2.3.11 first order ode clairaut

Table 2.397: first order ode clairaut

#

ODE

CAS classification

Solved?

169

\[ {}y = x y^{\prime }-\frac {{y^{\prime }}^{2}}{4} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

1536

\[ {}y^{\prime } = -\frac {x}{2}-1+\frac {\sqrt {x^{2}+4 x +4 y}}{2} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

3325

\[ {}y = x y^{\prime }+{y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

3326

\[ {}y = x y^{\prime }+\frac {1}{y^{\prime }} \]

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

3327

\[ {}y = x y^{\prime }-\sqrt {y^{\prime }} \]

[[_homogeneous, ‘class G‘], _Clairaut]

3328

\[ {}y = x y^{\prime }+\ln \left (y^{\prime }\right ) \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

3329

\[ {}y = x y^{\prime }+\frac {3}{{y^{\prime }}^{2}} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

3330

\[ {}y = x y^{\prime }-{y^{\prime }}^{{2}/{3}} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

3331

\[ {}y = x y^{\prime }+{\mathrm e}^{y^{\prime }} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

3332

\[ {}\left (y-x y^{\prime }\right )^{2} = 1+{y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

3333

\[ {}x {y^{\prime }}^{2}-y y^{\prime }-2 = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

4088

\[ {}\left (y-x y^{\prime }\right )^{2} = 1+{y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

4383

\[ {}x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+1 = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

4384

\[ {}y = x y^{\prime }+{y^{\prime }}^{3} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

4388

\[ {}2 {y^{\prime }}^{2} \left (y-x y^{\prime }\right ) = 1 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

5365

\[ {}{y^{\prime }}^{2}+x y^{\prime }-y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

5366

\[ {}{y^{\prime }}^{2}-x y^{\prime }+y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

5369

\[ {}{y^{\prime }}^{2}+\left (1-x \right ) y^{\prime }+y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

5370

\[ {}{y^{\prime }}^{2}-\left (x +1\right ) y^{\prime }+y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

5371

\[ {}{y^{\prime }}^{2}-\left (2-x \right ) y^{\prime }+1-y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

5372

\[ {}{y^{\prime }}^{2}+\left (x +a \right ) y^{\prime }-y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

5377

\[ {}{y^{\prime }}^{2}-2 x y^{\prime }+2 y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

5381

\[ {}{y^{\prime }}^{2}-4 \left (x +1\right ) y^{\prime }+4 y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

5383

\[ {}{y^{\prime }}^{2}-a x y^{\prime }+a y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

5385

\[ {}{y^{\prime }}^{2}+\left (b x +a \right ) y^{\prime }+c = b y \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

5415

\[ {}2 {y^{\prime }}^{2}-\left (1-x \right ) y^{\prime }-y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

5437

\[ {}x {y^{\prime }}^{2}-y y^{\prime }+a = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

5442

\[ {}x {y^{\prime }}^{2}+\left (-y+a \right ) y^{\prime }+b = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

5443

\[ {}x {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }+1-y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

5444

\[ {}x {y^{\prime }}^{2}+\left (a +x -y\right ) y^{\prime }-y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

5458

\[ {}\left (x +1\right ) {y^{\prime }}^{2}-\left (x +y\right ) y^{\prime }+y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

5459

\[ {}\left (-x +a \right ) {y^{\prime }}^{2}+y y^{\prime }-b = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

5462

\[ {}\left (3 x +1\right ) {y^{\prime }}^{2}-3 \left (y+2\right ) y^{\prime }+9 = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

5480

\[ {}x^{2} {y^{\prime }}^{2}-\left (1+2 x y\right ) y^{\prime }+1+y^{2} = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

5481

\[ {}x^{2} {y^{\prime }}^{2}-\left (a +2 x y\right ) y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

5502

\[ {}\left (a^{2}+x^{2}\right ) {y^{\prime }}^{2}-2 x y y^{\prime }+b +y^{2} = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

5599

\[ {}{y^{\prime }}^{3}+a x y^{\prime }-a y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

5600

\[ {}{y^{\prime }}^{3}-\left (b x +a \right ) y^{\prime }+b y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

5608

\[ {}{y^{\prime }}^{3}-{y^{\prime }}^{2}+x y^{\prime }-y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

5623

\[ {}x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+a = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

5629

\[ {}x^{2} {y^{\prime }}^{3}-2 x y {y^{\prime }}^{2}+y^{2} y^{\prime }+1 = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

5660

\[ {}2 \sqrt {a y^{\prime }}+x y^{\prime }-y = 0 \]

[[_homogeneous, ‘class G‘], _Clairaut]

5666

\[ {}\sqrt {a^{2}+b^{2} {y^{\prime }}^{2}}+x y^{\prime }-y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

5667

\[ {}a \sqrt {1+{y^{\prime }}^{2}}+x y^{\prime }-y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

5670

\[ {}a \left (1+{y^{\prime }}^{3}\right )^{{1}/{3}}+x y^{\prime }-y = 0 \]

[_Clairaut]

5671

\[ {}\cos \left (y^{\prime }\right )+x y^{\prime } = y \]

[_Clairaut]

5676

\[ {}\left (1+{y^{\prime }}^{2}\right ) \sin \left (-y+x y^{\prime }\right )^{2} = 1 \]

[_Clairaut]

5680

\[ {}\ln \left (y^{\prime }\right )+x y^{\prime }+a = y \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

5683

\[ {}\ln \left (y^{\prime }\right )+a \left (-y+x y^{\prime }\right ) = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

5686

\[ {}y^{\prime } \ln \left (y^{\prime }\right )-\left (x +1\right ) y^{\prime }+y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

5687

\[ {}y^{\prime } \ln \left (y^{\prime }+\sqrt {a +{y^{\prime }}^{2}}\right )-\sqrt {1+{y^{\prime }}^{2}}-x y^{\prime }+y = 0 \]

[_Clairaut]

5697

\[ {}y = x y^{\prime }+\frac {a y^{\prime }}{\sqrt {1+{y^{\prime }}^{2}}} \]

[_Clairaut]

5761

\[ {}y = x y^{\prime }+y^{\prime }-{y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

5762

\[ {}y = x y^{\prime }+\sqrt {b^{2}-a^{2} {y^{\prime }}^{2}} \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

6572

\[ {}y = x y^{\prime }+{y^{\prime }}^{4} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

6673

\[ {}{y^{\prime }}^{2}-x y^{\prime }+y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

6675

\[ {}x {y^{\prime }}^{5}-y {y^{\prime }}^{4}+\left (x^{2}+1\right ) {y^{\prime }}^{3}-2 x y {y^{\prime }}^{2}+\left (x +y^{2}\right ) y^{\prime }-y = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

6682

\[ {}y = x y^{\prime }-2 {y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

8133

\[ {}{y^{\prime }}^{2}-x y^{\prime }+y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

8142

\[ {}{y^{\prime }}^{2}-x y^{\prime }+y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

8143

\[ {}y = x y^{\prime }+k {y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

8148

\[ {}x {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }+1-y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

8149

\[ {}y^{\prime } \left (x y^{\prime }-y+k \right )+a = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

8153

\[ {}x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+1 = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

8219

\[ {}x^{2} {y^{\prime }}^{3}-2 x y {y^{\prime }}^{2}+y^{2} y^{\prime }+1 = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

8224

\[ {}x^{2} {y^{\prime }}^{2}-\left (1+2 x y\right ) y^{\prime }+1+y^{2} = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

8227

\[ {}\left (y^{\prime }+1\right )^{2} \left (y-x y^{\prime }\right ) = 1 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

8228

\[ {}{y^{\prime }}^{3}-{y^{\prime }}^{2}+x y^{\prime }-y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

8231

\[ {}x {y^{\prime }}^{2}+\left (k -x -y\right ) y^{\prime }+y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

8405

\[ {}\frac {{y^{\prime }}^{2}}{4}-x y^{\prime }+y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

8423

\[ {}x f^{\prime }-f = \frac {{f^{\prime }}^{2} \left (1-{f^{\prime }}^{\lambda }\right )^{2}}{\lambda ^{2}} \]

[_Clairaut]

10066

\[ {}{y^{\prime }}^{2}+\left (-2+x \right ) y^{\prime }-y+1 = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

10067

\[ {}{y^{\prime }}^{2}+\left (x +a \right ) y^{\prime }-y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

10068

\[ {}{y^{\prime }}^{2}-\left (x +1\right ) y^{\prime }+y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

10073

\[ {}{y^{\prime }}^{2}+\left (a x +b \right ) y^{\prime }-a y+c = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

10087

\[ {}2 {y^{\prime }}^{2}+\left (x -1\right ) y^{\prime }-y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

10105

\[ {}x {y^{\prime }}^{2}-y y^{\prime }+a = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

10113

\[ {}\left (x +1\right ) {y^{\prime }}^{2}-\left (x +y\right ) y^{\prime }+y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

10114

\[ {}\left (3 x +1\right ) {y^{\prime }}^{2}-3 \left (y+2\right ) y^{\prime }+9 = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

10115

\[ {}\left (3 x +5\right ) {y^{\prime }}^{2}-\left (3 y+x \right ) y^{\prime }+y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

10116

\[ {}a x {y^{\prime }}^{2}+\left (b x -a y+c \right ) y^{\prime }-b y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

10117

\[ {}a x {y^{\prime }}^{2}-\left (a y+b x -a -b \right ) y^{\prime }+b y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

10125

\[ {}x^{2} {y^{\prime }}^{2}-\left (a +2 x y\right ) y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

10133

\[ {}\left (x^{2}+1\right ) {y^{\prime }}^{2}-2 x y y^{\prime }+y^{2}-1 = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

10138

\[ {}\left (x^{2}+a \right ) {y^{\prime }}^{2}-2 x y y^{\prime }+y^{2}+b = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

10208

\[ {}{y^{\prime }}^{3}+x y^{\prime }-y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

10209

\[ {}{y^{\prime }}^{3}-\left (x +5\right ) y^{\prime }+y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

10220

\[ {}x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+a = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

10242

\[ {}\sqrt {1+{y^{\prime }}^{2}}+x y^{\prime }-y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

10251

\[ {}\ln \left (y^{\prime }\right )+a \left (-y+x y^{\prime }\right ) = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

10256

\[ {}\left (1+{y^{\prime }}^{2}\right ) \sin \left (-y+x y^{\prime }\right )^{2}-1 = 0 \]

[_Clairaut]

12568

\[ {}\left (-y+x y^{\prime }\right )^{2} = 1+{y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

12578

\[ {}y y^{\prime } = \left (x -b \right ) {y^{\prime }}^{2}+a \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

12584

\[ {}\left (x^{2}+1\right ) {y^{\prime }}^{2}-2 x y y^{\prime }+y^{2}-1 = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

12588

\[ {}y = x y^{\prime }+\frac {1}{y^{\prime }} \]

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

12590

\[ {}x^{2} {y^{\prime }}^{2}-2 \left (x y-2\right ) y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _Clairaut]

13556

\[ {}y = x y^{\prime }+{y^{\prime }}^{2} \]
i.c.

[[_1st_order, _with_linear_symmetries], _Clairaut]

13557

\[ {}y = x y^{\prime }+{y^{\prime }}^{2} \]
i.c.

[[_1st_order, _with_linear_symmetries], _Clairaut]

13573

\[ {}{y^{\prime }}^{2}+\left (x +a \right ) y^{\prime }-y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

13831

\[ {}{y^{\prime }}^{2}-y^{\prime }-x y^{\prime }+y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

13896

\[ {}y = x y^{\prime }+\sqrt {1-{y^{\prime }}^{2}} \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

13898

\[ {}y = x y^{\prime }+\frac {1}{y^{\prime }} \]

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

13899

\[ {}y = x y^{\prime }-\frac {1}{{y^{\prime }}^{2}} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

14072

\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]
i.c.

[[_1st_order, _with_linear_symmetries], _Clairaut]

14151

\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]
i.c.

[[_1st_order, _with_linear_symmetries], _Clairaut]

14152

\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]
i.c.

[[_1st_order, _with_linear_symmetries], _Clairaut]

14153

\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]
i.c.

[[_1st_order, _with_linear_symmetries], _Clairaut]

14154

\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]
i.c.

[[_1st_order, _with_linear_symmetries], _Clairaut]

14155

\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]
i.c.

[[_1st_order, _with_linear_symmetries], _Clairaut]

14813

\[ {}y^{\prime }+2 x = 2 \sqrt {y+x^{2}} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

15801

\[ {}t y^{\prime }-{y^{\prime }}^{3} = y \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

15802

\[ {}t y^{\prime }-y-2 \left (t y^{\prime }-y\right )^{2} = y^{\prime }+1 \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

15803

\[ {}t y^{\prime }-y-1 = {y^{\prime }}^{2}-y^{\prime } \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

15804

\[ {}1+y-t y^{\prime } = \ln \left (y^{\prime }\right ) \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

15805

\[ {}1-2 t y^{\prime }+2 y = \frac {1}{{y^{\prime }}^{2}} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

15838

\[ {}y = t y^{\prime }+3 {y^{\prime }}^{4} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

15840

\[ {}y-t y^{\prime } = -2 {y^{\prime }}^{3} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

15841

\[ {}y-t y^{\prime } = -4 {y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

16519

\[ {}y = x y^{\prime }+\frac {a}{{y^{\prime }}^{2}} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

16520

\[ {}y = x y^{\prime }+{y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

16521

\[ {}x {y^{\prime }}^{2}-y y^{\prime }-y^{\prime }+1 = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

16522

\[ {}y = x y^{\prime }+a \sqrt {1+{y^{\prime }}^{2}} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

16523

\[ {}x = \frac {y}{y^{\prime }}+\frac {1}{{y^{\prime }}^{2}} \]

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

16542

\[ {}y = x y^{\prime }+\sqrt {a^{2} {y^{\prime }}^{2}+b^{2}} \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

17061

\[ {}y^{\prime } = -\frac {t}{2}+\frac {\sqrt {t^{2}+4 y}}{2} \]
i.c.

[[_1st_order, _with_linear_symmetries], _Clairaut]

17627

\[ {}y = x y^{\prime }+y^{\prime }-{y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

17629

\[ {}{y^{\prime }}^{2} \left (x^{2}-1\right )-2 x y y^{\prime }+y^{2}-1 = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

17636

\[ {}y^{\prime } = -x +\sqrt {x^{2}+2 y} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

17637

\[ {}y^{\prime } = -x -\sqrt {x^{2}+2 y} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

18277

\[ {}y = x y^{\prime }+y^{\prime }-{y^{\prime }}^{3} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

18384

\[ {}y = x y^{\prime }-{y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

18399

\[ {}{y^{\prime }}^{2}+x y^{\prime }-y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

18495

\[ {}y = x y^{\prime }+\arcsin \left (y^{\prime }\right ) \]

[_Clairaut]

18500

\[ {}y = y^{\prime } \left (x -b \right )+\frac {a}{y^{\prime }} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

18522

\[ {}y = x y^{\prime }+\frac {m}{y^{\prime }} \]

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

18524

\[ {}y = x y^{\prime }+a \sqrt {1+{y^{\prime }}^{2}} \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

18525

\[ {}{y^{\prime }}^{2}+x y^{\prime }-y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

18535

\[ {}y^{2}-2 x y y^{\prime }+{y^{\prime }}^{2} \left (x^{2}-1\right ) = m^{2} \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

18536

\[ {}y = x y^{\prime }+\sqrt {b^{2}+a^{2} y^{\prime }} \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

18537

\[ {}y = x y^{\prime }-{y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

18541

\[ {}{y^{\prime }}^{2} \left (-a^{2}+x^{2}\right )-2 x y y^{\prime }+y^{2}-b^{2} = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]