

[_separable]

4222

\[ {}y^{\prime } = \frac {2 y}{x^{2}-1} \]

[_separable]

4223

\[ {}-y^{2}+x^{2} y^{\prime } = 0 \]
i.c.

[_separable]

4224

\[ {}y^{\prime }+2 x y = 0 \]
i.c.

[_separable]

4225

\[ {}\cot \left (x \right ) y^{\prime } = y \]
i.c.

[_separable]

4226

\[ {}y^{\prime } = x \,{\mathrm e}^{-2 y} \]
i.c.

[_separable]

4227

\[ {}y^{\prime }-2 x y = 2 x \]
i.c.

[_separable]

4228

\[ {}y^{\prime } x = x y+y \]
i.c.

[_separable]

4230

\[ {}x \cos \left (y\right ) y^{\prime } = 1+\sin \left (y\right ) \]
i.c.

[_separable]

4231

\[ {}y^{\prime } x = 2 y \left (-1+y\right ) \]
i.c.

[_separable]

4232

\[ {}2 y^{\prime } x = 1-y^{2} \]
i.c.

[_separable]

4233

\[ {}\left (1-x \right ) y^{\prime } = x y \]

[_separable]

4234

\[ {}\left (x^{2}-1\right ) y^{\prime } = \left (x^{2}+1\right ) y \]

[_separable]

4235

\[ {}y^{\prime } = {\mathrm e}^{x} \left (1+y^{2}\right ) \]

[_separable]

4236

\[ {}{\mathrm e}^{y} y^{\prime }+2 x = 2 x \,{\mathrm e}^{y} \]

[_separable]

4237

\[ {}y \,{\mathrm e}^{2 x} y^{\prime }+2 x = 0 \]
i.c.

[_separable]

4238

\[ {}x y^{\prime } y = \sqrt {y^{2}-9} \]
i.c.

[_separable]

4254

\[ {}y+y \cos \left (x y\right )+\left (x +x \cos \left (x y\right )\right ) y^{\prime } = 0 \]

[_separable]

4255

\[ {}\cos \left (x \right ) \cos \left (y\right )^{2}+2 \sin \left (x \right ) \sin \left (y\right ) \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

4257

\[ {}-\frac {\sin \left (\frac {x}{y}\right )}{y}+\frac {x \sin \left (\frac {x}{y}\right ) y^{\prime }}{y^{2}} = 0 \]

[_separable]

4258

\[ {}1+y+\left (1-x \right ) y^{\prime } = 0 \]

[_separable]

4265

\[ {}y-\left (x +x y^{3}\right ) y^{\prime } = 0 \]

[_separable]

4295

\[ {}x^{2} y^{\prime }+2 x y = 0 \]

[_separable]

4301

\[ {}x^{2} \left (1+y^{2}\right ) y^{\prime }+y^{2} \left (x^{2}+1\right ) = 0 \]

[_separable]

4302

\[ {}x \left (x -1\right ) y^{\prime } = \cot \left (y\right ) \]

[_separable]

4303

\[ {}r y^{\prime } = \frac {\left (a^{2}-r^{2}\right ) \tan \left (y\right )}{a^{2}+r^{2}} \]

[_separable]

4304

\[ {}\sqrt {x^{2}+1}\, y^{\prime }+\sqrt {1+y^{2}} = 0 \]

[_separable]

4305

\[ {}y^{\prime } = \frac {x \left (1+y^{2}\right )}{y \left (x^{2}+1\right )} \]
i.c.

[_separable]

4307

\[ {}\cos \left (y\right )^{2}+\left (1+{\mathrm e}^{-x}\right ) \sin \left (y\right ) y^{\prime } = 0 \]

[_separable]

4309

\[ {}x \cos \left (y\right )^{2}+{\mathrm e}^{x} \tan \left (y\right ) y^{\prime } = 0 \]

[_separable]

4310

\[ {}x \left (1+y^{2}\right )+\left (1+2 y\right ) {\mathrm e}^{-x} y^{\prime } = 0 \]

[_separable]

4311

\[ {}x y^{3}+{\mathrm e}^{x^{2}} y^{\prime } = 0 \]

[_separable]

4312

\[ {}x \cos \left (y\right )^{2}+\tan \left (y\right ) y^{\prime } = 0 \]

[_separable]

4313

\[ {}x y^{3}+\left (1+y\right ) {\mathrm e}^{-x} y^{\prime } = 0 \]

[_separable]

4361

\[ {}1-\left (y-2 x y\right ) y^{\prime } = 0 \]

[_separable]

4398

\[ {}y^{\prime } = \frac {y+2}{x +1} \]

[_separable]

4412

\[ {}x y+2 x^{3} y+x^{2} y^{\prime } = 0 \]

[_separable]

4429

\[ {}y \ln \left (x \right ) \ln \left (y\right )+y^{\prime } = 0 \]

[_separable]

4618

\[ {}y^{\prime } = a \,x^{n} y \]

[_separable]

4621

\[ {}y^{\prime } = \cot \left (x \right ) y \]

[_separable]

4624

\[ {}y^{\prime } = \left (2 \csc \left (2 x \right )+\cot \left (x \right )\right ) y \]

[_separable]

4632

\[ {}y^{\prime } = y \sec \left (x \right ) \]

[_separable]

4634

\[ {}y^{\prime } = y \tan \left (x \right ) \]

[_separable]

4643

\[ {}y^{\prime } = \left (a +\cos \left (\ln \left (x \right )\right )+\sin \left (\ln \left (x \right )\right )\right ) y \]

[_separable]

4671

\[ {}y^{\prime } = x y \left (3+y\right ) \]

[_separable]

4675

\[ {}y^{\prime } = a x y^{2} \]

[_separable]

4676

\[ {}y^{\prime } = x^{n} \left (a +b y^{2}\right ) \]

[_separable]

4682

\[ {}y^{\prime }+\tan \left (x \right ) \left (1-y^{2}\right ) = 0 \]

[_separable]

4684

\[ {}y^{\prime } = \left (a +b y+c y^{2}\right ) f \left (x \right ) \]

[_separable]

4690

\[ {}y^{\prime } = x y^{3} \]

[_separable]

4695

\[ {}y^{\prime }+y^{3} \sec \left (x \right ) \tan \left (x \right ) = 0 \]

[_separable]

4709

\[ {}y^{\prime } = \cos \left (y\right ) \cos \left (x \right )^{2} \]

[_separable]

4710

\[ {}y^{\prime } = \sec \left (x \right )^{2} \cot \left (y\right ) \cos \left (y\right ) \]

[_separable]

4715

\[ {}y^{\prime }+\tan \left (x \right ) \sec \left (x \right ) \cos \left (y\right )^{2} = 0 \]

[_separable]

4716

\[ {}y^{\prime } = \cot \left (x \right ) \cot \left (y\right ) \]

[_separable]

4717

\[ {}y^{\prime }+\cot \left (x \right ) \cot \left (y\right ) = 0 \]

[_separable]

4718

\[ {}y^{\prime } = \sin \left (x \right ) \left (\csc \left (y\right )-\cot \left (y\right )\right ) \]

[_separable]

4719

\[ {}y^{\prime } = \tan \left (x \right ) \cot \left (y\right ) \]

[_separable]

4720

\[ {}y^{\prime }+\tan \left (x \right ) \cot \left (y\right ) = 0 \]

[_separable]

4721

\[ {}y^{\prime }+\sin \left (2 x \right ) \csc \left (2 y\right ) = 0 \]

[_separable]

4723

\[ {}y^{\prime } = \cos \left (x \right ) \sec \left (y\right )^{2} \]

[_separable]

4724

\[ {}y^{\prime } = \sec \left (x \right )^{2} \sec \left (y\right )^{3} \]

[_separable]

4727

\[ {}y^{\prime }+\csc \left (2 x \right ) \sin \left (2 y\right ) = 0 \]

[_separable]

4731

\[ {}y^{\prime } = {\mathrm e}^{x +y} \]

[_separable]

4732

\[ {}y^{\prime } = {\mathrm e}^{x} \left (a +b \,{\mathrm e}^{-y}\right ) \]

[_separable]

4733

\[ {}y \ln \left (x \right ) \ln \left (y\right )+y^{\prime } = 0 \]

[_separable]

4737

\[ {}y^{\prime } = f \left (x \right ) g \left (y\right ) \]

[_separable]

4752

\[ {}y^{\prime } x = a y \]

[_separable]

4759

\[ {}y^{\prime } x +\left (b x +a \right ) y = 0 \]

[_separable]

4766

\[ {}y^{\prime } x = a +b y^{2} \]

[_separable]

4787

\[ {}y^{\prime } x = y \left (1+y^{2}\right ) \]

[_separable]

4792

\[ {}y^{\prime } x = 4 y-4 \sqrt {y} \]

[_separable]

4793

\[ {}y^{\prime } x +2 y = \sqrt {1+y^{2}} \]

[_separable]

4802

\[ {}y^{\prime } x = \left (-2 x^{2}+1\right ) \cot \left (y\right )^{2} \]

[_separable]

4803

\[ {}y^{\prime } x = y-\cot \left (y\right )^{2} \]

[_separable]

4809

\[ {}y^{\prime } x +\tan \left (y\right ) = 0 \]

[_separable]

4815

\[ {}y^{\prime } x = y \ln \left (y\right ) \]

[_separable]

4832

\[ {}\left (x +a \right ) y^{\prime } = b +c y \]

[_separable]

4834

\[ {}\left (x +a \right ) y^{\prime } = y \left (1-a y\right ) \]

[_separable]

4838

\[ {}2 y^{\prime } x = y \left (1+y^{2}\right ) \]

[_separable]

4839

\[ {}2 y^{\prime } x +y \left (1+y^{2}\right ) = 0 \]

[_separable]

4841

\[ {}2 y^{\prime } x +4 y+a +\sqrt {a^{2}-4 b -4 c y} = 0 \]

[_separable]

4843

\[ {}\left (2 x +1\right ) y^{\prime } = 4 \,{\mathrm e}^{-y}-2 \]

[_separable]

4849

\[ {}x^{2} y^{\prime } = -y+a \]

[_separable]

4854

\[ {}x^{2} y^{\prime } = \left (b x +a \right ) y \]

[_separable]

4859

\[ {}x^{2} y^{\prime } = a +b y^{2} \]

[_separable]

4883

\[ {}\left (-x^{2}+1\right ) y^{\prime }-x +x y = 0 \]

[_separable]

4888

\[ {}\left (-x^{2}+1\right ) y^{\prime }+2 x y = 0 \]

[_separable]

4894

\[ {}\left (x^{2}+1\right ) y^{\prime } = \left (2 b x +a \right ) y \]

[_separable]

4895

\[ {}\left (x^{2}+1\right ) y^{\prime } = 1+y^{2} \]

[_separable]

4896

\[ {}\left (-x^{2}+1\right ) y^{\prime } = 1-y^{2} \]

[_separable]

4899

\[ {}\left (x^{2}+1\right ) y^{\prime }+x y \left (1-y\right ) = 0 \]

[_separable]

4900

\[ {}\left (-x^{2}+1\right ) y^{\prime } = x y \left (1+a y\right ) \]

[_separable]

4906

\[ {}\left (a^{2}+x^{2}\right ) y^{\prime } = \left (b +y\right ) \left (x +\sqrt {a^{2}+x^{2}}\right ) \]

[_separable]

4909

\[ {}\left (a^{2}+x^{2}\right ) y^{\prime }+x y+b x y^{2} = 0 \]

[_separable]

4913

\[ {}x \left (x +1\right ) y^{\prime } = \left (-2 x +1\right ) y \]

[_separable]

4919

\[ {}x \left (x +a \right ) y^{\prime } = \left (b +c y\right ) y \]

[_separable]

4920

\[ {}\left (x +a \right )^{2} y^{\prime } = 2 \left (x +a \right ) \left (b +y\right ) \]

[_separable]

4922

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime }+k y = 0 \]

[_separable]

4924

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime } = c y^{2} \]

[_separable]

4925

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime }+k \left (y-a \right ) \left (y-b \right ) = 0 \]

[_separable]

4927

\[ {}2 x^{2} y^{\prime } = y \]

[_separable]

4939

\[ {}\left (b \,x^{2}+a \right ) y^{\prime } = A +B y^{2} \]

[_separable]

4940

\[ {}\left (b \,x^{2}+a \right ) y^{\prime } = c x y \ln \left (y\right ) \]

[_separable]

4941

\[ {}x \left (a x +1\right ) y^{\prime }+a -y = 0 \]

[_separable]

4948

\[ {}x^{3} y^{\prime } = \left (x +1\right ) y^{2} \]

[_separable]

4957

\[ {}x \left (x^{2}+1\right ) y^{\prime } = \left (-x^{2}+1\right ) y \]

[_separable]

4958

\[ {}x \left (-x^{2}+1\right ) y^{\prime } = \left (x^{2}-x +1\right ) y \]

[_separable]

4972

\[ {}\left (-x^{4}+1\right ) y^{\prime } = 2 x \left (1-y^{2}\right ) \]

[_separable]

4976

\[ {}x \left (-2 x^{3}+1\right ) y^{\prime } = 2 \left (-x^{3}+1\right ) y \]

[_separable]

4988

\[ {}y^{\prime } \sqrt {-x^{2}+1} = 1+y^{2} \]

[_separable]

4989

\[ {}\left (x -\sqrt {x^{2}+1}\right ) y^{\prime } = y+\sqrt {1+y^{2}} \]

[_separable]

4991

\[ {}y^{\prime } \sqrt {b^{2}+x^{2}} = \sqrt {y^{2}+a^{2}} \]

[_separable]

4992

\[ {}y^{\prime } \sqrt {b^{2}-x^{2}} = \sqrt {a^{2}-y^{2}} \]

[_separable]

4993

\[ {}x y^{\prime } \sqrt {a^{2}+x^{2}} = y \sqrt {b^{2}+y^{2}} \]

[_separable]

4994

\[ {}x y^{\prime } \sqrt {-a^{2}+x^{2}} = y \sqrt {y^{2}-b^{2}} \]

[_separable]

4998

\[ {}y^{\prime } \sqrt {x^{3}+1} = \sqrt {y^{3}+1} \]

[_separable]

4999

\[ {}y^{\prime } \sqrt {x \left (1-x \right ) \left (-a x +1\right )} = \sqrt {y \left (1-y\right ) \left (1-a y\right )} \]

[_separable]

5000

\[ {}y^{\prime } \sqrt {-x^{4}+1} = \sqrt {1-y^{4}} \]

[_separable]

5001

\[ {}y^{\prime } \sqrt {x^{4}+x^{2}+1} = \sqrt {1+y^{2}+y^{4}} \]

[_separable]

5005

\[ {}y^{\prime } \left (x^{3}+1\right )^{{2}/{3}}+\left (y^{3}+1\right )^{{2}/{3}} = 0 \]

[_separable]

5006

\[ {}y^{\prime } \left (4 x^{3}+\operatorname {a1} x +\operatorname {a0} \right )^{{2}/{3}}+\left (\operatorname {a0} +\operatorname {a1} y+4 y^{3}\right )^{{2}/{3}} = 0 \]

[_separable]

5009

\[ {}\left (1-4 \cos \left (x \right )^{2}\right ) y^{\prime } = \tan \left (x \right ) \left (1+4 \cos \left (x \right )^{2}\right ) y \]

[_separable]

5010

\[ {}\left (1-\sin \left (x \right )\right ) y^{\prime }+\cos \left (x \right ) y = 0 \]

[_separable]

5011

\[ {}\left (\cos \left (x \right )-\sin \left (x \right )\right ) y^{\prime }+y \left (\cos \left (x \right )+\sin \left (x \right )\right ) = 0 \]

[_separable]

5015

\[ {}y y^{\prime }+x = 0 \]

[_separable]

5016

\[ {}y y^{\prime }+x \,{\mathrm e}^{x^{2}} = 0 \]

[_separable]

5019

\[ {}y y^{\prime }+x \,{\mathrm e}^{-x} \left (1+y\right ) = 0 \]

[_separable]

5025

\[ {}y y^{\prime } = a x +b x y^{2} \]

[_separable]

5031

\[ {}\left (1+y\right ) y^{\prime } = x^{2} \left (1-y\right ) \]

[_separable]

5074

\[ {}3 y y^{\prime }+5 \cot \left (x \right ) \cot \left (y\right ) \cos \left (y\right )^{2} = 0 \]

[_separable]

5075

\[ {}3 \left (2-y\right ) y^{\prime }+x y = 0 \]

[_separable]

5101

\[ {}x y^{\prime } y+1+y^{2} = 0 \]

[_separable]

5108

\[ {}x y^{\prime } y = a +b y^{2} \]

[_separable]

5110

\[ {}x y^{\prime } y = \left (x^{2}+1\right ) \left (1-y^{2}\right ) \]

[_separable]

5114

\[ {}x \left (1+y\right ) y^{\prime }-\left (1-x \right ) y = 0 \]

[_separable]

5115

\[ {}x \left (1-y\right ) y^{\prime }+\left (x +1\right ) y = 0 \]

[_separable]

5116

\[ {}x \left (1-y\right ) y^{\prime }+\left (1-x \right ) y = 0 \]

[_separable]

5121

\[ {}x \left (a +y\right ) y^{\prime } = y \left (B x +A \right ) \]

[_separable]

5133

\[ {}y \left (1-x \right ) y^{\prime }+x \left (1-y\right ) = 0 \]

[_separable]

5134

\[ {}\left (x +a \right ) \left (x +b \right ) y^{\prime } = x y \]

[_separable]

5136

\[ {}2 x y^{\prime } y+a +y^{2} = 0 \]

[_separable]

5156

\[ {}x \left (a +b y\right ) y^{\prime } = c y \]

[_separable]

5165

\[ {}x^{2} \left (1-y\right ) y^{\prime }+\left (1-x \right ) y = 0 \]

[_separable]

5166

\[ {}x^{2} \left (1-y\right ) y^{\prime }+\left (x +1\right ) y^{2} = 0 \]

[_separable]

5167

\[ {}\left (x^{2}+1\right ) y y^{\prime }+x \left (1-y^{2}\right ) = 0 \]

[_separable]

5174

\[ {}2 \left (x +1\right ) x y y^{\prime } = 1+y^{2} \]

[_separable]

5182

\[ {}x y \left (b \,x^{2}+a \right ) y^{\prime } = A +B y^{2} \]

[_separable]

5185

\[ {}y y^{\prime } \sqrt {x^{2}+1}+x \sqrt {1+y^{2}} = 0 \]

[_separable]

5186

\[ {}\left (1+y\right ) y^{\prime } \sqrt {x^{2}+1} = y^{3} \]

[_separable]

5188

\[ {}y^{2} y^{\prime }+x \left (2-y\right ) = 0 \]

[_separable]

5189

\[ {}y^{2} y^{\prime } = x \left (1+y^{2}\right ) \]

[_separable]

5203

\[ {}y \left (1+y\right ) y^{\prime } = x \left (x +1\right ) \]

[_separable]

5229

\[ {}x \left (1-y^{2}\right ) y^{\prime } = \left (x^{2}+1\right ) y \]

[_separable]

5236

\[ {}x \left (a +y\right )^{2} y^{\prime } = b y^{2} \]

[_separable]

5253

\[ {}x^{2} y^{2} y^{\prime }+1-x +x^{3} = 0 \]

[_separable]

5258

\[ {}x^{2} \left (a +y\right )^{2} y^{\prime } = \left (x^{2}+1\right ) \left (y^{2}+a^{2}\right ) \]

[_separable]

5259

\[ {}\left (x^{2}+1\right ) \left (1+y^{2}\right ) y^{\prime }+2 x y \left (1-y^{2}\right ) = 0 \]

[_separable]

5260

\[ {}\left (x^{2}+1\right ) \left (1+y^{2}\right ) y^{\prime }+2 x y \left (1-y\right )^{2} = 0 \]

[_separable]

5263

\[ {}x^{3} \left (1+y^{2}\right ) y^{\prime }+3 x^{2} y = 0 \]

[_separable]

5275

\[ {}y \left (1+2 y^{2}\right ) y^{\prime } = x \left (2 x^{2}+1\right ) \]

[_separable]

5281

\[ {}x y^{3} y^{\prime } = \left (-x^{2}+1\right ) \left (1+y^{2}\right ) \]

[_separable]

5311

\[ {}y^{\prime } \sqrt {b^{2}+y^{2}} = \sqrt {a^{2}+x^{2}} \]

[_separable]

5312

\[ {}y^{\prime } \sqrt {-y^{2}+b^{2}} = \sqrt {a^{2}-x^{2}} \]

[_separable]

5313

\[ {}y^{\prime } \sqrt {y} = \sqrt {x} \]

[_separable]

5317

\[ {}\left (y+\sqrt {1+y^{2}}\right ) \left (x^{2}+1\right )^{{3}/{2}} y^{\prime } = 1+y^{2} \]

[_separable]

5318

\[ {}\left (y+\sqrt {1+y^{2}}\right ) \left (x^{2}+1\right )^{{3}/{2}} y^{\prime } = 1+y^{2} \]

[_separable]

5332

\[ {}y^{\prime } \left (1+\sinh \left (x \right )\right ) \sinh \left (y\right )+\cosh \left (x \right ) \left (\cosh \left (y\right )-1\right ) = 0 \]

[_separable]

5345

\[ {}{y^{\prime }}^{2} = x^{2} y^{2} \]

[_separable]

5404

\[ {}{y^{\prime }}^{2}-\left (1+2 x y\right ) y^{\prime }+2 x y = 0 \]

[_quadrature]

5406

\[ {}{y^{\prime }}^{2}-\left (x -y\right ) y y^{\prime }-x y^{3} = 0 \]

[_separable]

5409

\[ {}{y^{\prime }}^{2}-x y \left (x^{2}+y^{2}\right ) y^{\prime }+x^{4} y^{4} = 0 \]

[_separable]

5411

\[ {}{y^{\prime }}^{2}+2 y y^{\prime } \cot \left (x \right )-y^{2} = 0 \]

[_separable]

5451

\[ {}x {y^{\prime }}^{2}-\left (2 x +3 y\right ) y^{\prime }+6 y = 0 \]

[_quadrature]

5455

\[ {}x {y^{\prime }}^{2}+y \left (1-x \right ) y^{\prime }-y^{2} = 0 \]

[_quadrature]

5456

\[ {}x {y^{\prime }}^{2}+\left (1-x^{2} y\right ) y^{\prime }-x y = 0 \]

[_quadrature]

5476

\[ {}x^{2} {y^{\prime }}^{2}-y^{\prime } x +y \left (1-y\right ) = 0 \]

[_separable]

5488

\[ {}x^{2} {y^{\prime }}^{2}-4 x \left (y+2\right ) y^{\prime }+4 \left (y+2\right ) y = 0 \]

[_separable]

5501

\[ {}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}-2 x y^{\prime } y-y^{2} = 0 \]

[_separable]

5527

\[ {}y {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }-x = 0 \]

[_quadrature]

5530

\[ {}y {y^{\prime }}^{2}+\left (x -y^{2}\right ) y^{\prime }-x y = 0 \]

[_quadrature]

5552

\[ {}y^{2} {y^{\prime }}^{2}-\left (x +1\right ) y y^{\prime }+x = 0 \]

[_quadrature]

5569

\[ {}4 y^{2} {y^{\prime }}^{2}+2 \left (3 x +1\right ) x y y^{\prime }+3 x^{3} = 0 \]

[_separable]

5616

\[ {}{y^{\prime }}^{3}-\left (x^{2}+x y+y^{2}\right ) {y^{\prime }}^{2}+x y \left (x^{2}+x y+y^{2}\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

5617

\[ {}{y^{\prime }}^{3}-\left (x^{2}+x y^{2}+y^{4}\right ) {y^{\prime }}^{2}+x y^{2} \left (x^{2}+x y^{2}+y^{4}\right ) y^{\prime }-x^{3} y^{6} = 0 \]

[_quadrature]

5624

\[ {}x {y^{\prime }}^{3}-\left (x +x^{2}+y\right ) {y^{\prime }}^{2}+\left (x^{2}+y+x y\right ) y^{\prime }-x y = 0 \]

[_quadrature]

5662

\[ {}2 \left (1+y\right )^{{3}/{2}}+3 y^{\prime } x -3 y = 0 \]

[_separable]

5685

\[ {}y \ln \left (y^{\prime }\right )+y^{\prime }-y \ln \left (y\right )-x y = 0 \]

[_separable]

5699

\[ {}x \left (1-y\right ) y^{\prime }+\left (x +1\right ) y = 0 \]

[_separable]

5700

\[ {}y^{2}+x y^{2}+\left (x^{2}-x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

5701

\[ {}x y \left (x^{2}+1\right ) y^{\prime }-1-y^{2} = 0 \]

[_separable]

5702

\[ {}1+y^{2}-\left (y+\sqrt {1+y^{2}}\right ) \left (x^{2}+1\right )^{{3}/{2}} y^{\prime } = 0 \]

[_separable]

5703

\[ {}\sin \left (x \right ) \cos \left (y\right )-\cos \left (x \right ) \sin \left (y\right ) y^{\prime } = 0 \]

[_separable]

5704

\[ {}\sec \left (x \right )^{2} \tan \left (y\right )+\sec \left (y\right )^{2} \tan \left (x \right ) y^{\prime } = 0 \]

[_separable]

5717

\[ {}\left (-x^{2}+1\right ) z^{\prime }-x z = a x z^{2} \]

[_separable]

5749

\[ {}\frac {\sqrt {f \,x^{4}+c \,x^{3}+c \,x^{2}+b x +a}\, y^{\prime }}{\sqrt {a +b y+c y^{2}+c y^{3}+f y^{4}}} = -1 \]

[_separable]

5770

\[ {}\frac {y-y^{\prime } x}{y^{\prime }+y^{2}} = \frac {y-y^{\prime } x}{1+x^{2} y^{\prime }} \]

[_separable]

5791

\[ {}7 y-3+\left (2 x +1\right ) y^{\prime } = 0 \]

[_separable]

5859

\[ {}y^{\prime }+\frac {y}{x} = \frac {y^{2}}{x} \]
i.c.

[_separable]

5870

\[ {}y^{\prime } \sin \left (y\right )+\sin \left (x \right ) \cos \left (y\right ) = \sin \left (x \right ) \]

[_separable]

5880

\[ {}2 y-y \ln \left (x \right ) x -2 x \ln \left (x \right ) y^{\prime } = 0 \]

[_separable]

5886

\[ {}y^{\prime } x -y^{2}+1 = 0 \]

[_separable]

5899

\[ {}\left (x^{2}-1\right ) y^{\prime }+x y-3 x y^{2} = 0 \]

[_separable]

5900

\[ {}\left (x^{2}-1\right ) y^{\prime }-2 x y \ln \left (y\right ) = 0 \]

[_separable]

5914

\[ {}\left (2 y^{3}+y\right ) y^{\prime }-2 x^{3}-x = 0 \]

[_separable]

5915

\[ {}y^{\prime }-{\mathrm e}^{x -y}+{\mathrm e}^{x} = 0 \]

[_separable]

6025

\[ {}y^{\prime }+y \tan \left (x \right ) = 0 \]

[_separable]

6031

\[ {}x \left (1-y\right ) y^{\prime }+\left (x +1\right ) y = 0 \]

[_separable]

6032

\[ {}y^{\prime } = a x y^{2} \]

[_separable]

6033

\[ {}y^{2}+x y^{2}+\left (x^{2}-x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

6034

\[ {}x y \left (x^{2}+1\right ) y^{\prime } = 1+y^{2} \]

[_separable]

6035

\[ {}\frac {x}{1+y} = \frac {y y^{\prime }}{x +1} \]

[_separable]

6037

\[ {}y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \]

[_separable]

6038

\[ {}\sin \left (x \right ) \cos \left (y\right ) = \cos \left (x \right ) \sin \left (y\right ) y^{\prime } \]

[_separable]

6039

\[ {}a x y^{\prime }+2 y = x y^{\prime } y \]

[_separable]

6093

\[ {}y^{\prime } x = y \]
i.c.

[_separable]

6094

\[ {}x \sqrt {1-y^{2}}+y \sqrt {-x^{2}+1}\, y^{\prime } = 0 \]
i.c.

[_separable]

6095

\[ {}y^{\prime } \sin \left (x \right ) = y \ln \left (y\right ) \]
i.c.

[_separable]

6096

\[ {}x y^{\prime } y+1+y^{2} = 0 \]
i.c.

[_separable]

6098

\[ {}y^{\prime } = \frac {2 x y^{2}+x}{x^{2} y-y} \]
i.c.

[_separable]

6099

\[ {}y y^{\prime }+x y^{2}-8 x = 0 \]
i.c.

[_separable]

6100

\[ {}y^{\prime }+2 x y^{2} = 0 \]
i.c.

[_separable]

6102

\[ {}y^{\prime }-x y = x \]
i.c.

[_separable]

6104

\[ {}\left (x +x y\right ) y^{\prime }+y = 0 \]
i.c.

[_separable]

6121

\[ {}3 x y^{2} y^{\prime }+3 y^{3} = 1 \]

[_separable]

6209

\[ {}x \ln \left (y\right ) y^{\prime }-y \ln \left (x \right ) = 0 \]

[_separable]

6217

\[ {}u \left (1-v \right )+v^{2} \left (1-u\right ) u^{\prime } = 0 \]

[_separable]

6228

\[ {}y^{\prime }+x y = \frac {x}{y} \]

[_separable]

6232

\[ {}3 x^{2} y+x^{3} y^{\prime } = 0 \]
i.c.

[_separable]

6237

\[ {}y^{\prime } x = x y+y \]

[_separable]

6239

\[ {}y^{\prime } = 3 x^{2} y \]

[_separable]

6241

\[ {}y^{\prime } x = y \]

[_separable]

6259

\[ {}y^{\prime } = \frac {y \,{\mathrm e}^{x +y}}{x^{2}+2} \]

[_separable]

6260

\[ {}\left (x y^{2}+3 y^{2}\right ) y^{\prime }-2 x = 0 \]

[_separable]

6262

\[ {}y^{\prime } x = \frac {1}{y^{3}} \]

[_separable]

6263

\[ {}x^{\prime } = 3 x t^{2} \]

[_separable]

6264

\[ {}x^{\prime } = \frac {t \,{\mathrm e}^{-t -2 x}}{x} \]

[_separable]

6265

\[ {}y^{\prime } = \frac {x}{y^{2} \sqrt {x +1}} \]

[_separable]

6266

\[ {}x v^{\prime } = \frac {1-4 v^{2}}{3 v} \]

[_separable]

6267

\[ {}y^{\prime } = \frac {\sec \left (y\right )^{2}}{x^{2}+1} \]

[_separable]

6268

\[ {}y^{\prime } = 3 x^{2} \left (1+y^{2}\right )^{{3}/{2}} \]

[_separable]

6270

\[ {}x +x y^{2}+{\mathrm e}^{x^{2}} y y^{\prime } = 0 \]

[_separable]

6271

\[ {}\frac {y^{\prime }}{y}+y \,{\mathrm e}^{\cos \left (x \right )} \sin \left (x \right ) = 0 \]

[_separable]

6272

\[ {}y^{\prime } = \left (1+y^{2}\right ) \tan \left (x \right ) \]
i.c.

[_separable]

6273

\[ {}y^{\prime } = x^{3} \left (1-y\right ) \]
i.c.

[_separable]

6274

\[ {}\frac {y^{\prime }}{2} = \sqrt {1+y}\, \cos \left (x \right ) \]
i.c.

[_separable]

6275

\[ {}x^{2} y^{\prime } = \frac {4 x^{2}-x -2}{\left (x +1\right ) \left (1+y\right )} \]
i.c.

[_separable]

6276

\[ {}\frac {y^{\prime }}{\theta } = \frac {y \sin \left (\theta \right )}{y^{2}+1} \]
i.c.

[_separable]

6277

\[ {}x^{2}+2 y y^{\prime } = 0 \]
i.c.

[_separable]

6278

\[ {}y^{\prime } = 2 t \cos \left (y\right )^{2} \]
i.c.

[_separable]

6279

\[ {}y^{\prime } = 8 x^{3} {\mathrm e}^{-2 y} \]
i.c.

[_separable]

6280

\[ {}y^{\prime } = x^{2} \left (1+y\right ) \]
i.c.

[_separable]

6281

\[ {}\sqrt {y}+\left (x +1\right ) y^{\prime } = 0 \]
i.c.

[_separable]

6283

\[ {}y^{\prime } = \frac {{\mathrm e}^{x^{2}}}{y^{2}} \]
i.c.

[_separable]

6284

\[ {}y^{\prime } = \sqrt {1+\sin \left (x \right )}\, \left (1+y^{2}\right ) \]
i.c.

[_separable]

6285

\[ {}y^{\prime } = 2 y-2 t y \]
i.c.

[_separable]

6288

\[ {}y^{\prime } = \left (x -3\right ) \left (1+y\right )^{{2}/{3}} \]

[_separable]

6289

\[ {}y^{\prime } = x y^{3} \]

[_separable]

6290

\[ {}y^{\prime } = x y^{3} \]
i.c.

[_separable]

6291

\[ {}y^{\prime } = x y^{3} \]
i.c.

[_separable]

6292

\[ {}y^{\prime } = x y^{3} \]
i.c.

[_separable]

6296

\[ {}\left (t^{2}+1\right ) y^{\prime } = t y-y \]

[_separable]

6308

\[ {}\left (x^{2}+1\right ) y^{\prime }+x y-x = 0 \]

[_separable]

6324

\[ {}\sqrt {-2 y-y^{2}}+\left (-x^{2}+2 x +3\right ) y^{\prime } = 0 \]

[_separable]

6339

\[ {}y^{\prime } = \frac {{\mathrm e}^{x +y}}{-1+y} \]

[_separable]

6343

\[ {}2 x y^{3}-\left (-x^{2}+1\right ) y^{\prime } = 0 \]

[_separable]

6344

\[ {}t^{3} y^{2}+\frac {t^{4} y^{\prime }}{y^{6}} = 0 \]

[_separable]

6405

\[ {}y^{\prime }+x y = x y^{2} \]

[_separable]

6419

\[ {}\left (x +1\right )^{2} y^{\prime } = 1+y^{2} \]

[_separable]

6423

\[ {}x \cos \left (y\right ) y^{\prime }-\sin \left (y\right ) = 0 \]

[_separable]

6425

\[ {}\left (x^{2}-1\right ) y^{\prime }+2 x y = x \]

[_separable]

6430

\[ {}x \left (y-3\right ) y^{\prime } = 4 y \]

[_separable]

6431

\[ {}\left (x^{3}+1\right ) y^{\prime } = x^{2} y \]
i.c.

[_separable]

6432

\[ {}x^{3}+\left (1+y\right )^{2} y^{\prime } = 0 \]

[_separable]

6433

\[ {}\cos \left (y\right )+\left (1+{\mathrm e}^{-x}\right ) \sin \left (y\right ) y^{\prime } = 0 \]
i.c.

[_separable]

6434

\[ {}x^{2} \left (1+y\right )+y^{2} \left (x -1\right ) y^{\prime } = 0 \]

[_separable]

6456

\[ {}x y^{\prime } y-\left (x +1\right ) \sqrt {-1+y} = 0 \]

[_separable]

6459

\[ {}y+\left (x^{2}-4 x \right ) y^{\prime } = 0 \]

[_separable]

6462

\[ {}\left (x^{2}+1\right ) y^{\prime } = x \left (1+y\right ) \]

[_separable]

6465

\[ {}y^{\prime } = {\mathrm e}^{3 x -2 y} \]
i.c.

[_separable]

6472

\[ {}y^{\prime }+x +x y^{2} = 0 \]
i.c.

[_separable]

6475

\[ {}x \left (1+y^{2}\right )-\left (x^{2}+1\right ) y y^{\prime } = 0 \]

[_separable]

6476

\[ {}\frac {r \tan \left (\theta \right ) r^{\prime }}{a^{2}-r^{2}} = 1 \]
i.c.

[_separable]

6569

\[ {}y^{\prime } x = 2 y \]

[_separable]

6570

\[ {}y y^{\prime }+x = 0 \]

[_separable]

6579

\[ {}4 y+y^{\prime } x = 0 \]

[_separable]

6580

\[ {}1+2 y+\left (-x^{2}+4\right ) y^{\prime } = 0 \]

[_separable]

6581

\[ {}y^{2}-x^{2} y^{\prime } = 0 \]

[_separable]

6582

\[ {}1+y-\left (x +1\right ) y^{\prime } = 0 \]

[_separable]

6588

\[ {}1+2 y-\left (4-x \right ) y^{\prime } = 0 \]

[_separable]

6589

\[ {}\left (x^{2}+1\right ) y^{\prime }+x y = 0 \]

[_separable]

6593

\[ {}x y^{\prime } y = \left (1+y\right ) \left (1-x \right ) \]

[_separable]

6596

\[ {}1+\left (-x^{2}+1\right ) \cot \left (y\right ) y^{\prime } = 0 \]

[_separable]

6599

\[ {}y^{\prime } x +2 y = 0 \]
i.c.

[_separable]

6601

\[ {}\cos \left (y\right )+\left (1+{\mathrm e}^{-x}\right ) \sin \left (y\right ) y^{\prime } = 0 \]
i.c.

[_separable]

6632

\[ {}1+y^{2} = \left (x^{2}+x \right ) y^{\prime } \]

[_separable]

6642

\[ {}y^{\prime }-y = x y \]

[_separable]

6651

\[ {}y y^{\prime }-x y^{2}+x = 0 \]

[_separable]

6667

\[ {}x {y^{\prime }}^{2}+\left (y-1-x^{2}\right ) y^{\prime }-x \left (-1+y\right ) = 0 \]

[_quadrature]

6885

\[ {}y^{2}-1+y^{\prime } x = 0 \]

[_separable]

6892

\[ {}y^{\prime } = 2 x y^{2} \]

[_separable]

6893

\[ {}2 y^{\prime } = y^{3} \cos \left (x \right ) \]

[_separable]

6904

\[ {}y^{\prime } x -2 y = 0 \]

[_separable]

6905

\[ {}y^{\prime } = -\frac {x}{y} \]

[_separable]

6914

\[ {}3 y^{\prime } x +5 y = 10 \]

[_separable]

6935

\[ {}y^{\prime }+2 x y^{2} = 0 \]
i.c.

[_separable]

6936

\[ {}y^{\prime }+2 x y^{2} = 0 \]
i.c.

[_separable]

6937

\[ {}y^{\prime }+2 x y^{2} = 0 \]
i.c.

[_separable]

6938

\[ {}y^{\prime }+2 x y^{2} = 0 \]
i.c.

[_separable]

6948

\[ {}y^{\prime } x = 2 y \]
i.c.

[_separable]

6951

\[ {}y^{\prime } x = y \]

[_separable]

6953

\[ {}\left (4-y^{2}\right ) y^{\prime } = x^{2} \]

[_separable]

6954

\[ {}\left (y^{3}+1\right ) y^{\prime } = x^{2} \]

[_separable]

6961

\[ {}y^{\prime } x = y \]
i.c.

[_separable]

6968

\[ {}y y^{\prime } = 3 x \]
i.c.

[_separable]

6969

\[ {}y y^{\prime } = 3 x \]
i.c.

[_separable]

6970

\[ {}y y^{\prime } = 3 x \]
i.c.

[_separable]

6981

\[ {}y^{\prime } = x \sqrt {y} \]
i.c.

[_separable]

6985

\[ {}y^{\prime } x = y \]

[_separable]

6990

\[ {}3 y^{\prime } x -2 y = 0 \]

[_separable]

6991

\[ {}\left (-2+2 y\right ) y^{\prime } = 2 x -1 \]
i.c.

[_separable]

7004

\[ {}y^{\prime } x +y = \frac {1}{y^{2}} \]

[_separable]

7026

\[ {}y^{\prime } = \sin \left (x \right ) \cos \left (y\right ) \]
i.c.

[_separable]

7027

\[ {}y^{\prime } = \sin \left (x \right ) \cos \left (y\right ) \]
i.c.

[_separable]

7028

\[ {}y^{\prime } = \sin \left (x \right ) \cos \left (y\right ) \]
i.c.

[_separable]

7029

\[ {}y^{\prime } = \sin \left (x \right ) \cos \left (y\right ) \]
i.c.

[_separable]

7034

\[ {}y y^{\prime } = -x \]
i.c.

[_separable]

7035

\[ {}y y^{\prime } = -x \]
i.c.

[_separable]

7040

\[ {}y^{\prime } = x \,{\mathrm e}^{y} \]
i.c.

[_separable]

7041

\[ {}y^{\prime } = x \,{\mathrm e}^{y} \]
i.c.

[_separable]

7067

\[ {}y^{\prime } x = 4 y \]

[_separable]

7068

\[ {}y^{\prime }+2 x y^{2} = 0 \]

[_separable]

7069

\[ {}y^{\prime } = {\mathrm e}^{3 x +2 y} \]

[_separable]

7070

\[ {}y \,{\mathrm e}^{x} y^{\prime } = {\mathrm e}^{-y}+{\mathrm e}^{-2 x -y} \]

[_separable]

7071

\[ {}y \ln \left (x \right ) y^{\prime } = \frac {\left (1+y\right )^{2}}{x^{2}} \]

[_separable]

7072

\[ {}y^{\prime } = \frac {\left (3+2 y\right )^{2}}{\left (5+4 x \right )^{2}} \]

[_separable]

7073

\[ {}\csc \left (y\right )+\sec \left (x \right )^{2} y^{\prime } = 0 \]

[_separable]

7074

\[ {}\sin \left (3 x \right )+2 y \cos \left (3 x \right )^{3} y^{\prime } = 0 \]

[_separable]

7075

\[ {}\left (1+{\mathrm e}^{y}\right )^{2} {\mathrm e}^{-y}+\left ({\mathrm e}^{x}+1\right )^{3} {\mathrm e}^{-x} y^{\prime } = 0 \]

[_separable]

7076

\[ {}x \sqrt {1+y^{2}} = y y^{\prime } \sqrt {x^{2}+1} \]

[_separable]

7081

\[ {}y^{\prime } = \frac {x y+3 x -y-3}{x y-2 x +4 y-8} \]

[_separable]

7082

\[ {}y^{\prime } = \frac {x y+2 y-x -2}{x y-3 y+x -3} \]

[_separable]

7083

\[ {}y^{\prime } = x \sqrt {1-y^{2}} \]

[_separable]

7084

\[ {}\left ({\mathrm e}^{x}+{\mathrm e}^{-x}\right ) y^{\prime } = y^{2} \]

[_separable]

7086

\[ {}y^{\prime } = \frac {-1+y^{2}}{x^{2}-1} \]
i.c.

[_separable]

7087

\[ {}x^{2} y^{\prime } = y-x y \]
i.c.

[_separable]

7089

\[ {}\sqrt {1-y^{2}}-y^{\prime } \sqrt {-x^{2}+1} = 0 \]
i.c.

[_separable]

7090

\[ {}\left (x^{4}+1\right ) y^{\prime }+x \left (1+4 y^{2}\right ) = 0 \]
i.c.

[_separable]

7092

\[ {}x \sinh \left (y\right ) y^{\prime } = \cosh \left (y\right ) \]
i.c.

[_separable]

7093

\[ {}y^{\prime } = {\mathrm e}^{-x^{2}} y \]
i.c.

[_separable]

7094

\[ {}y^{\prime } = y^{2} \sin \left (x^{2}\right ) \]
i.c.

[_separable]

7095

\[ {}y^{\prime } = \left (1+y^{2}\right ) \sqrt {1+\cos \left (x^{3}\right )} \]
i.c.

[_separable]

7096

\[ {}y^{\prime } = \frac {{\mathrm e}^{-2 y} \sin \left (x \right )}{x^{2}+1} \]
i.c.

[_separable]

7097

\[ {}y^{\prime } = \frac {3 x +1}{2 y} \]
i.c.

[_separable]

7098

\[ {}\left (-2+2 y\right ) y^{\prime } = 3 x^{2}+4 x +2 \]
i.c.

[_separable]

7099

\[ {}{\mathrm e}^{y}-{\mathrm e}^{-x} y^{\prime } = 0 \]
i.c.

[_separable]

7100

\[ {}\sin \left (x \right )+y y^{\prime } = 0 \]
i.c.

[_separable]

7104

\[ {}y^{\prime } x = y^{2}-y \]
i.c.

[_separable]

7105

\[ {}y^{\prime } x = y^{2}-y \]
i.c.

[_separable]

7106

\[ {}y^{\prime } x = y^{2}-y \]
i.c.

[_separable]

7107

\[ {}y^{\prime } x = y^{2}-y \]
i.c.

[_separable]

7108

\[ {}2 x \sin \left (y\right )^{2}-\left (x^{2}+10\right ) \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

7122

\[ {}y^{\prime } = \frac {\sin \left (\sqrt {x}\right )}{\sqrt {y}} \]

[_separable]

7123

\[ {}\left (\sqrt {x}+x \right ) y^{\prime } = \sqrt {y}+y \]

[_separable]

7125

\[ {}y^{\prime } = \frac {{\mathrm e}^{\sqrt {x}}}{y} \]
i.c.

[_separable]

7126

\[ {}y^{\prime } = \frac {x \arctan \left (x \right )}{y} \]
i.c.

[_separable]

7127

\[ {}y^{\prime } = -\frac {x}{y} \]
i.c.

[_separable]

7128

\[ {}y^{\prime } = x \sqrt {y} \]

[_separable]

7131

\[ {}y^{\prime } = y+\frac {y}{x \ln \left (x \right )} \]
i.c.

[_separable]

7138

\[ {}y^{\prime } = -\frac {8 x +5}{3 y^{2}+1} \]
i.c.

[_separable]

7139

\[ {}y^{\prime } = -\frac {8 x +5}{3 y^{2}+1} \]
i.c.

[_separable]

7140

\[ {}y^{\prime } = -\frac {8 x +5}{3 y^{2}+1} \]
i.c.

[_separable]

7141

\[ {}y^{\prime } = -\frac {8 x +5}{3 y^{2}+1} \]
i.c.

[_separable]

7142

\[ {}\left (2 y+2\right ) y^{\prime }-4 x^{3}-6 x = 0 \]
i.c.

[_separable]

7143

\[ {}y^{\prime } = \frac {x \left (1-x \right )}{y \left (-2+y\right )} \]
i.c.

[_separable]

7144

\[ {}y^{\prime } = \frac {x \left (1-x \right )}{y \left (-2+y\right )} \]
i.c.

[_separable]

7149

\[ {}y^{\prime }+3 x^{2} y = x^{2} \]

[_separable]

7154

\[ {}y^{\prime } x +2 y = 3 \]

[_separable]

7166

\[ {}p^{\prime }+2 t p = p+4 t -2 \]

[_separable]

7179

\[ {}y^{\prime }-y \sin \left (x \right ) = 2 \sin \left (x \right ) \]
i.c.

[_separable]

7186

\[ {}y^{\prime }+\left (\left \{\begin {array}{cc} 1 & 0\le x \le 2 \\ 5 & 2<x \end {array}\right .\right ) y = 0 \]
i.c.

[_separable]

7192

\[ {}y^{\prime }-\sin \left (x^{2}\right ) y = 0 \]
i.c.

[_separable]

7200

\[ {}2 x -1+\left (3 y+7\right ) y^{\prime } = 0 \]

[_separable]

7382

\[ {}y^{\prime } = \frac {x^{2}}{y} \]

[_separable]

7383

\[ {}y^{\prime } = \frac {x^{2}}{\left (x^{3}+1\right ) y} \]

[_separable]

7384

\[ {}y^{\prime } = y \sin \left (x \right ) \]

[_separable]

7385

\[ {}y^{\prime } x = \sqrt {1-y^{2}} \]

[_separable]

7386

\[ {}y^{\prime } = \frac {x^{2}}{1+y^{2}} \]

[_separable]

7387

\[ {}x y^{\prime } y = \sqrt {1+y^{2}} \]

[_separable]

7388

\[ {}\left (x^{2}-1\right ) y^{\prime }+2 x y^{2} = 0 \]
i.c.

[_separable]

7390

\[ {}y^{\prime } x +y = y^{2} \]
i.c.

[_separable]

7391

\[ {}2 x^{2} y y^{\prime }+y^{2} = 2 \]

[_separable]

7392

\[ {}y^{\prime }-x y^{2} = 2 x y \]

[_separable]

7394

\[ {}y^{\prime } = \frac {3 x^{2}+4 x +2}{-2+2 y} \]
i.c.

[_separable]

7395

\[ {}{\mathrm e}^{x}-\left ({\mathrm e}^{x}+1\right ) y y^{\prime } = 0 \]
i.c.

[_separable]

7396

\[ {}\frac {y}{x -1}+\frac {x y^{\prime }}{1+y} = 0 \]

[_separable]

7397

\[ {}x +2 x^{3}+\left (2 y^{3}+y\right ) y^{\prime } = 0 \]

[_separable]

7398

\[ {}\frac {1}{\sqrt {x}}+\frac {y^{\prime }}{\sqrt {y}} = 0 \]

[_separable]

7399

\[ {}\frac {1}{\sqrt {-x^{2}+1}}+\frac {y^{\prime }}{\sqrt {1-y^{2}}} = 0 \]

[_separable]

7400

\[ {}2 x \sqrt {1-y^{2}}+y y^{\prime } = 0 \]

[_separable]

7401

\[ {}y^{\prime } = \left (-1+y\right ) \left (x +1\right ) \]

[_separable]

7402

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

7403

\[ {}y^{\prime } = \frac {\sqrt {y}}{\sqrt {x}} \]

[_separable]

7404

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]

[_separable]

7405

\[ {}z^{\prime } = 10^{x +z} \]

[_separable]

7415

\[ {}y^{2}+x y^{2}+\left (x^{2}-x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

7416

\[ {}\left (1+y^{2}\right ) \left ({\mathrm e}^{2 x}-{\mathrm e}^{y} y^{\prime }\right )-\left (1+y\right ) y^{\prime } = 0 \]

[_separable]

7418

\[ {}y-2 x y+x^{2} y^{\prime } = 0 \]

[_separable]

7476

\[ {}3+2 x +\left (-2+2 y\right ) y^{\prime } = 0 \]

[_separable]

7502

\[ {}y^{\prime } = x^{2} \left (1+y^{2}\right ) \]

[_separable]

7503

\[ {}y^{\prime } = \frac {x^{2}}{1-y^{2}} \]

[_separable]

7504

\[ {}y^{\prime } = \frac {3 x^{2}+4 x +2}{-2+2 y} \]
i.c.

[_separable]

7512

\[ {}y^{\prime } = -\frac {2}{t}+\frac {y}{t}+\frac {y^{2}}{t} \]

[_separable]

7555

\[ {}y \,{\mathrm e}^{x y}+x \,{\mathrm e}^{x y} y^{\prime } = 0 \]

[_separable]

7583

\[ {}y^{\prime }+\cos \left (x \right ) y = 0 \]

[_separable]

7601

\[ {}y^{\prime }+2 x y = x \]

[_separable]

7603

\[ {}y^{\prime }+y \,{\mathrm e}^{x} = 3 \,{\mathrm e}^{x} \]

[_separable]

7731

\[ {}y^{\prime } = x^{2} y \]

[_separable]

7732

\[ {}y y^{\prime } = x \]

[_separable]

7733

\[ {}y^{\prime } = \frac {x^{2}+x}{y-y^{2}} \]

[_separable]

7734

\[ {}y^{\prime } = \frac {{\mathrm e}^{x -y}}{{\mathrm e}^{x}+1} \]

[_separable]

7735

\[ {}y^{\prime } = x^{2} y^{2}-4 x^{2} \]

[_separable]

7774

\[ {}y^{\prime } x = 2 y \]

[_separable]

7775

\[ {}y y^{\prime } = {\mathrm e}^{2 x} \]

[_separable]

7807

\[ {}x^{5} y^{\prime }+y^{5} = 0 \]

[_separable]

7808

\[ {}y^{\prime } = 4 x y \]

[_separable]

7809

\[ {}y^{\prime }+y \tan \left (x \right ) = 0 \]

[_separable]

7810

\[ {}1+y^{2}+\left (x^{2}+1\right ) y^{\prime } = 0 \]

[_separable]

7811

\[ {}y \ln \left (y\right )-y^{\prime } x = 0 \]

[_separable]

7812

\[ {}y^{\prime } x = \left (-4 x^{2}+1\right ) \tan \left (y\right ) \]

[_separable]

7813

\[ {}y^{\prime } \sin \left (y\right ) = x^{2} \]

[_separable]

7814

\[ {}y^{\prime }-y \tan \left (x \right ) = 0 \]

[_separable]

7815

\[ {}x y^{\prime } y = -1+y \]

[_separable]

7816

\[ {}x y^{2}-x^{2} y^{\prime } = 0 \]

[_separable]

7817

\[ {}y y^{\prime } = x +1 \]
i.c.

[_separable]

7818

\[ {}x^{2} y^{\prime } = y \]
i.c.

[_separable]

7819

\[ {}\frac {y^{\prime }}{x^{2}+1} = \frac {x}{y} \]
i.c.

[_separable]

7820

\[ {}y^{2} y^{\prime } = x +2 \]
i.c.

[_separable]

7821

\[ {}y^{\prime } = x^{2} y^{2} \]
i.c.

[_separable]

7822

\[ {}\left (1+y\right ) y^{\prime } = -x^{2}+1 \]
i.c.

[_separable]

7844

\[ {}y^{\prime }+x y = x y^{4} \]

[_separable]

7848

\[ {}y^{\prime } x = 2 x^{2} y+y \ln \left (x \right ) \]

[_separable]

7854

\[ {}y+y \cos \left (x y\right )+\left (x +x \cos \left (x y\right )\right ) y^{\prime } = 0 \]

[_separable]

7855

\[ {}\cos \left (x \right ) \cos \left (y\right )^{2}+2 \sin \left (x \right ) \sin \left (y\right ) \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

7858

\[ {}1+y+\left (1-x \right ) y^{\prime } = 0 \]

[_separable]

7864

\[ {}\ln \left (y\right ) x +x y+\left (y \ln \left (x \right )+x y\right ) y^{\prime } = 0 \]

[_separable]

7919

\[ {}x^{2} y^{\prime } = y \]

[_separable]

7920

\[ {}\sec \left (x \right ) y^{\prime } = \sec \left (y\right ) \]

[_separable]

7923

\[ {}x^{2} y^{\prime }+2 x y = 0 \]

[_separable]

7924

\[ {}-\sin \left (x \right ) \sin \left (y\right )+\cos \left (x \right ) \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

7927

\[ {}y^{2} y^{\prime } = x \]
i.c.

[_separable]

7928

\[ {}\csc \left (x \right ) y^{\prime } = \csc \left (y\right ) \]
i.c.

[_separable]

7931

\[ {}2 x \cos \left (y\right )-x^{2} \sin \left (y\right ) y^{\prime } = 0 \]
i.c.

[_separable]

7932

\[ {}\frac {1}{y}-\frac {x y^{\prime }}{y^{2}} = 0 \]

[_separable]

8073

\[ {}y^{\prime } = 2 x y \]

[_separable]

8085

\[ {}y^{\prime } x = y \]

[_separable]

8087

\[ {}x^{2} y^{\prime } = y \]

[_separable]

8436

\[ {}x {y^{\prime }}^{2}-\left (2 x +3 y\right ) y^{\prime }+6 y = 0 \]

[_quadrature]

8438

\[ {}x^{2} {y^{\prime }}^{2}+y^{\prime } x -y^{2}-y = 0 \]

[_separable]

8439

\[ {}x {y^{\prime }}^{2}+\left (1-x^{2} y\right ) y^{\prime }-x y = 0 \]

[_quadrature]

8440

\[ {}{y^{\prime }}^{2}-\left (x^{2} y+3\right ) y^{\prime }+3 x^{2} y = 0 \]

[_quadrature]

8442

\[ {}{y^{\prime }}^{2}-x^{2} y^{2} = 0 \]

[_separable]

8444

\[ {}y {y^{\prime }}^{2}+\left (x -y^{2}\right ) y^{\prime }-x y = 0 \]

[_quadrature]

8445

\[ {}{y^{\prime }}^{2}-y^{\prime } x y \left (x +y\right )+x^{3} y^{3} = 0 \]

[_separable]

8448

\[ {}x y {y^{\prime }}^{2}+\left (x y^{2}-1\right ) y^{\prime }-y = 0 \]

[_quadrature]

8452

\[ {}x {y^{\prime }}^{3}-\left (x +x^{2}+y\right ) {y^{\prime }}^{2}+\left (x^{2}+y+x y\right ) y^{\prime }-x y = 0 \]

[_quadrature]

8534

\[ {}6 x {y^{\prime }}^{2}-\left (3 x +2 y\right ) y^{\prime }+y = 0 \]

[_quadrature]

8539

\[ {}y^{2} {y^{\prime }}^{2}-\left (x +1\right ) y y^{\prime }+x = 0 \]

[_quadrature]

8553

\[ {}x {y^{\prime }}^{2}+y \left (1-x \right ) y^{\prime }-y^{2} = 0 \]

[_quadrature]

8697

\[ {}y^{\prime } = \frac {y}{x \ln \left (x \right )} \]

[_separable]

8698

\[ {}\left (x^{2}+1\right ) y^{\prime }+y^{2} = -1 \]
i.c.

[_separable]

8713

\[ {}y^{\prime } = \frac {\cos \left (y\right ) \sec \left (x \right )}{x} \]

[_separable]

8714

\[ {}y^{\prime } = x \left (\cos \left (y\right )+y\right ) \]

[_separable]

8715

\[ {}y^{\prime } = \frac {\sec \left (x \right ) \left (\sin \left (y\right )+y\right )}{x} \]

[_separable]

8716

\[ {}y^{\prime } = \left (5+\frac {\sec \left (x \right )}{x}\right ) \left (\sin \left (y\right )+y\right ) \]

[_separable]

8724

\[ {}y^{\prime } = \frac {2 y}{x} \]
i.c.

[_separable]

8725

\[ {}y^{\prime } = \frac {2 y}{x} \]

[_separable]

8726

\[ {}y^{\prime } = \frac {\ln \left (1+y^{2}\right )}{\ln \left (x^{2}+1\right )} \]

[_separable]

8735

\[ {}y = y^{\prime } x +x^{2} {y^{\prime }}^{2} \]

[_separable]

8792

\[ {}y^{\prime } = \frac {y \left (1+\frac {a^{2} x}{\sqrt {a^{2} \left (x^{2}+1\right )}}\right )}{\sqrt {a^{2} \left (x^{2}+1\right )}} \]

[_separable]

8982

\[ {}x^{2} y^{\prime }+{\mathrm e}^{-y} = 0 \]

[_separable]

8990

\[ {}y^{\prime } = y a x \]

[_separable]

9036

\[ {}{y^{\prime }}^{2} = \frac {y^{2}}{x} \]

[_separable]

9050

\[ {}y^{\prime } = {\mathrm e}^{x +y} \]

[_separable]

10023

\[ {}y^{\prime }-\left (a +\cos \left (\ln \left (x \right )\right )+\sin \left (\ln \left (x \right )\right )\right ) y = 0 \]

[_separable]

10043

\[ {}y^{\prime }-x y^{2}-3 x y = 0 \]

[_separable]

10045

\[ {}y^{\prime }-a \,x^{n} \left (1+y^{2}\right ) = 0 \]

[_separable]

10049

\[ {}y^{\prime }+f \left (x \right ) \left (y^{2}+2 a y+b \right ) = 0 \]

[_separable]

10073

\[ {}y^{\prime }-\frac {\sqrt {-1+y^{2}}}{\sqrt {x^{2}-1}} = 0 \]

[_separable]

10074

\[ {}y^{\prime }-\frac {\sqrt {x^{2}-1}}{\sqrt {-1+y^{2}}} = 0 \]

[_separable]

10076

\[ {}y^{\prime }-\frac {1+y^{2}}{{| y+\sqrt {1+y}|} \left (x +1\right )^{{3}/{2}}} = 0 \]

[_separable]

10079

\[ {}y^{\prime }-\frac {\sqrt {{| y \left (-1+y\right ) \left (-1+a y\right )|}}}{\sqrt {{| x \left (x -1\right ) \left (a x -1\right )|}}} = 0 \]

[_separable]

10080

\[ {}y^{\prime }-\frac {\sqrt {1-y^{4}}}{\sqrt {-x^{4}+1}} = 0 \]

[_separable]

10085

\[ {}y^{\prime }-\operatorname {R1} \left (x , \sqrt {a_{4} x^{4}+x^{3} a_{3} +x^{2} a_{2} +a_{1} x +a_{0}}\right ) \operatorname {R2} \left (y, \sqrt {b_{4} y^{4}+b_{3} y^{3}+b_{2} y^{2}+b_{1} y+b_{0}}\right ) = 0 \]

[_separable]

10088

\[ {}y^{\prime }-{\mathrm e}^{x -y}+{\mathrm e}^{x} = 0 \]

[_separable]

10108

\[ {}y^{\prime } x -y^{2}+1 = 0 \]

[_separable]

10129

\[ {}y^{\prime } x -y \ln \left (y\right ) = 0 \]

[_separable]

10142

\[ {}\left (2 x +1\right ) y^{\prime }-4 \,{\mathrm e}^{-y}+2 = 0 \]

[_separable]

10146

\[ {}x^{2} y^{\prime }-\left (x -1\right ) y = 0 \]

[_separable]

10169

\[ {}\left (x^{2}-1\right ) y^{\prime }+a x y^{2}+x y = 0 \]

[_separable]

10170

\[ {}\left (x^{2}-1\right ) y^{\prime }-2 x y \ln \left (y\right ) = 0 \]

[_separable]

10185

\[ {}x \left (x^{2}+1\right ) y^{\prime }+x^{2} y = 0 \]

[_separable]

10194

\[ {}\left (2 x^{4}-x \right ) y^{\prime }-2 \left (x^{3}-1\right ) y = 0 \]

[_separable]

10201

\[ {}\sqrt {x^{2}-1}\, y^{\prime }-\sqrt {-1+y^{2}} = 0 \]

[_separable]

10202

\[ {}y^{\prime } \sqrt {-x^{2}+1}-y \sqrt {-1+y^{2}} = 0 \]

[_separable]

10210

\[ {}y^{\prime } \sin \left (2 x \right )+\sin \left (2 y\right ) = 0 \]

[_separable]

10220

\[ {}y y^{\prime }+x y^{2}-4 x = 0 \]

[_separable]

10251

\[ {}2 x y^{\prime } y+2 y^{2}+1 = 0 \]

[_separable]

10265

\[ {}x^{2} \left (-1+y\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[_separable]

10316

\[ {}2 y^{3} y^{\prime }+x y^{2} = 0 \]

[_separable]

10317

\[ {}\left (2 y^{3}+y\right ) y^{\prime }-2 x^{3}-x = 0 \]

[_separable]

10342

\[ {}\sqrt {-1+y^{2}}\, y^{\prime }-\sqrt {x^{2}-1} = 0 \]

[_separable]

10354

\[ {}y^{\prime } \left (1+\sin \left (x \right )\right ) \sin \left (y\right )+\cos \left (x \right ) \left (\cos \left (y\right )-1\right ) = 0 \]

[_separable]

10360

\[ {}x \cos \left (y\right ) y^{\prime }+\sin \left (y\right ) = 0 \]

[_separable]

10365

\[ {}\sin \left (x \right ) \cos \left (y\right )+\cos \left (x \right ) \sin \left (y\right ) y^{\prime } = 0 \]

[_separable]

10366

\[ {}3 \sin \left (x \right ) \sin \left (y\right ) y^{\prime }+5 \cos \left (x \right )^{4} y = 0 \]

[_separable]

10398

\[ {}{y^{\prime }}^{2}+2 y y^{\prime } \cot \left (x \right )-y^{2} = 0 \]

[_separable]

10399

\[ {}{y^{\prime }}^{2}+y \left (y-x \right ) y^{\prime }-x y^{3} = 0 \]

[_separable]

10442

\[ {}x^{2} {y^{\prime }}^{2}+3 x y^{\prime } y+3 y^{2} = 0 \]

[_separable]

10444

\[ {}x^{2} {y^{\prime }}^{2}-4 x \left (y+2\right ) y^{\prime }+4 \left (y+2\right ) y = 0 \]

[_separable]

10445

\[ {}x^{2} {y^{\prime }}^{2}+\left (x^{2} y-2 x y+x^{3}\right ) y^{\prime }+\left (y^{2}-x^{2} y\right ) \left (1-x \right ) = 0 \]

[_linear]

10451

\[ {}\left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}+2 x y^{\prime } y+y^{2} = 0 \]

[_separable]

10472

\[ {}y {y^{\prime }}^{2}-\left (y-x \right ) y^{\prime }-x = 0 \]

[_quadrature]

10526

\[ {}{y^{\prime }}^{2}-a x y y^{\prime }+2 a y^{2} = 0 \]

[_separable]

10527

\[ {}{y^{\prime }}^{3}-\left (x^{2}+x y+y^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+x^{2} y^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

10552

\[ {}{y^{\prime }}^{n}-f \left (x \right )^{n} \left (y-a \right )^{n +1} \left (y-b \right )^{n -1} = 0 \]

[_separable]

10566

\[ {}y \ln \left (y^{\prime }\right )+y^{\prime }-y \ln \left (y\right )-x y = 0 \]

[_separable]

11924

\[ {}y^{\prime } = f \left (x \right ) g \left (y\right ) \]

[_separable]

12732

\[ {}\sec \left (x \right ) \cos \left (y\right )^{2}-\cos \left (x \right ) \sin \left (y\right ) y^{\prime } = 0 \]

[_separable]

12733

\[ {}\left (x +1\right ) y^{2}-x^{3} y^{\prime } = 0 \]

[_separable]

12734

\[ {}\left (x^{2}+1\right ) \left (1+y^{2}\right ) y^{\prime }+2 x y \left (1-y^{2}\right ) = 0 \]

[_separable]

12735

\[ {}\sin \left (x \right ) \cos \left (y\right )^{2}+\cos \left (x \right )^{2} y^{\prime } = 0 \]

[_separable]

12740

\[ {}y^{3}+x^{3} y^{\prime } = 0 \]

[_separable]

12754

\[ {}y y^{\prime }+x y^{2} = x \]

[_separable]

12755

\[ {}y^{\prime } \sin \left (y\right )+\sin \left (x \right ) \cos \left (y\right ) = \sin \left (x \right ) \]

[_separable]

12759

\[ {}y^{2} \left (3 y-6 y^{\prime } x \right )-x \left (y-2 y^{\prime } x \right ) = 0 \]

[_separable]

12770

\[ {}x^{3} y-y^{4}+\left (x y^{3}-x^{4}\right ) y^{\prime } = 0 \]

[_separable]

12776

\[ {}x \sqrt {1-y^{2}}+y \sqrt {-x^{2}+1}\, y^{\prime } = 0 \]

[_separable]

12777

\[ {}y^{\prime } \sqrt {-x^{2}+1}+\sqrt {1-y^{2}} = 0 \]

[_separable]

12781

\[ {}x \left (1-y\right ) y^{\prime }+\left (1-x \right ) y = 0 \]

[_separable]

12788

\[ {}\left (-x^{2}+1\right ) y^{\prime }-x y = a x y^{2} \]

[_separable]

12794

\[ {}\left (1-x \right ) y-x \left (1+y\right ) y^{\prime } = 0 \]

[_separable]

12795

\[ {}3 x^{2} y+\left (x^{3}+x^{3} y^{2}\right ) y^{\prime } = 0 \]

[_separable]

12836

\[ {}{y^{\prime }}^{2}+2 y y^{\prime } \cot \left (x \right ) = y^{2} \]

[_separable]

12838

\[ {}x^{2} {y^{\prime }}^{2}-2 \left (x y+2 y^{\prime }\right ) y^{\prime }+y^{2} = 0 \]

[_separable]

12954

\[ {}x^{\prime } = \frac {2 x}{t} \]

[_separable]

12955

\[ {}x^{\prime } = -\frac {t}{x} \]

[_separable]

12960

\[ {}2 t x^{\prime } = x \]

[_separable]

12981

\[ {}x^{\prime } = \frac {2 x}{1+t} \]

[_separable]

12982

\[ {}\theta ^{\prime } = t \sqrt {t^{2}+1}\, \sec \left (\theta \right ) \]

[_separable]

12983

\[ {}\left (2 u+1\right ) u^{\prime }-1-t = 0 \]

[_separable]

12984

\[ {}R^{\prime } = \left (1+t \right ) \left (1+R^{2}\right ) \]

[_separable]

12986

\[ {}\left (1+t \right ) x^{\prime }+x^{2} = 0 \]

[_separable]

12989

\[ {}x^{\prime } = 2 t x^{2} \]
i.c.

[_separable]

12990

\[ {}x^{\prime } = t^{2} {\mathrm e}^{-x} \]
i.c.

[_separable]

12992

\[ {}x^{\prime } = {\mathrm e}^{t +x} \]
i.c.

[_separable]

12993

\[ {}T^{\prime } = 2 a t \left (T^{2}-a^{2}\right ) \]
i.c.

[_separable]

12994

\[ {}y^{\prime } = t^{2} \tan \left (y\right ) \]
i.c.

[_separable]

12995

\[ {}x^{\prime } = \frac {\left (4+2 t \right ) x}{\ln \left (x\right )} \]
i.c.

[_separable]

12996

\[ {}y^{\prime } = \frac {2 t y^{2}}{t^{2}+1} \]
i.c.

[_separable]

12997

\[ {}x^{\prime } = \frac {t^{2}}{1-x^{2}} \]
i.c.

[_separable]

12998

\[ {}x^{\prime } = 6 t \left (x-1\right )^{{2}/{3}} \]

[_separable]

13003

\[ {}y^{\prime } = -y^{2} {\mathrm e}^{-t^{2}} \]
i.c.

[_separable]

13005

\[ {}\cos \left (t \right ) x^{\prime }-2 x \sin \left (x\right ) = 0 \]

[_separable]

13015

\[ {}\left (t^{2}+1\right ) x^{\prime } = -3 t x+6 t \]

[_separable]

13017

\[ {}x^{\prime } = \left (a +\frac {b}{t}\right ) x \]
i.c.

[_separable]

13020

\[ {}\cos \left (\theta \right ) v^{\prime }+v = 3 \]

[_separable]

13023

\[ {}x^{\prime } = 2 t x \]

[_separable]

13028

\[ {}x^{\prime }+p \left (t \right ) x = 0 \]

[_separable]

13031

\[ {}x^{\prime } = -\frac {x}{t}+\frac {1}{t x^{2}} \]

[_separable]

13035

\[ {}x^{3}+3 t x^{2} x^{\prime } = 0 \]

[_separable]

13038

\[ {}x+3 t x^{2} x^{\prime } = 0 \]

[_separable]

13039

\[ {}x^{2}-t^{2} x^{\prime } = 0 \]

[_separable]

13040

\[ {}t \cot \left (x\right ) x^{\prime } = -2 \]

[_separable]

13182

\[ {}y^{\prime }+4 x y = 8 x \]

[_separable]

13198

\[ {}y^{\prime } = x^{2} \sin \left (y\right ) \]
i.c.

[_separable]

13199

\[ {}y^{\prime } = \frac {y^{2}}{x -2} \]
i.c.

[_separable]

13208

\[ {}\frac {\left (2 s-1\right ) s^{\prime }}{t}+\frac {s-s^{2}}{t^{2}} = 0 \]

[_separable]

13219

\[ {}\left (x^{2}+1\right ) y^{\prime }+4 x y = 0 \]

[_separable]

13220

\[ {}x y+2 x +y+2+\left (x^{2}+2 x \right ) y^{\prime } = 0 \]

[_separable]

13221

\[ {}2 r \left (s^{2}+1\right )+\left (r^{4}+1\right ) s^{\prime } = 0 \]

[_separable]

13222

\[ {}\csc \left (y\right )+\sec \left (x \right ) y^{\prime } = 0 \]

[_separable]

13223

\[ {}\tan \left (\theta \right )+2 r \theta ^{\prime } = 0 \]

[_separable]

13224

\[ {}\left ({\mathrm e}^{v}+1\right ) \cos \left (u \right )+{\mathrm e}^{v} \left (1+\sin \left (u \right )\right ) v^{\prime } = 0 \]

[_separable]

13225

\[ {}\left (x +4\right ) \left (1+y^{2}\right )+y \left (x^{2}+3 x +2\right ) y^{\prime } = 0 \]

[_separable]

13233

\[ {}y+2+y \left (x +4\right ) y^{\prime } = 0 \]
i.c.

[_separable]

13234

\[ {}8 \cos \left (y\right )^{2}+\csc \left (x \right )^{2} y^{\prime } = 0 \]
i.c.

[_separable]

13235

\[ {}\left (3 x +8\right ) \left (4+y^{2}\right )-4 y \left (x^{2}+5 x +6\right ) y^{\prime } = 0 \]
i.c.

[_separable]

13246

\[ {}y^{\prime }+4 x y = 8 x \]

[_separable]

13247

\[ {}x^{\prime }+\frac {x}{t^{2}} = \frac {1}{t^{2}} \]

[_separable]

13248

\[ {}\left (u^{2}+1\right ) v^{\prime }+4 u v = 3 u \]

[_separable]

13257

\[ {}y^{\prime }-\frac {y}{x} = -\frac {y^{2}}{x} \]

[_separable]

13259

\[ {}y^{\prime }+\left (4 y-\frac {8}{y^{3}}\right ) x = 0 \]

[_separable]

13260

\[ {}x^{\prime }+\frac {\left (1+t \right ) x}{2 t} = \frac {1+t}{t x} \]

[_separable]

13262

\[ {}y^{\prime }+3 x^{2} y = x^{2} \]
i.c.

[_separable]

13264

\[ {}2 x \left (1+y\right )-\left (x^{2}+1\right ) y^{\prime } = 0 \]
i.c.

[_separable]

13276

\[ {}\left (1+y\right ) y^{\prime }+x \left (2 y+y^{2}\right ) = x \]

[_separable]

13280

\[ {}6 x^{2} y-\left (x^{3}+1\right ) y^{\prime } = 0 \]

[_separable]

13282

\[ {}y-1+x \left (x +1\right ) y^{\prime } = 0 \]

[_separable]

13285

\[ {}y^{2} {\mathrm e}^{2 x}+\left ({\mathrm e}^{2 x} y-2 y\right ) y^{\prime } = 0 \]

[_separable]

13286

\[ {}8 x^{3} y-12 x^{3}+\left (x^{4}+1\right ) y^{\prime } = 0 \]

[_separable]

13291

\[ {}x y+x^{2} y^{\prime } = x y^{3} \]

[_separable]

13292

\[ {}\left (x^{3}+1\right ) y^{\prime }+6 x^{2} y = 6 x^{2} \]

[_separable]

13295

\[ {}8+2 y^{2}+\left (-x^{2}+1\right ) y y^{\prime } = 0 \]
i.c.

[_separable]

13298

\[ {}4 x y^{\prime } y = 1+y^{2} \]
i.c.

[_separable]

13300

\[ {}y^{\prime } = \frac {x y}{x^{2}+1} \]
i.c.

[_separable]

13648

\[ {}x^{\prime } = t^{3} \left (1-x\right ) \]
i.c.

[_separable]

13649

\[ {}y^{\prime } = \left (1+y^{2}\right ) \tan \left (x \right ) \]
i.c.

[_separable]

13650

\[ {}x^{\prime } = x t^{2} \]

[_separable]

13652

\[ {}y^{\prime } = y^{2} {\mathrm e}^{-t^{2}} \]

[_separable]

13654

\[ {}y^{\prime } x = k y \]

[_separable]

13655

\[ {}i^{\prime } = p \left (t \right ) i \]

[_separable]

13661

\[ {}x^{\prime }+t x = 4 t \]
i.c.

[_separable]

13674

\[ {}V^{\prime }\left (x \right )+2 y y^{\prime } = 0 \]

[_separable]

13675

\[ {}\left (\frac {1}{y}-a \right ) y^{\prime }+\frac {2}{x}-b = 0 \]

[_separable]

13777

\[ {}\tan \left (y\right )-\cot \left (x \right ) y^{\prime } = 0 \]

[_separable]

13784

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

13791

\[ {}y = y^{\prime } x +\frac {1}{y} \]

[_separable]

13828

\[ {}{y^{\prime }}^{2}+2 y y^{\prime } \cot \left (x \right )-y^{2} = 0 \]

[_separable]

13877

\[ {}y^{\prime } = y \,{\mathrm e}^{x +y} \left (x^{2}+1\right ) \]

[_separable]

13878

\[ {}x^{2} y^{\prime } = 1+y^{2} \]

[_separable]

13880

\[ {}x \left ({\mathrm e}^{y}+4\right ) = {\mathrm e}^{x +y} y^{\prime } \]

[_separable]

13884

\[ {}y^{\prime } = x \,{\mathrm e}^{-x +y^{2}} \]

[_separable]

13886

\[ {}x \left (1+y\right )^{2} = \left (x^{2}+1\right ) y \,{\mathrm e}^{y} y^{\prime } \]

[_separable]

13897

\[ {}5 y^{\prime }-x y = 0 \]

[_separable]

14091

\[ {}y-y^{\prime } x = 0 \]

[_separable]

14092

\[ {}\left (1+u \right ) v+\left (1-v\right ) u v^{\prime } = 0 \]

[_separable]

14093

\[ {}1+y-\left (1-x \right ) y^{\prime } = 0 \]

[_separable]

14094

\[ {}\left (t^{2}+x t^{2}\right ) x^{\prime }+x^{2}+t x^{2} = 0 \]

[_separable]

14095

\[ {}y-a +x^{2} y^{\prime } = 0 \]

[_separable]

14096

\[ {}z-\left (-a^{2}+t^{2}\right ) z^{\prime } = 0 \]

[_separable]

14097

\[ {}y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \]

[_separable]

14098

\[ {}1+s^{2}-\sqrt {t}\, s^{\prime } = 0 \]

[_separable]

14099

\[ {}r^{\prime }+r \tan \left (t \right ) = 0 \]

[_separable]

14100

\[ {}\left (x^{2}+1\right ) y^{\prime }-\sqrt {1-y^{2}} = 0 \]

[_separable]

14101

\[ {}y^{\prime } \sqrt {-x^{2}+1}-\sqrt {1-y^{2}} = 0 \]

[_separable]

14102

\[ {}3 \,{\mathrm e}^{x} \tan \left (y\right )+\left (1-{\mathrm e}^{x}\right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

[_separable]

14103

\[ {}x -x y^{2}+\left (y-x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

14130

\[ {}\left (-x^{2}+1\right ) y^{\prime }-x y+a x y^{2} = 0 \]

[_separable]

14142

\[ {}\frac {x^{2} y^{\prime }}{\left (x -y\right )^{2}}-\frac {y^{2}}{\left (x -y\right )^{2}} = 0 \]

[_separable]

14150

\[ {}y = y^{\prime } x +y^{\prime } \]

[_separable]

14205

\[ {}\frac {x^{2} y^{\prime }}{\left (x -y\right )^{2}}-\frac {y^{2}}{\left (x -y\right )^{2}} = 0 \]

[_separable]

14213

\[ {}3 \,{\mathrm e}^{x} \tan \left (y\right )+\left (1-{\mathrm e}^{x}\right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

[_separable]

14240

\[ {}y^{\prime } x -y = 0 \]

[_separable]

14247

\[ {}x^{2} y^{\prime }+2 x y = 0 \]

[_separable]

14255

\[ {}2 y^{\prime } x -y = 0 \]

[_separable]

14262

\[ {}y^{\prime }-2 x y = 0 \]

[_separable]

14265

\[ {}y^{\prime } = x \sqrt {y} \]

[_separable]

14268

\[ {}x \ln \left (x \right ) y^{\prime }-\left (1+\ln \left (x \right )\right ) y = 0 \]

[_separable]

14286

\[ {}y^{\prime } = x y \]

[_separable]

14287

\[ {}y^{\prime } = -x y \]

[_separable]

14291

\[ {}y^{\prime } = x y \]

[_separable]

14292

\[ {}y^{\prime } = \frac {x}{y} \]

[_separable]

14293

\[ {}y^{\prime } = \frac {y}{x} \]

[_separable]

14298

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

14304

\[ {}y^{\prime } = \frac {1}{x y} \]

[_separable]

14308

\[ {}y^{\prime } = \frac {x}{y^{2}} \]

[_separable]

14309

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]

[_separable]

14310

\[ {}y^{\prime } = \frac {x y}{1-y} \]

[_separable]

14324

\[ {}y^{\prime } = -x \sqrt {1-y^{2}} \]
i.c.

[_separable]

14339

\[ {}y^{\prime } = x \,{\mathrm e}^{y-x^{2}} \]
i.c.

[_separable]

14340

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

14341

\[ {}y^{\prime } = \frac {2 x}{y} \]
i.c.

[_separable]

14343

\[ {}y^{\prime } = x +x y \]
i.c.

[_separable]

14344

\[ {}x \,{\mathrm e}^{y}+y^{\prime } = 0 \]
i.c.

[_separable]

14345

\[ {}y-x^{2} y^{\prime } = 0 \]
i.c.

[_separable]

14347

\[ {}2 x y^{\prime } y+y^{2} = -1 \]

[_separable]

14353

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

14358

\[ {}x -y y^{\prime } = 0 \]

[_separable]

14359

\[ {}y-y^{\prime } x = 0 \]

[_separable]

14361

\[ {}x y \left (1-y\right )-2 y^{\prime } = 0 \]

[_separable]

14362

\[ {}x \left (1-y^{3}\right )-3 y^{2} y^{\prime } = 0 \]

[_separable]

14363

\[ {}\left (2 x -1\right ) y+x \left (x +1\right ) y^{\prime } = 0 \]

[_separable]

14366

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

14367

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

14377

\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \]
i.c.

[_separable]

14378

\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \]
i.c.

[_separable]

14379

\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \]
i.c.

[_separable]

14380

\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \]
i.c.

[_separable]

14381

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]
i.c.

[_separable]

14382

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]
i.c.

[_separable]

14383

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]
i.c.

[_separable]

14384

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]
i.c.

[_separable]

14385

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

14386

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

14387

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

14388

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

14389

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

14400

\[ {}y^{\prime } = x \sqrt {1-y^{2}} \]
i.c.

[_separable]

14401

\[ {}y^{\prime } = x \sqrt {1-y^{2}} \]
i.c.

[_separable]

14402

\[ {}y^{\prime } = x \sqrt {1-y^{2}} \]
i.c.

[_separable]

14403

\[ {}y^{\prime } = x \sqrt {1-y^{2}} \]
i.c.

[_separable]

14530

\[ {}y^{\prime } = \frac {1+y}{1+t} \]

[_separable]

14531

\[ {}y^{\prime } = t^{2} y^{2} \]

[_separable]

14532

\[ {}y^{\prime } = t^{4} y \]

[_separable]

14537

\[ {}y^{\prime } = 2 t y^{2}+3 y^{2} \]

[_separable]

14538

\[ {}y^{\prime } = \frac {t}{y} \]

[_separable]

14539

\[ {}y^{\prime } = \frac {t}{y+t^{2} y} \]

[_separable]

14540

\[ {}y^{\prime } = t y^{{1}/{3}} \]

[_separable]

14542

\[ {}y^{\prime } = \frac {2 y+1}{t} \]

[_separable]

14544

\[ {}y^{\prime } = \frac {4 t}{1+3 y^{2}} \]

[_separable]

14545

\[ {}v^{\prime } = t^{2} v-2-2 v+t^{2} \]

[_separable]

14546

\[ {}y^{\prime } = \frac {1}{t y+t +y+1} \]

[_separable]

14547

\[ {}y^{\prime } = \frac {{\mathrm e}^{t} y}{1+y^{2}} \]

[_separable]

14549

\[ {}w^{\prime } = \frac {w}{t} \]

[_separable]

14551

\[ {}x^{\prime } = -t x \]
i.c.

[_separable]

14552

\[ {}y^{\prime } = t y \]
i.c.

[_separable]

14554

\[ {}y^{\prime } = t^{2} y^{3} \]
i.c.

[_separable]

14556

\[ {}y^{\prime } = \frac {t}{y-t^{2} y} \]
i.c.

[_separable]

14558

\[ {}y^{\prime } = t y^{2}+2 y^{2} \]
i.c.

[_separable]

14559

\[ {}x^{\prime } = \frac {t^{2}}{x+t^{3} x} \]
i.c.

[_separable]

14561

\[ {}y^{\prime } = \left (1+y^{2}\right ) t \]
i.c.

[_separable]

14563

\[ {}y^{\prime } = 2 t y^{2}+3 t^{2} y^{2} \]
i.c.

[_separable]

14574

\[ {}y^{\prime } = \left (1+t \right ) y \]
i.c.

[_separable]

14584

\[ {}y^{\prime } = t y+t y^{2} \]

[_separable]

14585

\[ {}y^{\prime } = t^{2}+t^{2} y \]

[_separable]

14586

\[ {}y^{\prime } = t +t y \]

[_separable]

14613

\[ {}y^{\prime } = \frac {1}{\left (1+y\right ) \left (t -2\right )} \]
i.c.

[_separable]

14615

\[ {}y^{\prime } = \frac {t}{-2+y} \]
i.c.

[_separable]

14697

\[ {}y^{\prime } = \frac {\left (t^{2}-4\right ) \left (1+y\right ) {\mathrm e}^{y}}{\left (t -1\right ) \left (3-y\right )} \]

[_separable]

14702

\[ {}y^{\prime } = t y \]

[_separable]

14704

\[ {}y^{\prime } = \frac {t y}{t^{2}+1} \]

[_separable]

14710

\[ {}x^{\prime } = -t x \]
i.c.

[_separable]

14713

\[ {}y^{\prime } = t^{2} y^{3}+y^{3} \]
i.c.

[_separable]

14716

\[ {}y^{\prime } = \frac {\left (1+t \right )^{2}}{\left (1+y\right )^{2}} \]
i.c.

[_separable]

14717

\[ {}y^{\prime } = 2 t y^{2}+3 t^{2} y^{2} \]
i.c.

[_separable]

14719

\[ {}y^{\prime } = \frac {t^{2}}{y+t^{3} y} \]
i.c.

[_separable]

14723

\[ {}y^{\prime } = t^{2} y+1+y+t^{2} \]

[_separable]

14724

\[ {}y^{\prime } = \frac {2 y+1}{t} \]

[_separable]

14912

\[ {}y y^{\prime } = 2 x \]

[_separable]

14953

\[ {}y^{\prime }+3 x y = 6 x \]

[_separable]

14956

\[ {}x^{2} y^{\prime }+x y^{2} = x \]

[_separable]

14959

\[ {}\left (x -2\right ) y^{\prime } = 3+y \]

[_separable]

14960

\[ {}\left (-2+y\right ) y^{\prime } = x -3 \]

[_separable]

14964

\[ {}y^{\prime } = 3 y^{2}-\sin \left (x \right ) y^{2} \]

[_separable]

14969

\[ {}y^{\prime }+x y = 4 x \]

[_separable]

14971

\[ {}y^{\prime } = x y-3 x -2 y+6 \]

[_separable]

14973

\[ {}y y^{\prime } = {\mathrm e}^{x -3 y^{2}} \]

[_separable]

14974

\[ {}y^{\prime } = \frac {x}{y} \]

[_separable]

14976

\[ {}x y^{\prime } y = y^{2}+9 \]

[_separable]

14977

\[ {}y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \]

[_separable]

14978

\[ {}y^{\prime } \cos \left (y\right ) = \sin \left (x \right ) \]

[_separable]

14979

\[ {}y^{\prime } = {\mathrm e}^{2 x -3 y} \]

[_separable]

14980

\[ {}y^{\prime } = \frac {x}{y} \]
i.c.

[_separable]

14981

\[ {}y^{\prime } = 2 x -1+2 x y-y \]
i.c.

[_separable]

14982

\[ {}y y^{\prime } = x y^{2}+x \]
i.c.

[_separable]

14984

\[ {}y^{\prime } = x y-4 x \]

[_separable]

14986

\[ {}y y^{\prime } = x y^{2}-9 x \]

[_separable]

14988

\[ {}y^{\prime } = {\mathrm e}^{x +y^{2}} \]

[_separable]

14990

\[ {}y^{\prime } = x y-4 x \]

[_separable]

14991

\[ {}y^{\prime } = x y-3 x -2 y+6 \]

[_separable]

14992

\[ {}y^{\prime } = 3 y^{2}-\sin \left (x \right ) y^{2} \]

[_separable]

14994

\[ {}y^{\prime } = \frac {y}{x} \]

[_separable]

14995

\[ {}y^{\prime } = \frac {6 x^{2}+4}{3 y^{2}-4 y} \]

[_separable]

14996

\[ {}\left (x^{2}+1\right ) y^{\prime } = 1+y^{2} \]

[_separable]

14997

\[ {}\left (-1+y^{2}\right ) y^{\prime } = 4 x y^{2} \]

[_separable]

15000

\[ {}y^{\prime } = 3 x y^{3} \]

[_separable]

15001

\[ {}y^{\prime } = \frac {2+\sqrt {x}}{2+\sqrt {y}} \]

[_separable]

15002

\[ {}y^{\prime }-3 x^{2} y^{2} = -3 x^{2} \]

[_separable]

15003

\[ {}y^{\prime }-3 x^{2} y^{2} = 3 x^{2} \]

[_separable]

15006

\[ {}y y^{\prime } = \sin \left (x \right ) \]
i.c.

[_separable]

15007

\[ {}y^{\prime } = 2 x -1+2 x y-y \]
i.c.

[_separable]

15008

\[ {}y^{\prime } x = y^{2}-y \]
i.c.

[_separable]

15009

\[ {}y^{\prime } x = y^{2}-y \]
i.c.

[_separable]

15010

\[ {}y^{\prime } = \frac {-1+y^{2}}{x y} \]
i.c.

[_separable]

15011

\[ {}\left (-1+y^{2}\right ) y^{\prime } = 4 x y \]
i.c.

[_separable]

15019

\[ {}y^{\prime } = y \sin \left (x \right ) \]

[_separable]

15025

\[ {}y^{\prime }-2 x y = x \]

[_separable]

15073

\[ {}2-2 x +3 y^{2} y^{\prime } = 0 \]

[_separable]

15077

\[ {}1+{\mathrm e}^{y}+x \,{\mathrm e}^{y} y^{\prime } = 0 \]

[_separable]

15079

\[ {}1+y^{4}+x y^{3} y^{\prime } = 0 \]

[_separable]

15083

\[ {}3 y+3 y^{2}+\left (2 x +4 x y\right ) y^{\prime } = 0 \]

[_separable]

15084

\[ {}2 x \left (1+y\right )-y^{\prime } = 0 \]

[_separable]

15089

\[ {}y^{\prime } x = 2 y^{2}-6 y \]

[_separable]

15090

\[ {}4 y^{2}-x^{2} y^{2}+y^{\prime } = 0 \]

[_separable]

15104

\[ {}y^{\prime } = \frac {1}{x y-3 x} \]

[_separable]

15107

\[ {}\sin \left (y\right )+\left (x +1\right ) \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

15113

\[ {}y^{\prime } = x y^{2}+3 y^{2}+x +3 \]

[_separable]

15127

\[ {}y^{2}-y^{2} \cos \left (x \right )+y^{\prime } = 0 \]

[_separable]

15130

\[ {}y^{\prime } = y^{3}-y^{3} \cos \left (x \right ) \]

[_separable]

15132

\[ {}y^{\prime } = {\mathrm e}^{4 x +3 y} \]

[_separable]

15134

\[ {}y^{\prime } = {\mathrm e}^{4 x +3 y} \]

[_separable]

15720

\[ {}y^{\prime }+x y = 0 \]

[_separable]

15731

\[ {}y^{\prime } = -\frac {x}{y} \]

[_separable]

15761

\[ {}y^{\prime } = \frac {\left (x -4\right ) y^{3}}{x^{3} \left (-2+y\right )} \]

[_separable]

15771

\[ {}y^{\prime }+\cos \left (x \right ) y = 0 \]

[_separable]

15794

\[ {}\frac {y^{\prime }}{t} = \sqrt {y} \]
i.c.

[_separable]

15796

\[ {}y^{\prime } = y \sqrt {t} \]
i.c.

[_separable]

15798

\[ {}y^{\prime } t = y \]

[_separable]

15799

\[ {}y^{\prime } = \tan \left (t \right ) y \]
i.c.

[_separable]

15820

\[ {}y^{\prime } = t y^{2} \]
i.c.

[_separable]

15821

\[ {}y^{\prime } = -\frac {t}{y} \]
i.c.

[_separable]

15823

\[ {}y^{\prime } = \frac {x}{y^{2}} \]

[_separable]

15824

\[ {}\frac {1}{2 \sqrt {t}}+y^{2} y^{\prime } = 0 \]

[_separable]

15825

\[ {}y^{\prime } = \frac {\sqrt {y}}{x^{2}} \]

[_separable]

15827

\[ {}6+4 t^{3}+\left (5+\frac {9}{y^{8}}\right ) y^{\prime } = 0 \]

[_separable]

15828

\[ {}\frac {6}{t^{9}}-\frac {6}{t^{3}}+t^{7}+\left (9+\frac {1}{s^{2}}-4 s^{8}\right ) s^{\prime } = 0 \]

[_separable]

15829

\[ {}4 \sinh \left (4 y\right ) y^{\prime } = 6 \cosh \left (3 x \right ) \]

[_separable]

15830

\[ {}y^{\prime } = \frac {1+y}{1+t} \]

[_separable]

15831

\[ {}y^{\prime } = \frac {y+2}{2 t +1} \]

[_separable]

15832

\[ {}\frac {3}{t^{2}} = \left (\frac {1}{\sqrt {y}}+\sqrt {y}\right ) y^{\prime } \]

[_separable]

15833

\[ {}3 \sin \left (x \right )-4 y^{\prime } \cos \left (y\right ) = 0 \]

[_separable]

15834

\[ {}\cos \left (y\right ) y^{\prime } = 8 \sin \left (8 t \right ) \]

[_separable]

15836

\[ {}\left (5 x^{5}-4 \cos \left (x\right )\right ) x^{\prime }+2 \cos \left (9 t \right )+2 \sin \left (7 t \right ) = 0 \]

[_separable]

15837

\[ {}\cosh \left (6 t \right )+5 \sinh \left (4 t \right )+20 \sinh \left (y\right ) y^{\prime } = 0 \]

[_separable]

15838

\[ {}y^{\prime } = {\mathrm e}^{2 y+10 t} \]

[_separable]

15839

\[ {}y^{\prime } = {\mathrm e}^{3 y+2 t} \]

[_separable]

15840

\[ {}\sin \left (t \right )^{2} = \cos \left (y\right )^{2} y^{\prime } \]

[_separable]

15841

\[ {}3 \sin \left (t \right )-\sin \left (3 t \right ) = \left (\cos \left (4 y\right )-4 \cos \left (y\right )\right ) y^{\prime } \]

[_separable]

15842

\[ {}x^{\prime } = \frac {\sec \left (t \right )^{2}}{\sec \left (x\right ) \tan \left (x\right )} \]

[_separable]

15843

\[ {}\left (2-\frac {5}{y^{2}}\right ) y^{\prime }+4 \cos \left (x \right )^{2} = 0 \]

[_separable]

15845

\[ {}\tan \left (y\right ) \sec \left (y\right )^{2} y^{\prime }+\cos \left (2 x \right )^{3} \sin \left (2 x \right ) = 0 \]

[_separable]

15846

\[ {}y^{\prime } = \frac {\left (1+2 \,{\mathrm e}^{y}\right ) {\mathrm e}^{-y}}{t \ln \left (t \right )} \]

[_separable]

15847

\[ {}x \sin \left (x^{2}\right ) = \frac {\cos \left (\sqrt {y}\right ) y^{\prime }}{\sqrt {y}} \]

[_separable]

15848

\[ {}\frac {x -2}{x^{2}-4 x +3} = \frac {\left (1-\frac {1}{y}\right )^{2} y^{\prime }}{y^{2}} \]

[_separable]

15849

\[ {}\frac {\cos \left (y\right ) y^{\prime }}{\left (1-\sin \left (y\right )\right )^{2}} = \sin \left (x \right )^{3} \cos \left (x \right ) \]

[_separable]

15850

\[ {}y^{\prime } = \frac {\left (5-2 \cos \left (x \right )\right )^{3} \sin \left (x \right ) \cos \left (y\right )^{4}}{\sin \left (y\right )} \]

[_separable]

15851

\[ {}\frac {\sqrt {\ln \left (x \right )}}{x} = \frac {{\mathrm e}^{\frac {3}{y}} y^{\prime }}{y} \]

[_separable]

15852

\[ {}y^{\prime } = \frac {5^{-t}}{y^{2}} \]

[_separable]

15853

\[ {}y^{\prime } = t^{2} y^{2}+y^{2}-t^{2}-1 \]

[_separable]

15855

\[ {}4 \left (x -1\right )^{2} y^{\prime }-3 \left (3+y\right )^{2} = 0 \]

[_separable]

15856

\[ {}y^{\prime } = \sin \left (t -y\right )+\sin \left (t +y\right ) \]

[_separable]

15867

\[ {}y^{\prime } = \frac {\sqrt {t}}{y} \]
i.c.

[_separable]

15869

\[ {}y^{\prime } = \frac {{\mathrm e}^{t}}{1+y} \]
i.c.

[_separable]

15870

\[ {}y^{\prime } = {\mathrm e}^{t -y} \]
i.c.

[_separable]

15874

\[ {}y^{\prime } = \frac {\sin \left (x \right )}{\cos \left (y\right )+1} \]
i.c.

[_separable]

15875

\[ {}y^{\prime } = \frac {3+y}{3 x +1} \]
i.c.

[_separable]

15876

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]
i.c.

[_separable]

15877

\[ {}y^{\prime } = {\mathrm e}^{2 x -y} \]
i.c.

[_separable]

15878

\[ {}y^{\prime } = \frac {3 y+1}{3+x} \]
i.c.

[_separable]

15879

\[ {}y^{\prime } = \cos \left (t \right ) y \]
i.c.

[_separable]

15880

\[ {}y^{\prime } = y^{2} \cos \left (t \right ) \]
i.c.

[_separable]

15881

\[ {}y^{\prime } = \sqrt {y}\, \cos \left (t \right ) \]
i.c.

[_separable]

15882

\[ {}y^{\prime }+y f \left (t \right ) = 0 \]
i.c.

[_separable]

15883

\[ {}y^{\prime } = -\frac {-2+y}{x -2} \]
i.c.

[_separable]

15893

\[ {}y^{\prime } = y f \left (t \right ) \]
i.c.

[_separable]

15912

\[ {}y^{\prime }-x y = x \]

[_separable]

15916

\[ {}x^{\prime } = \frac {3 x t^{2}}{-t^{3}+1} \]

[_separable]

15922

\[ {}2 t y+y^{\prime } = 2 t \]
i.c.

[_separable]

15926

\[ {}\left (t^{2}+4\right ) y^{\prime }+2 t y = 2 t \]
i.c.

[_separable]

15954

\[ {}\frac {t}{\sqrt {t^{2}+y^{2}}}+\frac {y y^{\prime }}{\sqrt {t^{2}+y^{2}}} = 0 \]

[_separable]

15955

\[ {}y \cos \left (t y\right )+t \cos \left (t y\right ) y^{\prime } = 0 \]

[_separable]

15957

\[ {}3 t y^{2}+y^{3} y^{\prime } = 0 \]

[_separable]

15961

\[ {}{\mathrm e}^{t y}+\frac {t \,{\mathrm e}^{t y} y^{\prime }}{y} = 0 \]

[_separable]

15964

\[ {}y^{2}+2 t y y^{\prime } = 0 \]

[_separable]

15965

\[ {}\frac {3 t^{2}}{y}-\frac {t^{3} y^{\prime }}{y^{2}} = 0 \]

[_separable]

15970

\[ {}\sin \left (y\right )^{2}+t \sin \left (2 y\right ) y^{\prime } = 0 \]

[_separable]

15974

\[ {}-2 t y^{2} \sin \left (t^{2}\right )+2 y \cos \left (t^{2}\right ) y^{\prime } = 0 \]

[_separable]

15982

\[ {}2 t y^{2}+2 t^{2} y y^{\prime } = 0 \]
i.c.

[_separable]

15994

\[ {}t^{2} y+t^{3} y^{\prime } = 0 \]

[_separable]

15995

\[ {}y \left (2 \,{\mathrm e}^{t}+4 t \right )+3 \left ({\mathrm e}^{t}+t^{2}\right ) y^{\prime } = 0 \]

[_separable]

16015

\[ {}y^{\prime }-\frac {y}{t} = \frac {y^{2}}{t} \]

[_separable]

16019

\[ {}2 \ln \left (t \right )-\ln \left (4 y^{2}\right ) y^{\prime } = 0 \]

[_separable]

16021

\[ {}\frac {\sin \left (2 t \right )}{\cos \left (2 y\right )}+\frac {\ln \left (y\right ) y^{\prime }}{\ln \left (t \right )} = 0 \]

[_separable]

16022

\[ {}\sqrt {t^{2}+1}+y y^{\prime } = 0 \]

[_separable]

16052

\[ {}y^{\prime }-\frac {2 y}{x} = -x^{2} y \]

[_separable]

16066

\[ {}y^{\prime } = \frac {2 t^{5}}{5 y^{2}} \]

[_separable]

16067

\[ {}\cos \left (4 x \right )-8 y^{\prime } \sin \left (y\right ) = 0 \]

[_separable]

16068

\[ {}y^{\prime }-\frac {y}{t} = \frac {y^{2}}{t} \]

[_separable]

16069

\[ {}y^{\prime } = \frac {{\mathrm e}^{8 y}}{t} \]

[_separable]

16070

\[ {}y^{\prime } = \frac {{\mathrm e}^{5 t}}{y^{4}} \]

[_separable]

16071

\[ {}-\frac {1}{x^{5}}+\frac {1}{x^{3}} = \left (2 y^{4}-6 y^{9}\right ) y^{\prime } \]

[_separable]

16072

\[ {}y^{\prime } = \frac {y \,{\mathrm e}^{-2 t}}{\ln \left (y\right )} \]

[_separable]

16073

\[ {}y^{\prime } = \frac {\left (4-7 x \right ) \left (2 y-3\right )}{\left (x -1\right ) \left (2 x -5\right )} \]

[_separable]

16086

\[ {}t y+y^{\prime } = t \]

[_separable]

16103

\[ {}y^{\prime } = t y^{3} \]
i.c.

[_separable]

16104

\[ {}y^{\prime } = \frac {t}{y^{3}} \]
i.c.

[_separable]

16105

\[ {}y^{\prime } = -\frac {y}{t -2} \]
i.c.

[_separable]

16594

\[ {}y^{\prime } = \frac {x}{y} \]

[_separable]

16606

\[ {}\left (-x^{2}+1\right ) y^{\prime }+x y = 2 x \]

[_separable]

16612

\[ {}y^{\prime } = x \left (-1+y\right ) \]

[_separable]

16617

\[ {}y^{\prime } = \frac {1+y}{x -1} \]

[_separable]

16622

\[ {}y^{\prime } = -\frac {y}{x} \]

[_separable]

16632

\[ {}1+y^{2}+\left (x^{2}+1\right ) y^{\prime } = 0 \]

[_separable]

16633

\[ {}x y^{\prime } y+1+y^{2} = 0 \]

[_separable]

16634

\[ {}y^{\prime } \sin \left (x \right )-\cos \left (x \right ) y = 0 \]
i.c.

[_separable]

16635

\[ {}1+y^{2} = y^{\prime } x \]

[_separable]

16636

\[ {}y y^{\prime } \sqrt {x^{2}+1}+x \sqrt {1+y^{2}} = 0 \]

[_separable]

16637

\[ {}x \sqrt {1-y^{2}}+y \sqrt {-x^{2}+1}\, y^{\prime } = 0 \]
i.c.

[_separable]

16639

\[ {}y \ln \left (y\right )+y^{\prime } x = 1 \]
i.c.

[_separable]

16640

\[ {}y^{\prime } = a^{x +y} \]

[_separable]

16641

\[ {}{\mathrm e}^{y} \left (x^{2}+1\right ) y^{\prime }-2 x \left (1+{\mathrm e}^{y}\right ) = 0 \]

[_separable]

16642

\[ {}2 x \sqrt {1-y^{2}} = \left (x^{2}+1\right ) y^{\prime } \]

[_separable]

16643

\[ {}{\mathrm e}^{x} \sin \left (y\right )^{3}+\left ({\mathrm e}^{2 x}+1\right ) \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

16644

\[ {}\sin \left (x \right ) y^{2}+\cos \left (x \right )^{2} \ln \left (y\right ) y^{\prime } = 0 \]

[_separable]

16649

\[ {}a^{2}+y^{2}+2 x \sqrt {a x -x^{2}}\, y^{\prime } = 0 \]
i.c.

[_separable]

16650

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

16660

\[ {}x^{3} y^{\prime }-\sin \left (y\right ) = 1 \]
i.c.

[_separable]

16661

\[ {}\left (x^{2}+1\right ) y^{\prime }-\frac {\cos \left (2 y\right )^{2}}{2} = 0 \]
i.c.

[_separable]

16663

\[ {}\left (x +1\right ) y^{\prime } = -1+y \]

[_separable]

16664

\[ {}y^{\prime } = 2 x \left (\pi +y\right ) \]

[_separable]

16695

\[ {}y^{\prime }+\cos \left (x \right ) y = \cos \left (x \right ) \]
i.c.

[_separable]

16709

\[ {}y^{\prime }+2 x y = 2 x y^{2} \]

[_separable]

16712

\[ {}y^{\prime }+3 x y = y \,{\mathrm e}^{x^{2}} \]

[_separable]

16717

\[ {}y^{\prime }-\cos \left (x \right ) y = y^{2} \cos \left (x \right ) \]

[_separable]

16730

\[ {}\frac {x y}{\sqrt {x^{2}+1}}+2 x y-\frac {y}{x}+\left (\sqrt {x^{2}+1}+x^{2}-\ln \left (x \right )\right ) y^{\prime } = 0 \]

[_separable]

16747

\[ {}{y^{\prime }}^{2}-2 y y^{\prime } = y^{2} \left (-1+{\mathrm e}^{2 x}\right ) \]

[_separable]

16810

\[ {}y^{\prime }+\cos \left (\frac {x}{2}+\frac {y}{2}\right ) = \cos \left (\frac {x}{2}-\frac {y}{2}\right ) \]

[_separable]

16811

\[ {}y^{\prime } \left (3 x^{2}-2 x \right )-y \left (6 x -2\right ) = 0 \]

[_separable]

16818

\[ {}\left (x -1\right ) \left (y^{2}-y+1\right ) = \left (-1+y\right ) \left (x^{2}+x +1\right ) y^{\prime } \]

[_separable]

16827

\[ {}\sin \left (\ln \left (x \right )\right )-\cos \left (\ln \left (y\right )\right ) y^{\prime } = 0 \]

[_separable]

16854

\[ {}x y = y^{\prime } \ln \left (\frac {y^{\prime }}{x}\right ) \]

[_separable]

17229

\[ {}y^{\prime } = \frac {x^{4}}{y} \]

[_separable]

17230

\[ {}y^{\prime } = \frac {x^{2} \left (x^{3}+1\right )}{y} \]

[_separable]

17231

\[ {}y^{\prime }+y^{3} \sin \left (x \right ) = 0 \]

[_separable]

17232

\[ {}y^{\prime } = \frac {7 x^{2}-1}{7+5 y} \]

[_separable]

17233

\[ {}y^{\prime } = \sin \left (2 x \right )^{2} \cos \left (y\right )^{2} \]

[_separable]

17234

\[ {}y^{\prime } x = \sqrt {1-y^{2}} \]

[_separable]

17235

\[ {}y y^{\prime } = \left (x y^{2}+x \right ) {\mathrm e}^{x^{2}} \]

[_separable]

17236

\[ {}y^{\prime } = \frac {x^{2}+{\mathrm e}^{-x}}{y^{2}-{\mathrm e}^{y}} \]

[_separable]

17237

\[ {}y^{\prime } = \frac {x^{2}}{1+y^{2}} \]

[_separable]

17238

\[ {}y^{\prime } = \frac {\sec \left (x \right )^{2}}{y^{3}+1} \]

[_separable]

17240

\[ {}y^{\prime } = x \left (y-y^{2}\right ) \]

[_separable]

17241

\[ {}y^{\prime } = \left (1-12 x \right ) y^{2} \]
i.c.

[_separable]

17242

\[ {}y^{\prime } = \frac {3-2 x}{y} \]
i.c.

[_separable]

17243

\[ {}x +y y^{\prime } {\mathrm e}^{-x} = 0 \]
i.c.

[_separable]

17244

\[ {}r^{\prime } = \frac {r^{2}}{\theta } \]
i.c.

[_separable]

17245

\[ {}y^{\prime } = \frac {3 x}{y+x^{2} y} \]
i.c.

[_separable]

17246

\[ {}y^{\prime } = \frac {2 x}{1+2 y} \]
i.c.

[_separable]

17247

\[ {}y^{\prime } = 2 x y^{2}+4 x^{3} y^{2} \]
i.c.

[_separable]

17248

\[ {}y^{\prime } = x^{2} {\mathrm e}^{-3 y} \]
i.c.

[_separable]

17249

\[ {}y^{\prime } = \left (1+y^{2}\right ) \tan \left (2 x \right ) \]
i.c.

[_separable]

17250

\[ {}y^{\prime } = \frac {x \left (x^{2}+1\right ) y^{5}}{6} \]
i.c.

[_separable]

17251

\[ {}y^{\prime } = \frac {-{\mathrm e}^{x}+3 x^{2}}{2 y-11} \]
i.c.

[_separable]

17252

\[ {}x^{2} y^{\prime } = y-x y \]
i.c.

[_separable]

17253

\[ {}y^{\prime } = \frac {{\mathrm e}^{-x}-{\mathrm e}^{x}}{3+4 y} \]
i.c.

[_separable]

17254

\[ {}2 y y^{\prime } = \frac {x}{\sqrt {x^{2}-4}} \]
i.c.

[_separable]

17255

\[ {}\sin \left (2 x \right )+\cos \left (3 y\right ) y^{\prime } = 0 \]
i.c.

[_separable]

17256

\[ {}\sqrt {-x^{2}+1}\, y^{2} y^{\prime } = \arcsin \left (x \right ) \]
i.c.

[_separable]

17257

\[ {}y^{\prime } = \frac {3 x^{2}+1}{12 y^{2}-12 y} \]
i.c.

[_separable]

17258

\[ {}y^{\prime } = \frac {2 x^{2}}{2 y^{2}-6} \]
i.c.

[_separable]

17259

\[ {}y^{\prime } = 2 y^{2}+x y^{2} \]
i.c.

[_separable]

17260

\[ {}y^{\prime } = \frac {6-{\mathrm e}^{x}}{3+2 y} \]
i.c.

[_separable]

17261

\[ {}y^{\prime } = \frac {2 \cos \left (2 x \right )}{10+2 y} \]
i.c.

[_separable]

17262

\[ {}y^{\prime } = 2 \left (x +1\right ) \left (1+y^{2}\right ) \]
i.c.

[_separable]

17263

\[ {}y^{\prime } = \frac {t \left (4-y\right ) y}{3} \]
i.c.

[_separable]

17264

\[ {}y^{\prime } = \frac {t y \left (4-y\right )}{1+t} \]
i.c.

[_separable]

17302

\[ {}y+\left (t -4\right ) t y^{\prime } = 0 \]
i.c.

[_separable]

17311

\[ {}y^{\prime } = \frac {t^{2}+1}{3 y-y^{2}} \]

[_separable]

17312

\[ {}y^{\prime } = \frac {\cot \left (t \right ) y}{1+y} \]

[_separable]

17315

\[ {}y^{\prime } = -\frac {4 t}{y} \]
i.c.

[_separable]

17316

\[ {}y^{\prime } = 2 t y^{2} \]
i.c.

[_separable]

17318

\[ {}y^{\prime } = \frac {t^{2}}{\left (t^{3}+1\right ) y} \]
i.c.

[_separable]

17319

\[ {}y^{\prime } = t \left (3-y\right ) y \]

[_separable]

17323

\[ {}y^{\prime }+\left (\left \{\begin {array}{cc} 2 & 0\le t \le 1 \\ 1 & 1<t \end {array}\right .\right ) y = 0 \]
i.c.

[_separable]

17324

\[ {}3+2 x +\left (-2+2 y\right ) y^{\prime } = 0 \]

[_separable]

17327

\[ {}2 y+2 x y^{2}+\left (2 x +2 x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

17334

\[ {}\ln \left (y\right ) x +x y+\left (y \ln \left (x \right )+x y\right ) y^{\prime } = 0 \]

[_separable]

17335

\[ {}\frac {x}{\left (x^{2}+y^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (x^{2}+y^{2}\right )^{{3}/{2}}} = 0 \]

[_separable]

17338

\[ {}x^{2} y^{3}+x \left (1+y^{2}\right ) y^{\prime } = 0 \]

[_separable]

17341

\[ {}\left (x +2\right ) \sin \left (y\right )+x \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

17350

\[ {}y y^{\prime } = x +1 \]

[_separable]

17351

\[ {}\left (1+y^{4}\right ) y^{\prime } = x^{4}+1 \]

[_separable]

17353

\[ {}x \left (x -1\right ) y^{\prime } = y \left (1+y\right ) \]

[_separable]

17366

\[ {}5 \left (t^{2}+1\right ) y^{\prime } = 4 t y \left (y^{3}-1\right ) \]

[_separable]

17377

\[ {}\frac {\sqrt {x}\, y^{\prime }}{y} = 1 \]

[_separable]

17378

\[ {}5 x y^{2}+5 y+\left (5 x^{2} y+5 x \right ) y^{\prime } = 0 \]

[_separable]

17823

\[ {}y y^{\prime } \sqrt {x^{2}+1}+x \sqrt {1+y^{2}} = 0 \]
i.c.

[_separable]

17824

\[ {}\sec \left (x \right )^{2} \tan \left (y\right )+\sec \left (y\right )^{2} \tan \left (x \right ) y^{\prime } = 0 \]

[_separable]

17825

\[ {}y^{\prime } \sqrt {-x^{2}+1}+\sqrt {1-y^{2}} = 0 \]

[_separable]

17865

\[ {}y {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }-x = 0 \]

[_quadrature]

17867

\[ {}{y^{\prime }}^{3}-\left (x^{2}+x y+y^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+x^{2} y^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

17986

\[ {}y^{\prime } x = 2 y \]

[_separable]

17987

\[ {}y y^{\prime } = {\mathrm e}^{2 x} \]

[_separable]

18007

\[ {}x y^{\prime } y = -1+y \]

[_separable]

18008

\[ {}x^{5} y^{\prime }+y^{5} = 0 \]

[_separable]

18009

\[ {}y^{\prime } x = \left (-2 x^{2}+1\right ) \tan \left (y\right ) \]

[_separable]

18010

\[ {}y^{\prime } = 2 x y \]

[_separable]

18011

\[ {}y^{\prime } \sin \left (y\right ) = x^{2} \]

[_separable]

18013

\[ {}y^{\prime }+y \tan \left (x \right ) = 0 \]

[_separable]

18014

\[ {}y^{\prime }-y \tan \left (x \right ) = 0 \]

[_separable]

18015

\[ {}1+y^{2}+\left (x^{2}+1\right ) y^{\prime } = 0 \]

[_separable]

18016

\[ {}y \ln \left (y\right )-y^{\prime } x = 0 \]

[_separable]

18023

\[ {}y^{\prime } = {\mathrm e}^{3 x -2 y} \]
i.c.

[_separable]

18025

\[ {}{\mathrm e}^{-y}+\left (x^{2}+1\right ) y^{\prime } = 0 \]
i.c.

[_separable]

18026

\[ {}3 \cos \left (3 x \right ) \cos \left (2 y\right )-2 \sin \left (3 x \right ) \sin \left (2 y\right ) y^{\prime } = 0 \]
i.c.

[_separable]

18028

\[ {}x y^{\prime } y = \left (x +1\right ) \left (1+y\right ) \]
i.c.

[_separable]

18056

\[ {}y+y \cos \left (x y\right )+\left (x +x \cos \left (x y\right )\right ) y^{\prime } = 0 \]

[_separable]

18057

\[ {}\cos \left (x \right ) \cos \left (y\right )^{2}+2 \sin \left (x \right ) \sin \left (y\right ) \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

18059

\[ {}-\frac {\sin \left (\frac {x}{y}\right )}{y}+\frac {x \sin \left (\frac {x}{y}\right ) y^{\prime }}{y^{2}} = 0 \]

[_separable]

18060

\[ {}1+y+\left (1-x \right ) y^{\prime } = 0 \]

[_separable]

18066

\[ {}\ln \left (y\right ) x +x y+\left (y \ln \left (x \right )+x y\right ) y^{\prime } = 0 \]

[_separable]

18069

\[ {}\frac {x}{\left (x^{2}+y^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (x^{2}+y^{2}\right )^{{3}/{2}}} = 0 \]

[_separable]

18077

\[ {}\left (x +2\right ) \sin \left (y\right )+x \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

18085

\[ {}y-y^{\prime } x = x y^{3} y^{\prime } \]

[_separable]

18089

\[ {}y^{\prime } x -y+y^{2} = 0 \]

[_separable]

18135

\[ {}y^{\prime } x +y = x^{2} y^{\prime }+y^{2} \]

[_separable]

18158

\[ {}3 x^{2} \ln \left (y\right )+\frac {x^{3} y^{\prime }}{y} = 0 \]

[_separable]

18429

\[ {}3 x t^{2}-t x+\left (3 t^{3} x^{2}+t^{3} x^{4}\right ) x^{\prime } = 0 \]

[_separable]

18430

\[ {}1+2 x+\left (-t^{2}+4\right ) x^{\prime } = 0 \]

[_separable]

18436

\[ {}x^{\prime }+x \tan \left (t \right ) = 0 \]

[_separable]

18439

\[ {}x^{\prime }+2 t x+t x^{4} = 0 \]

[_separable]

18464

\[ {}y^{\prime } = \frac {\sqrt {1-y^{2}}\, \arcsin \left (y\right )}{x} \]

[_separable]

18469

\[ {}\sin \left (x \right ) \cos \left (y\right )^{2}+\cos \left (x \right )^{2} y^{\prime } = 0 \]

[_separable]

18471

\[ {}y-y^{\prime } x = b \left (1+x^{2} y^{\prime }\right ) \]

[_separable]

18473

\[ {}y^{\prime } = 1+\frac {1}{x}-\frac {1}{y^{2}+2}-\frac {1}{x \left (y^{2}+2\right )} \]

[_separable]

18477

\[ {}\sec \left (x \right )^{2} \tan \left (y\right ) y^{\prime }+\sec \left (y\right )^{2} \tan \left (x \right ) = 0 \]

[_separable]

18481

\[ {}y^{\prime }+x y = x \]

[_separable]

18498

\[ {}y^{\prime } = x \left (a y^{2}+b \right ) \]

[_separable]

18499

\[ {}n^{\prime } = \left (n^{2}+1\right ) x \]

[_separable]

18500

\[ {}v^{\prime }+\frac {2 v}{u} = 3 v \]

[_separable]

18501

\[ {}\sqrt {-u^{2}+1}\, v^{\prime } = 2 u \sqrt {1-v^{2}} \]

[_separable]

18503

\[ {}\frac {y^{\prime }}{x} = y \sin \left (x^{2}-1\right )-\frac {2 y}{\sqrt {x}} \]

[_separable]

18505

\[ {}v^{\prime }+2 u v = 2 u \]

[_separable]

18506

\[ {}1+v^{2}+\left (u^{2}+1\right ) v v^{\prime } = 0 \]

[_separable]

18507

\[ {}u \ln \left (u \right ) v^{\prime }+\sin \left (v\right )^{2} = 1 \]

[_separable]

18556

\[ {}y^{\prime }+y \sin \left (x \right ) = \sin \left (x \right ) y^{2} \]

[_separable]

18557

\[ {}\left (-x^{2}+1\right ) y^{\prime }-x y = a x y^{2} \]

[_separable]

18561

\[ {}y \sqrt {x^{2}-1}+x \sqrt {-1+y^{2}}\, y^{\prime } = 0 \]

[_separable]

18562

\[ {}\left (1+{\mathrm e}^{y}\right ) \cos \left (x \right )+{\mathrm e}^{y} \sin \left (x \right ) y^{\prime } = 0 \]

[_separable]

18563

\[ {}\sqrt {2 a y-y^{2}}\, \csc \left (x \right )+y \tan \left (x \right ) y^{\prime } = 0 \]

[_separable]

18564

\[ {}y \left (3+y\right ) y^{\prime } = x \left (3+2 y\right ) \]

[_separable]

18567

\[ {}\sin \left (x \right ) \cos \left (y\right )+\cos \left (x \right ) \sin \left (y\right ) y^{\prime } = 0 \]

[_separable]

18656

\[ {}\left (1-x \right ) y^{\prime }-1-y = 0 \]

[_separable]

18658

\[ {}y-y^{\prime } x = a \left (y^{\prime }+y^{2}\right ) \]

[_separable]

18659

\[ {}3 \,{\mathrm e}^{x} \tan \left (y\right )+\left (1-{\mathrm e}^{x}\right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

[_separable]

18673

\[ {}a \left (y^{\prime } x +2 y\right ) = x y^{\prime } y \]

[_separable]

18698

\[ {}\sec \left (x \right )^{2} \tan \left (y\right )+\sec \left (y\right )^{2} \tan \left (x \right ) y^{\prime } = 0 \]

[_separable]

18699

\[ {}y^{2}+x y^{2}+\left (x^{2}-x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

18712

\[ {}\left (x +1\right ) y^{\prime }+1 = 2 \,{\mathrm e}^{y} \]

[_separable]

18718

\[ {}y y^{\prime } = a x \]

[_separable]

18723

\[ {}y-y^{\prime } x = b \left (1+x^{2} y^{\prime }\right ) \]

[_separable]

18734

\[ {}4 y^{2} {y^{\prime }}^{2}+2 \left (3 x +1\right ) x y y^{\prime }+3 x^{3} = 0 \]

[_separable]

18750

\[ {}x y \left (y-y^{\prime } x \right ) = y y^{\prime }+x \]

[_separable]

18765

\[ {}{y^{\prime }}^{2}+2 y y^{\prime } \cot \left (x \right ) = y^{2} \]

[_separable]

18770

\[ {}{y^{\prime }}^{3}-\left (x^{2}+x y+y^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+x^{2} y^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

18779

\[ {}\sqrt {x}\, y^{\prime } = \sqrt {y} \]

[_separable]

18986

\[ {}x \cos \left (y\right )^{2} = y \cos \left (x \right )^{2} y^{\prime } \]

[_separable]

18987

\[ {}y^{\prime } = {\mathrm e}^{x -y}+x^{2} {\mathrm e}^{-y} \]

[_separable]

18988

\[ {}x^{2} y^{\prime }+y = 1 \]

[_separable]

18989

\[ {}2 y+\left (x^{2}+1\right ) \arctan \left (x \right ) y^{\prime } = 0 \]

[_separable]

18990

\[ {}x y^{2}+x +\left (y+x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

18991

\[ {}y^{\prime } = {\mathrm e}^{x +y}+x^{2} {\mathrm e}^{y} \]

[_separable]

18992

\[ {}\left (3+2 \sin \left (x \right )+\cos \left (x \right )\right ) y^{\prime } = 1+2 \sin \left (y\right )+\cos \left (y\right ) \]

[_separable]

18993

\[ {}\frac {\cos \left (y\right )^{2} y^{\prime }}{x}+\frac {\cos \left (x \right )^{2}}{y} = 0 \]

[_separable]

18994

\[ {}\left ({\mathrm e}^{x}+1\right ) y y^{\prime } = \left (1+y\right ) {\mathrm e}^{x} \]

[_separable]

18995

\[ {}\csc \left (x \right ) \ln \left (y\right ) y^{\prime }+x^{2} y^{2} = 0 \]

[_separable]

18996

\[ {}y^{\prime } = \frac {\sin \left (x \right )+x \cos \left (x \right )}{y \left (2 \ln \left (y\right )+1\right )} \]

[_separable]

18997

\[ {}\cos \left (y\right ) \ln \left (\sec \left (x \right )+\tan \left (x \right )\right ) = \cos \left (x \right ) \ln \left (\sec \left (y\right )+\tan \left (y\right )\right ) y^{\prime } \]

[_separable]

18998

\[ {}y^{2}+x y^{2}+\left (x^{2}-x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

18999

\[ {}\left (\sin \left (y\right )+y \cos \left (y\right )\right ) y^{\prime }-\left (2 \ln \left (x \right )+1\right ) x = 0 \]

[_separable]

19000

\[ {}3 \,{\mathrm e}^{x} \tan \left (y\right )+\left (1-{\mathrm e}^{x}\right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

[_separable]

19001

\[ {}y-y^{\prime } x = a \left (y^{\prime }+y^{2}\right ) \]

[_separable]

19042

\[ {}x +y^{\prime } = x \,{\mathrm e}^{\left (n -1\right ) y} \]

[_separable]

19071

\[ {}y^{\prime } = {\mathrm e}^{3 x -2 y}+x^{2} {\mathrm e}^{-2 y} \]

[_separable]

19076

\[ {}y^{\prime } = \frac {x \left (2 \ln \left (x \right )+1\right )}{\sin \left (y\right )+y \cos \left (y\right )} \]

[_separable]

19077

\[ {}s^{\prime }+x^{2} = x^{2} {\mathrm e}^{3 s} \]

[_separable]

19144

\[ {}{y^{\prime }}^{2}+2 y y^{\prime } \cot \left (x \right ) = y^{2} \]

[_separable]

19147

\[ {}y {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }-x = 0 \]

[_quadrature]

19149

\[ {}x {y^{\prime }}^{2}+\left (y-x \right ) y^{\prime }-y = 0 \]

[_quadrature]

19170

\[ {}x = y+a \ln \left (y^{\prime }\right ) \]

[_separable]

19239

\[ {}4 {y^{\prime }}^{2} x^{2} \left (x -1\right )-4 y^{\prime } x y \left (4 x -3\right )+\left (16 x -9\right ) y^{2} = 0 \]

[_separable]

19241

\[ {}y-y^{\prime } x = a \left (y^{\prime }+y^{2}\right ) \]

[_separable]

19242

\[ {}y-y^{\prime } x = b \left (1+x^{2} y^{\prime }\right ) \]

[_separable]

19438

\[ {}y-y^{\prime } x = 0 \]

[_separable]

19439

\[ {}\cot \left (y\right )-y^{\prime } \tan \left (x \right ) = 0 \]

[_separable]

19442

\[ {}\sec \left (x \right )^{2} \tan \left (y\right )+\sec \left (y\right )^{2} \tan \left (x \right ) y^{\prime } = 0 \]

[_separable]

19443

\[ {}1+y^{2}-x y^{\prime } y = 0 \]

[_separable]

19473

\[ {}{y^{\prime }}^{3}-\left (x^{2}+x y+y^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+x^{2} y^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

19489

\[ {}x y \left (y-y^{\prime } x \right ) = y y^{\prime }+x \]

[_separable]